
Algorithmic Analysis of Blockchain Efficiency
with Communication Delay

Carlos Pinzón, Camilo Rocha, Jorge Finke

Pontificia Universidad Javeriana, Cali, Colombia

Abstract. A blockchain is a distributed hierarchical data structure.
Widely-used applications of blockchain include digital currencies such
as Bitcoin and Ethereum. This paper proposes an algorithmic approach
to analyze the efficiency of a blockchain as a function of the number of
blocks and the average synchronization delay. The proposed algorithms
consider a random network model that characterizes the growth of a tree
of blocks by adhering to a standard protocol. The model is paramet-
ric on two probability distribution functions governing block production
and communication delay. Both distributions determine the synchroniza-
tion efficiency of the distributed copies of the blockchain among the so-
called workers and, therefore, are key for capturing the overall stochastic
growth. Moreover, the algorithms consider scenarios with a fixed or an
unbounded number of workers in the network. The main result illustrates
how the algorithms can be used to evaluate different types of blockchain
designs, e.g., systems in which the average time of block production can
match the average time of message broadcasting required for synchro-
nization. In particular, this algorithmic approach provides insight into
efficiency criteria for identifying conditions under which increasing block
production has a negative impact on the stability of a blockchain. The
model and algorithms are agnostic of the blockchain’s final use, and they
serve as a formal framework for specifying and analyzing a variety of
non-functional properties of current and future blockchains.

1 Introduction

A blockchain is a distributed hierarchical data structure that cannot be modified
(retroactively) without alteration of all subsequent blocks and the consensus of a
majority. It was invented to serve as the public transaction ledger of Bitcoin [22].
Instead relying on a trusted third party, this digital currency is based on the
concept of ‘proof-of-work’, which allows users to execute payments by signing
transactions using hashes through a distributed time-stamping service. Resis-
tance to modifications, decentralized consensus, and robustness for supporting
cryptocurrency transactions, unleashes the potential of blockchain technology
for uses in various industries, including financial services [12,26,3], distributed
data models [5], markets [25], government systems [15,23], healthcare [13,1,18],
IoT [16], and video games [21].
c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 400–419, 2020.
https://doi.org/10.1007/978-3-030-45234-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_20&domain=pdf
https://doi.org/10.1007/978-3-030-45234-6_20

Algorithmic Analysis of Blockchain Efficiency with Communication Delay 401

Technically, a blockchain is a distributed append-only data structure com-
prising a linear collection of blocks, shared among so-called workers, also re-
ferred often as miners. These miners generally represent computational nodes
responsible for working on extending the blockchain with new blocks. Since the
blockchain is decentralized, each worker possesses a local copy of the blockchain,
meaning that two workers can build blocks at the same time on unsynchronized
local copies of the blockchain. In the typical peer-to-peer network implementa-
tion of blockchain systems, workers adhere to a consensus protocol for inter-node
communication and validation of new blocks. Specifically, workers build on top
of the largest blockchain. If they encounter two blockchains of equal length,
then workers select the chain whose last produced block was first observed. This
protocol generally guarantees an effective synchronization mechanism, provided
that the task of producing new blocks is hard to achieve in comparison to the
time it takes for inter-node communication. The effort of producing a block rel-
ative to that of communicating among nodes is known in the literature as ‘proof
of work’. If several workers extend different versions of the blockchain, the con-
sensus mechanism enables the network to eventually select only one of them,
while the others are discarded (including the data they carry) when local copies
are synchronized. The synchronization process persistently carries on upon the
creation of new blocks.

The scenario of discarding blocks massively, which can be seen as an efficiency
issue in a blockchain implementation, is rarely present in “slow” block-producing
blockchains. The reason is that the time it takes to produce a new block is
long enough for workers to synchronize their local copies of the blockchain. Slow
blockchain systems avert workers from wasting resources and time in producing
blocks that are likely to be discarded in an upcoming synchronization. In Bitcoin,
for example, it takes on average 10 minutes for a block to be produced and only
12.6 seconds to communicate an update [8]. The theoretical fork-rate of Bitcoin
in 2013 was approximately 1.78% [8]. However, as the blockchain technology
finds new uses, it is being argued that block production needs to be faster [6,7].
Broadly speaking, understanding how speed-ups in block production can neg-
atively impact blockchains, in terms of the number of blocks discarded due to
race conditions among the workers, is important for designing new fast and yet
efficient blockchains.

This paper introduces a framework to formally study blockchains as a particu-
lar class of random networks with emphasis in two key aspects: the speed of block
production and the network synchronization delays. As such, it is parametric on
the number of workers under consideration (possibly infinite), the probability
distribution function that specifies the time for producing new blocks, and the
probability distribution function that specifies the communication delay between
any pair of randomly selected workers. The model is equipped with probabilistic
algorithms to simulate and formally analyze blockchains concurrently produc-
ing blocks over a network with varying communication delays. These algorithms
focus on the analysis of the continuous process of block production in fast and
highly distributed systems, in which inter-node communication delays are cru-

402 C. Pinzón et al.

cial. The framework enables the study of scenarios with fast block production,
in which blocks tend to be discarded at a high rate. In particular, it captures the
trade-off between speed and efficiency. Experiments are presented to understand
how this trade-off can be analyzed for different scenarios. As fast blockchain
systems tend to spread to novel applications, the algorithmic approach provides
mathematical tools for specifying, simulating, and analyzing blockchain systems.

It is important to highlight that the proposed model and algorithms are ag-
nostic of the concrete implementation and final use of the blockchain system.
For instance, the ‘rewards’ for mining blocks such as the ones present in the
Bitcoin network are not part of the model and are not considered in the analy-
sis algorithms. On the one hand, this sort of features can be seen as particular
mechanisms of a blockchain implementation that are not explicitly required for
the system to evolve as a blockchain. Thus, including them as part of the frame-
work can narrow its intended aim as a general specification, design, and analysis
tool. On the other hand, such features may be abstracted away into the proposed
model by tuning the probability distribution functions that are parameters of
the model, or by considering a more refined base of choices among the many
probability distribution functions at hand for a specific analysis. Therefore, the
proposed model and algorithms are general enough to encompass a wide variety
of blockchain systems and their analysis.

The contribution of this work is threefold. First, a random network model
is introduced (in the spirit of, e.g., Barabasi-Albert [4] and Erdös-Renyi [9]) for
specifying blockchains in terms of the speed of block production and communica-
tion delays for synchronization among workers. Second, exact and approximation
algorithms for the analysis of blockchain efficiency are made available. Third,
based on the proposed model and algorithms, empirical observations about the
tensions between production speed and synchronization delay are provided.

The remaining sections of the paper are organized as follows. Section 2 sum-
marizes basic notions of proof-of-work blockchains. Sections 3 and 4 introduce
the proposed network model and algorithms. Section 5 presents experimental re-
sults on the analysis of fast blockchains. Section 6 relates these results to existing
research, and draws some concluding remarks and future research directions.

2 An Overview of Proof-of-work Blockchains

This section overviews the concept of proof-of-work distributed blockchain sys-
tems and introduces basic definitions, which are illustrated with the help of an
example.

A blockchain is a distributed hierarchical data structure of blocks that cannot
be modified (retroactively) without alteration of all subsequent blocks and the
consensus of the network majority. The nodes in the network, called workers,
use their computational power to generate blocks with the goal of extending the
blockchain. The adjective ‘proof-of-work’ comes from the fact that producing a
single block for the blockchain tends to be a computationally hard task for the
workers, e.g., a partial hash inversion.

Algorithmic Analysis of Blockchain Efficiency with Communication Delay 403

Definition 1. A block is a digital document containing: (i) a digital signature
of the worker who produced it; (ii) an easy to verify proof-of-work witness in the
form of a nonce; and (iii) a hash pointer to the previous block in the sequence
(except for the first block, called the origin, that has no previous block and is
unique).

Technical definitions of blockchain as a data structure have been proposed
by different authors (see, e.g., [27]). Most of them coincide on it being an im-
mutable, transparent, and decentralized data structure shared by all workers
in the network. For the purpose of this paper, it is important to distinguish
between the local copy, independently owned by each worker, and the abstract
global blockchain, shared by all workers. The latter holds the complete history
of the blockchain.

Definition 2. The local blockchain of a worker w is a non-empty sequence of
blocks stored in the local memory of w. The global blockchain (or, blockchain)
is the minimal rooted tree containing all workers’ local blockchains as branches.

Under the assumption that the origin is unique (Definition 1), the (global)
blockchain is well-defined for any number of workers present in the network.
If there is at least one worker, then the blockchain is non-empty. Definition 2
allows for local blockchains to be either synchronized or unsynchronized. The
latter is common in systems with long communication delays or in the presence
of anomalous situations (e.g., if a malicious group of workers is holding a fork
intentionally). As a consequence, the global blockchain cannot simply be defined
as a unique sequence of blocks, but rather as a distributed data structure against
which workers are assumed to be partly synchronized to.

Figure 1 presents an example of a blockchain with five workers, where blocks
are represented by natural numbers. On the left, the local blockchains are de-
picted as linked lists; on the right, the corresponding global blockchain is depicted
as a rooted tree. Some of the blocks in the rooted tree representation in Figure 1
are labeled with the identifier of a worker, which indicates the position of each
worker in the global blockchain. For modeling, the rooted tree representation of
a blockchain is preferred. On the one hand, it can reduce the amount of memory
needed for storage and, on the other hand, it visually simplifies the inspection
of the data structure. Furthermore, storing a global blockchain with m workers
containing n unique blocks as a collection of lists requires in the worst-case sce-
nario O(mn) memory (i.e., with perfect synchronization). In contrast, the rooted
tree representation of the same blockchain with m workers and n unique blocks
requires O(n) memory for the rooted tree (e.g., using parent pointers) and an
O(m) map for assigning each worker its position in the tree, totaling O(n+m)
memory.

A blockchain tends to achieve synchronization among the workers due to the
following reasons. First, workers follow a standard protocol in which they are
constantly trying to produce new blocks and broadcasting their achievements to
the entire network. In the case of cryptocurrencies, for instance, this behavior
is motivated by paying a reward. Second, workers can easily verify (i.e., with

404 C. Pinzón et al.

w0 : 0 1oo 5oo 0 1oo 5w0oo

w1 : 0 2oo 3oo 6oo 2

dd
3w3oo 6w1,w4oo

w2 : 0 2oo 4oo 4w2

ff

w3 : 0 2oo 3oo

w4 : 0 2oo 3oo 6oo

Fig. 1: A blockchain network of five workers with their local blockchains (left) and
the corresponding global blockchain (right); blocks are represented by natural
numbers. Workers w0, w2, and w3 are not yet synchronized with the longest
sequence of blocks.

a fast algorithm) the authenticity of any block. If a malicious worker (i.e., an
attacker) changes the information of one block, that worker is forced to repeat
the extensive proof-of-work process for that block and all its subsequent blocks
in the blockchain. Otherwise, its malicious modification cannot become part of
the global blockchain. Since repeating the proof-of-work process requires that
the attacker spends a prohibitively high amount of resources (e.g., electricity,
time, and/or machine rental), such a situation is unlikely to occur. Third, the
standard protocol forces any malicious worker to confront the computational
power of the whole network, assumed to have mostly honest nodes.

Algorithm 1 presents a definition of the above-mentioned standard protocol,
which is followed by each worker in the network. When a worker produces a new
block, it is appended to the block it is standing on, moves to it, and notifies the
network about its current position and new distance to the root. Upon reception
of a notification, a worker compares its current distance to the root with the
incoming position. Such a worker switches to the incoming position whenever
it represents a greater distance. To illustrate the use of the standard protocol
with a simple example, consider the blockchains depicted in figures 1 and 2. In
the former, either w1 or w4 produced block 6, but the other workers are not yet
aware of its existence. In the latter, most of the workers are synchronized with
the longest branch, which is typical of a slow blockchain system, and results in
a tree with few and short branches.

0 1oo 2oo 4oo 5w7oo 6w0,...,w6oo

3
cc

Fig. 2: Example of a typical slow system with few and short branches.

Some final remarks on inter-node communication and implementations for
enforcing the standard protocol are due. Note that message communication in the
standard protocol is required to include enough information about the position of
a worker to be located in the tree. The detail degree of this information depends,
generally, on the design of the particular blockchain system. On the one hand,

Algorithmic Analysis of Blockchain Efficiency with Communication Delay 405

Algorithm 1: Standard protocol for each worker wi in a blockchain.
1 Bi ← [origin]
2 do forever
3 do in parallel, stop on first to occur
4 Task 1: b← produce a subsequent block for Bi

5 Task 2: B′ ← notification from another worker
6 end
7 if Task 1 has been completed then
8 append b to Bi

9 notify workers in the network about Bi

10 else if B′ is longer than Bi then
11 Bi ← B′

12 endif

sending the complete sequence from root to end as part of such a message is an
accurate, but also expensive approach, in terms of bandwidth, computation, and
time. On the other hand, sending only the last block as part of the message is
modest on resources, but can represent a communication conundrum whenever
the worker being notified about a new block x is not yet aware of the parent
block of x. In contrast to slow systems, this situation may frequently occur in fast
systems. The workaround is to use subsequent messages to query the previous
blocks of x, as needed, thus extending the average duration of inter-working
communication.

3 A Random Network Model for Blockchains

The network model generates a rooted tree representing a global blockchain
from a collection of linked lists representing local blockchains (see Definition 2).
It consists of three mechanisms, namely, growth, attachment, and broadcast. By
growth it is meant that the number of blocks in the network increases by one
at each time step. Attachment refers to the fact that new blocks connect to an
existing block, while broadcast refers to the fact that the newly connected block
is announced to the entire network. The model is parametric in a natural number
m specifying the number of workers, and two probability distributions α and β
governing the growth, attachment, and broadcast mechanisms. Internally, the
growth mechanism creates a new block to be assigned at random among the m
workers by taking a sample from α (the time it takes to produce such a block)
and broadcasts a synchronization message, whose reception time is sampled from
β (the time it takes the other workers to update their local blockchains with the
new block).

A network at a given discrete step n is represented as a rooted tree
Tn = (Vn, En), with nodes Vn ⊆ N and edges En ⊆ Vn × Vn, and a map
wn : {0, 1, . . . ,m− 1} → Vn. A node u ∈ Vn represents a block u in the network
and an edge (u, v) ∈ En represents a directed edge from block u to its parent

406 C. Pinzón et al.

block v. The assignment wn(w) denotes the position (i.e., the last block in the
local blockchain) of worker w in Tn.

Definition 3. (Growth model) Let α and β be positive and non-negative prob-
ability distributions. The algorithm used in the network model starts with V0 =
{b0}, E0 = {} and w0(w) = b0 for all workers w, being b0 = 0 the root block
(origin). At each step n > 0, Tn evolves as follows:

Growth. A new block bn (or, simply, n) is created with production time αn sam-
pled from α. That is, Vn = Vn−1 ∪ {n}.

Attachment. Uniformly at random, a worker w ∈ {0, 1, . . . ,m − 1} is chosen
for the new block to extend its local blockchain. A new edge appears so that
En = En−1 ∪{(wn−1(w), n)}, and wn−1 is updated to form wn with the new
assignment w 7→ n, that is, wn(w) = n and wn(z) = wn−1(z) for any z 6= w.

Broadcast. Worker w broadcasts the extension of its local blockchain with the
new block n to any other worker z with time βn,z sampled from β.

The rooted tree generated by the model in Definition 3 begins with block 0
(the root) and adds new blocks n = 1, 2, . . . to some of the workers. At
each step n > 0, a worker w is selected at random and its local blockchain,
0← · · · ← wn−1(w), is extended to 0← · · · ← wn−1(w)← n = wn(w). This re-
sults in a concurrent random global behavior, inherent to distributed blockchain
systems, not only because the workers are chosen randomly due to the proof-
of-work scheme, but also because the communication delays bring some workers
out of sync. It is important to note that the steps n = 0, 1, 2, . . . are logical time
steps, not to be confused with the sort of time units sampled from the variables
α and β. More precisely, although the model does not mention explicitly the time
advancement, it assumes implicitly that workers are synchronized at the corre-
sponding point in the logical future. For instance, if w sends a synchronization
message of a newly created block n to another worker z, at the end of logical
step n and taking βn,z time, the message will be received by z during the logical
step n′ ≥ n that satisfies

∑n′

i=n+1 αi ≤ βn,z <
∑n′+1
i=n+1 αi.

Another two reasonable assumptions are implicitly made in the model,
namely: (i) the computational power of all workers is similar; and (ii) any broad-
casting message includes enough information about the new and previous blocks,
so that no re-transmission is required to fill block gaps (or, equivalently, that
these re-transmission times are included in the delay sampled from β). Assump-
tion (i) justifies why the worker producing the new block is chosen uniformly at
random. Thus, instead of simulating the proof-of-work of the workers to know
who will produce the next block and at what time, it is enough to select a worker
uniformly and take a sample time from α. Assumption (ii) helps in keeping the
model description simple. Without Assumption (ii), it would be mandatory to
explicitly define how to proceed when a worker is severely out of date and re-
quires several messages to get synchronized.

In practice, the distribution α that governs the time it takes for the network,
as a single entity, to produce a block is exponential with mean ᾱ. Since proof-
of-work is based on finding a nonce that makes a hashing function fall into a

Algorithmic Analysis of Blockchain Efficiency with Communication Delay 407

specific set of targets, the process of producing a block is statistically equivalent
to waiting for a success in a sequence of Bernoulli trials. Such waiting times
would correspond –at first– to a discrete geometric distribution. However, be-
cause the time between trials is very small compared to the average time between
successes (usually fractions of microseconds against several seconds or minutes),
the discrete geometric distribution can be approximated by a continuous expo-
nential distribution function. Finally, note that the choice of the distribution
function β that governs the communication delay, and whose mean is denoted
by β̄, heavily depends on the system under consideration and its communication
details (e.g., its hardware and protocol).

4 Algorithmic Analysis of Blockchain Efficiency

This section presents an algorithmic approach to the analysis of blockchain effi-
ciency. The algorithms are used to estimate the proportion of valid blocks that
are produced during a fixed number of growth steps, based on the network model
introduced in Section 3, for blockchains with fixed and unbounded number of
workers. In general, although presented in this section for the specific purpose of
measuring blockchain efficiency, these algorithms can be easily adapted to com-
pute other metrics of interest, such as the speed of growth of the longest branch,
the relation between confirmations of a block and the probability of being valid
in the long term, or the average length of forks.

Definition 4. Let Tn = (Vn, En) be a blockchain that satisfies Definition 3. The
proportion of valid blocks pn in Tn is defined as the random variable:

pn =
max{dist(0, u) | u ∈ Vn}

|Vn|
.

The proportion of valid blocks p produced for a blockchain (in the limit) is defined
as the random variable:

p = lim
n→∞

pn.

Their expected values are denoted with p̄n and p̄, respectively.

Note that p̄n and p̄ are random variables particularly useful to determine
some important properties of blockchains. For instance, the probability that a
newly produced block becomes valid in the long run is p̄. The average rate at
which the longest branch grows is approximated by p̄/ᾱ. Moreover, the rate at
which invalid blocks are produced is approximately (1− p̄)/ᾱ and the expected
time for a block to receive a confirmation is ᾱ/p̄. Although pn and p are random
for any single simulation, their expected values p̄n and p̄ can be approximated
by averaging several Monte Carlo simulations.

The three algorithms presented in the following subsections are sequential
and single threaded1, designed to compute the value of pn under the standard
1 This would be mitigated by the fact that parallelization may be available for the
Monte-Carlo simulations.

408 C. Pinzón et al.

protocol (Algorithm 1). They can be used for computing p̄n and, thus, for ap-
proximating p̄ for large values of n. The first and second algorithms compute the
exact value of pn for a bounded number of workers. While the first algorithm
simulates the three mechanisms present in the network model (i.e., growth, at-
tachment, and broadcast –see Definition 3), the second one takes a more time-
efficient approach for computing pn. The third algorithm is a fast approximation
algorithm for pn, useful in the context of an unbounded number of workers. It is
of special interest for studying the efficiency of large and fast blockchain systems
because its time complexity does not depend on the number of workers in the
network.

4.1 Network Simulation with a Priority Queue

Algorithm 2 simulates the model with m workers running concurrently under the
standard protocol for up to n logical steps. It uses a list B of m block sequences
that reflect the local copy of each worker. The sequences are initially limited to
the origin block 0 and can be randomly extended during the simulation. Each
iteration of the main loop consists of four stages: (i) the wait for a new block to
be produced, (ii) the reception of messages within a given waiting period, (iii) the
addition of a block to the blockchain of a randomly selected worker, and (iv) the
broadcasting of the new position of the selected worker in the shared blockchain
to the other workers. The priority queue pq is used to queue messages for future
delivery, thus simulating the communication delays. Messages have the form
(t′, i, B′), where t′ represents the arrival time of the message, i is the recipient
worker, and B′ the content that informs that a (non-specified) worker has the
sequence of blocks B′. The statements α() and β() draw samples from α and β,
respectively.

The overall complexity of Algorithm 2 depends, as usual, on specific assump-
tions on its concrete implementation. First, let the time complexity to query
α() and β() be O(1), which is a reasonable assumption in most computer pro-
gramming languages. Second, note that the following time complexity estimates
may be higher depending on their specific implementations (e.g., if a histogram
is used instead of a continuous function for sampling these variables). In par-
ticular, consider two implementation variants. For both variants, the average
length of the priority queue with arbitrarily large n is expected to be O(m),
more precisely, mβ̄/ᾱ. Consider a scenario in which the statement Bi ← B′ is
implemented by creating a copy in O(n) time and the append statement is O(1)
time. The overall time complexity of the algorithm is O(mn2). Now consider a
scenario in which Bi ← B′ merely copies the list reference in O(1) time and the
append statement creates a copy in O(n) time. For the case where n� m, under
the assumption that the priority queue has log-time insertion and removal, the
time complexity is brought down to O(n2). In either case, the spatial complexity
is O(mn).

A key advantage of Algorithm 2 is that with a slight modification it can
return the blockchain s instead of the proportion pn, which enables a richer
analysis in the form of additional metrics different than p. For example, assume

Algorithmic Analysis of Blockchain Efficiency with Communication Delay 409

Algorithm 2: Simulation of m workers using a priority queue.
1 t← 0
2 B ← [[0], [0], ..., [0]] (m block sequences, 0 is the origin)
3 pq ← empty priority queue
4 for k ← 1, ..., n− 1 do
5 t← t+ α()
6 for (t′, i, B′) ∈ pq with t′ < t do (receive notifications)
7 pop (t′, i, B′) from pq
8 if B′ is longer than Bi then Bi ← B′ endif
9 end

10 j ← random_worker() (block producer)
11 append a new block (k) to Bj

12 for i ∈ {0, ...,m− 1} \ {j} do (publish notifications)
13 push (t+ β(), i, Bj) to pq
14 end
15 end
16 s← argmax

s∈B
|s| (longest sequence)

17 return |s|/n

that I denotes the random variable that describes the quantity of invalid blocks
that are created between consecutive blocks. The expected value E[I] can be
estimated from p̄ as E[I] ≈ (1 − p̄)/ᾱ. Building a complete blockchain can be
used to estimate not only E[I], but also a complete histogram of I and various
properties it may possess.

4.2 A Faster Simulation Algorithm

Algorithm 3: Simulation of m workers using a matrix d
1 t0, h0, z0 ← 0, 1, 0
2 d0 ← 〈0, 0, ..., 0〉 (m elements)
3 for k ← 1, ..., n− 1 do
4 j ← random_worker()
5 tk ← tk−1 + α()
6 hk ← 1 + max {hi | i < k ∧ ti + di,j < tk} (Algorithm 4)
7 zk ← max(zk−1, hk)
8 dk ← 〈β(), ..., β(), 0, β(), ..., β()〉︷ ︸︸ ︷

j’th position
9 end

10 return zn−1

410 C. Pinzón et al.

Algorithm 3 is a faster alternative to Algorithm 2. It uses a different encoding
for the collection of local blockchains. In particular, Algorithm 3 stores the length
of the blockchains instead of the sequences themselves. Thereby, it suppresses
the need for a priority queue. Algorithm 4 offers an optimized routine that can
be called from Algorithm 3.

Algorithm 4: Fast computation of hk given ti, zi, hi and di for all i < k

1 x, i← 1, k − 1
2 while i ≥ 0 and x < zi do
3 if ti ≤ tk − di,j and hi > x then
4 x = hi

5 endif
6 i← i− 1

7 end
8 return 1 + x (compute hk := 1 + max {hi | i < k ∧ ti + di,j < tk} ∪ {1})

Let tk represent the (absolute) time at which block k is created, hk the length
of the local blockchain after being extended with block k, and zk the cumulative
maximum given by

zk := max {hi | i ≤ k} .

The spatial complexity of Algorithm 3 is O(mn) due to the computation of
matrix d and its time complexity is O(nm+ n2) when Algorithm 4 is not used.
Note that there are n iterations, each requiring O(n) and O(m) time for com-
puting hk and dk, respectively. However, if Algorithm 4 is used for computing
hk, the average overall complexity is reduced. In the worst-case scenario, the
complexity of Algorithm 4 is O(k). However, the experimental evaluations sug-
gest an average below O(β̄/ᾱ) (constant with respect to k). Thus, the average
runtime complexity of Algorithm 3 is bounded by O

(
nm+ min{n2, n+ nβ̄/ᾱ}

)
,

and this corresponds to O(nm), unless the blockchain system is extremely fast
(β̄ � ᾱ).

4.3 An Approximation Algorithm for Unbounded Number of
Workers

Algorithms 2 and 3 compute the value of pn for a fixed number m of workers.
Both algorithms can be used to compute pn for different values of m. However,
the time complexity of these two algorithms heavily depends on the value of m,
which presents a practical limitation when faced with the task of analyzing large
blockchain systems. This section introduces an algorithm for approximating pn
for an unbounded number of workers. It also presents formal observations that
support the proposed approximation.

Recall that pn can be used as a measure of efficiency in terms of the pro-
portion of valid blocks that have been produced up to step n in the blockchain

Algorithmic Analysis of Blockchain Efficiency with Communication Delay 411

Tn = (Vn, En). Formally:

pn =
max{dist(0, u) | u ∈ Vn}

|Vn|
.

This definition assumes a fixed number of workers. That is, pn can be written as
pm,n to represent the proportion of valid blocks in Tn with m workers. For the
analysis of large blockchains, the challenge is to find an efficient way to estimate
pm,n for large values of m and n. In other words, to find an efficient algorithm
for approximating the random variables p∗n and p∗ defined as:

p∗n = lim
m→∞

pm,n and p∗ = lim
n→∞

p∗n = lim
m,n→∞

pm,n.

The proposed approach modifies Algorithm 3 by suppressing the matrix d. The
idea is to replace the need for computing di,j by an approximation based on
the random variable β and the length of the blockchain hk in each iteration
of the main loop. Note that the first row can be assumed to be 0 wherever it
appears because d0,j = 0 for all j. For the remaining rows, an approximation is
introduced by observing that if an element Xm is chosen at random from the
matrix d of size (n − 1) × m (i.e., matrix d without the first row), then the
cumulative distribution function of Xm is given by

P (Xm ≤ r) =

{
0 , r < 0
1
m + m−1

m P (β() ≤ r) , r ≥ 0,

where β() is a sample from β. This is because the elements Xm of d are either
samples from β, whose domain is R≥0, or 0 with a probability of 1/m since there
is one zero per row. Therefore, given that the following functional limit converges
uniformly (see Theorem 1 below),

lim
m→∞

(
r
fm7→ P (Xm ≤ r)

)
=
(
r
f7→ P (β() ≤ r)

)
,

each di,j can be approximated by directly sampling the distribution β. As a
result, Algorithm 4 can be used for computing hk by replacing di,j with β().

Theorem 1. Let fk(r) := P (Xk ≤ r) and g(r) := P (β() ≤ r). The functional
sequence {fk}∞k=1 converges uniformly to g.

Proof. Let ε > 0. Define n :=
⌈

1
2ε

⌉
and let k be any integer k > n. Then

sup |fk − g| = sup

{∣∣∣∣1k +

(
k − 1

k
− 1

)
P (β() ≤ r)

∣∣∣∣ : r ≥ 0

}
≤1

k
+

1

k
sup {P (β() ≤ r) : r ≥ 0}

=
1

k
+

1

k

<
2

n
≤ ε.

ut

412 C. Pinzón et al.

Using Theorem 1, the need for the bookkeeping matrix d and the selection of
a random worker j are discarded from Algorithm 3, resulting in Algorithm 5. The
proposed algorithm computes p∗n, an approximation of limm→∞ pm,n in which
the matrix entries di,j are replaced by samples from β, each time they are needed,
thus ignoring the arguably negligible hysteresis effects.

Algorithm 5: Approximation for limm→∞ pm,n simulation
1 t0, h0, z0 ← 0, 0, 0
2 for k ← 1, ..., n− 1 do
3 tk ← tk−1 + α()
4 hk ← 1 + max {hi | i < k ∧ ti + β() < tk} ∪ {1} (Algorithm 4*)
5 zk ← max(zk−1, hk)

6 end
7 return zn−1

Algorithm 4* stands for Algorithm 4 with β() instead of di,j (approximation)

The time complexity of Algorithm 5 implemented by using Algorithm 4 with
β() instead of di,j is O(n2) and its space complexity is O(n). If the pruning
algorithm is used, the time complexity drops below O(n+ nβ̄/ᾱ)) according to
experimentation. This complexity can be considered O(n) as long as β̄ 6� ᾱ.

5 Empirical Evaluation of Blockchain Efficiency

This section presents an experimental evaluation of blockchain efficiency in
terms of the proportion of valid blocks produced by the workers for the global
blockchain. The model in Section 3 is used as the mathematical framework,
while the algorithms in Section 4 are used for experimental evaluation on that
framework. The main claim is that, under certain conditions, the efficiency of a
blockchain can be expressed as a ratio between ᾱ and β̄. Experimental evalu-
ations provide evidence on why Algorithm 5 –the approximation algorithm for
computing the proportion of valid blocks in a blockchain system with an un-
bounded number of workers– is an accurate tool for computing the measure of
efficiency p∗.

Note that the speed of a blockchain can be characterized by the relationship
between the expected values of α and β.

Definition 5. Let α and β be the distributions according to Definition 3. A
blockchain is classified as:

– slow if ᾱ� β̄,
– chaotic if ᾱ� β̄, and
– fast if ᾱ ≈ β̄.

Algorithmic Analysis of Blockchain Efficiency with Communication Delay 413

Definition 5 captures the intuition about the behavior of a global blockchain
in terms of how alike are the times required for producing a block and for local
block synchronization. Note that the Bitcoin implementation is classified as a
slow blockchain system because the time between the creation of two consecutive
blocks is much larger than the time it takes for local blockchains to synchronize.
In chaotic blockchains, a dwarfing synchronization time means that basically no
(or relatively little) synchronization is possible, resulting in a blockchain in which
rarely any block would be part of “the” valid chain of blocks. A fast blockchain,
however, is one in which both the times for producing a block and broadcasting
a message are similar. The two-fold goal of this section is first, to analyze the
behavior of p̄∗ for the three classes of blockchains, and second, to understand
how the trade-off between production speed and communication time affects the
efficiency of the data structure by means of a formula.

In favor of readability, the experiments presented next identify algorithms 3
and 5 as Am and A∞, respectively. Furthermore, the claims and experiments
assume that the distribution α is exponential, which holds true for proof-of-work
systems.

Claim 1 Unless the system is chaotic, the hysteresis effect of the matrix entries
di,j in Am is negligible. Moreover, limm→∞Am(n) = A∞(n).

Note that Theorem 1 implies that if the hysteresis effect of the random vari-
ables di,j is negligible, then Algorithm 5 is a good enough approximation of
Algorithm 3. However, it does not prove that this assertion holds in general. Ex-
perimental evaluation suggests that this is indeed the case, as stated in Claim 1.

(a) Evolution of Am to A∞ as m grows.
Simulation runs contain at least 100 sam-
ples per point.

(b) High similarity between the p.d.f. of
A100 and A∞. Simulation runs contain at
least 1000 samples in total.

Fig. 3: Algorithmic simulation of n = 1000 blocks with ᾱ = 1, β̄ = 0.1, and β
exponential. The number of samples and the size of the blockchain n are chosen
such that the execution time on a standard cpu lies below a few seconds.

414 C. Pinzón et al.

Figure 3 summarizes the average output of Am and the region that contains
half of these outputs, for several values of m. All outputs seem to approach that
of A∞, not only for the expected value (Figure 3.(a)), but also in terms of the
generated p.d.f. (Figure 3.(b)). Similar results were obtained with several distri-
bution functions for β. In particular, the exponential, chi-squared, and gamma
probability distribution functions were used (with k ∈ {1, 1.5, 2, 3, 5, 10}), all
with different mean values. The resulting plots are similar to the ones depicted
in Figure 3.

As the quotient β̄/ᾱ grows beyond 1, the convergence of Am becomes much
slower and the approximation error is noticeable. An example is depicted in Fig-
ure 4, where a blockchain system produces on average 10 blocks during the trans-
mission of a synchronization message (i.e., the system is classified as chaotic).
Even after considering 1000 workers, the shape of the p.d.f. is shifted consider-
ably. The error can be due to: (i) the hysteresis effect that is ignored by A∞; or
(ii) the slow rate of convergence. In any case, the output of this class of systems
is very low, making them unstable and useless in practice.

Fig. 4: For chaotic systems, the convergence is slow and the approximation error
is large: with 1000 workers there is still an average output shift of around 0.005.

An intuitive conclusion about blockchain efficiency and speed of block pro-
duction is that slower systems tend to be more efficient than faster ones. That
is, faster blockchain systems have a tendency to overproduce blocks that will not
be valid.

Claim 2 If the system is either slow or fast, then

p̄∗ =
ᾱ

ᾱ+ β̄
.

Figure 5 presents an experimental evaluation of the proportion of valid blocks
in a blockchain in terms of the ratio β̄/ᾱ. For the left and right plots, the
horizontal axis represents how fast blocks are produced in comparison with how
slow synchronization is achieved. If the system is slow, then efficiency is high
because most newly produced blocks tend to be valid. If the system is fast,

Algorithmic Analysis of Blockchain Efficiency with Communication Delay 415

however, then efficiency is balanced because the newly produced blocks are likely
to either become valid or invalid with equal likelihood. Finally, note that for fast
and chaotic blockchains, say for 10−1 ≤ β̄/ᾱ, there is still a region in which
efficiency is arguably high. As a matter of fact, even if synchronization of local
blockchains takes on average a tenth of the time it takes to produce a block, in
general, the proportion of blocks that become valid is almost 90%. In practice,
this observation can bridge the gap between the current use of blockchains as
slow systems and the need for faster blockchains.

Fig. 5: Effect of speed on the proportion of valid blocks.

6 Related Work and Concluding Remarks

A comprehensive account of the vast literature on complex networks is beyond
the scope of this work. The aim here is more modest, namely, the focus is on re-
lated work proposing and using formal and semi-formal algorithmic approaches
to evaluate properties of blockchain systems. There are a number of recent stud-
ies that focus on the analysis of blockchain properties with respect to meta-
parameters. Some of them are based on network and node simulators. Other
studies conceptualize different metrics and models that aim to reduce the anal-
ysis to the essential parts of the system.

In [10], A. Gervais et al. introduce a quantitative framework to analyze the
security and performance implications of various consensus and network param-
eters of proof-of-work blockchains. They devise optimal adversarial strategies
for several attack scenarios while taking into account network propagation. Ulti-
mately, their approach can be used to compare the tradeoffs between blockchain
performance and its security provisions. Y. Aoki et al. [2] propose SimBlock, a
blockchain network simulator in which blocks, nodes, and the network itself can
be instantiated by using a comprehensive collection of parameters, including the
propagation delay between nodes. Towards a similar goal, J. Kreku et al. [19]
show how to use the Absolut simulation tool [28] for prototyping blockchains
in different environments and finding optimal performance, given some param-
eters, in constrained platforms such as Raspberry Pi and Nvidia Jetson Tk1.

416 C. Pinzón et al.

R. Zhang and B. Preneel [29] introduce a multi-metric evaluation framework to
quantitatively analyze proof-of-work protocols. Their systemic security analysis
in seven of the most representative and influential alternative blockchain designs
concludes that none of them outperforms the so-called Nakamoto Consensus in
terms of either the chain quality or attack resistance. All these efforts have in
common that simulation-based analysis is used to understand non-functional re-
quirements of blockchain designs such as performance and security, up to a high
degree of confidence. However, in most of the cases the concluding results are
tied to a specific implementation of the blockchain architecture. The model and
algorithms presented in this work can be used to analyze each of these scenarios
in a more abstract fashion by using appropriate parameters for simulating the
blockchain growth and synchronization.

An alternative approach for studying blockchains is through formal seman-
tics. G. Rosu [24] takes a novel approach to the analysis of blockchain systems
by focusing on the formal design, implementation, and verification of blockchain
languages and virtual machines. His approach uses continuation-based formal se-
mantics to later analyze reachability properties of the blockchain evolution with
different degrees of abstraction. In this direction of research, E. Hildenbrandt et
al. [14] present KEVM, an executable formal specification of Ethereum’s virtual
machine that can be used for rapid prototyping, as well as a formal interpreter of
Ethereum’s programming languages. C. Kaligotla and C. Macal [17] present an
agent-based model of a blockchain systems in which the behavior and decisions
made by agents are detailed. They are able to implement a generalized simu-
lation and a measure of blockchain efficiency from an agent choice and energy
cost perspective. Finally, J. Göbel et al. [11] use Markov models to establish
that some attack strategies, such as selfish-mine, causes the rate of production
of orphan blocks to increase. The research presented in this manuscript uses ran-
dom networks to model the behavior of blockchain systems. As future work, the
proposed model and algorithms can be specified in a rewrite-based framework
such as rewriting logic [20], so that the rule-based approach in [24,14] and the
agent-based approach in [17] can both be extended to the automatic analysis of
(probabilistic) temporal properties of blockchains. Moreover, as it is usual in a
random network approach, topological properties of blockchain systems can be
studied with the help of the model proposed in this manuscript.

In general, this paper differs from the above studies in the following aspects.
The proposed analysis is not based on an explicit low-level simulation of a net-
work or protocol; it does not explore the behavior of blockchain systems under
the presence attackers. Instead, this work simulates the behavior of blockchain
efficiency from a meta-level perspective and investigates the strength of the sys-
tem with respect to shortcomings inherent in its design. Therefore, the proposed
analysis differs from [10,2,19,29] and is rather closely related to studies which
consider the core properties of blockchain systems prior to attacks [17,29]. The
bounds for the meta-parameters are more conservative and less secure, compared
to scenarios in which the presence of attackers is taken into account. Finally, with
respect to studying blockchains through formal semantics, the proposed analysis

Algorithmic Analysis of Blockchain Efficiency with Communication Delay 417

is able to consider an artificial but convenient scenario of having an infinite num-
ber of concurrent workers. Formal semantics, as well as other related simulation
tools, cannot currently handle such scenarios.

This paper presented a network model for blockchains and showed how the
proposed simulation algorithms can be used to analyze the efficiency (in terms of
production of valid blocks) of blockchain systems. The model is parametric on:
(i) the number of workers (or nodes); and (ii) two probability distributions gov-
erning the time it takes to produce a new block and the time it takes the workers
to synchronize their local copies of the blockchain. The simulation algorithms
are probabilistic in nature and can be used to compute the expected value of
several metrics of interest, both for a fixed and unbounded number of workers,
via Monte Carlo simulations. It is proven, under reasonable assumptions, that
the fast approximation algorithm for an unbounded number of workers yields ac-
curate estimates in relation to the other two exact (but much slower) algorithms.
Claims –supported by extensive experimentation– have been proposed, including
a formula to measure the proportion of valid blocks produced in a blockchain in
terms of the two probability distributions of the model. The model, algorithms,
and experiments provide insights and useful mathematical tools for specifying,
simulating, and analyzing the design of fast blockchain systems in the years to
come.

Future work on the analytic analysis of the experimental observations con-
tributed in this work should be pursued. This includes proving the two claims
in Section 5. First, that hysteresis effects are negligible unless the system is ex-
tremely fast. Second, that the expected proportion of valid blocks in a blockchain
system is given by ᾱ/(ᾱ + β̄), being ᾱ and β̄ the mean of the probability dis-
tributions governing block production and communication times, respectively.
Furthermore, the generalization of the claims to non-proof-of-work schemes, i.e.
to different probability distribution functions for specifying the time it takes to
produce a new block may also be considered. Finally, the study of different forms
of attack on blockchain systems can be pursued with the help of the proposed
model.

Acknowledgments. This research was supported by the Center of Excellence
and Appropriation in Big Data and Data Analytics (CAOBA), founded by
the Ministry of Information Technologies and Telecommunications of Colombia
(MinTIC) and the Colombian Administrative Department of Science, Technol-
ogy and Innovation (COLCIENCIAS) under grant no. FP44842-anex46-2015.

References

1. Z. Alhadhrami, S. Alghfeli, M. Alghfeli, J. A. Abedlla, and K. Shuaib. Intro-
ducing blockchains for healthcare. In International Conference on Electrical and
Computing Technologies and Applications (ICECTA), pages 1–4. IEEE, 2017.

2. Y. Aoki, K. Otsuki, T. Kaneko, R. Banno, and K. Shudo. Simblock: A blockchain
network simulator. In IEEE INFOCOM 2019-IEEE Conference on Computer Com-
munications Workshops (INFOCOM WKSHPS), pages 325–329. IEEE, 2019.

418 C. Pinzón et al.

3. T. Aste, P. Tasca, and T. Di Matteo. Blockchain technologies: The foreseeable
impact on society and industry. Computer, 50(9):18–28, 2017.

4. A.-L. Barabasi and R. Albert. Emergence of scaling in random networks. Science,
286(5439):509–512, 1999.

5. T. Bui and T. Aura. Application of public ledgers to revocation in distributed
access control. In International Conference on Information and Communications
Security, pages 781–792. Springer, 2018.

6. U. W. Chohan. The limits to blockchain? Scaling vs. Decentralization. 2019.
7. K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller, P. Sax-

ena, E. Shi, E. G. Sirer, et al. On scaling decentralized blockchains. In International
Conference on Financial Cryptography and Data Security, pages 106–125. Springer,
2016.

8. C. Decker and R. Wattenhofer. Information propagation in the Bitcoin network.
In P2P, pages 1–10. IEEE, 2013.

9. P. Erdö and A. Rényi. On random graphs. Publicationes Mathematicae, 6:290–297,
1959.

10. A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Capkun. On
the security and performance of proof of work blockchains. In SIGSAC conference
on computer and communications security, pages 3–16. ACM, 2016.

11. J. Göbel, H. P. Keeler, A. E. Krzesinski, and P. G. Taylor. Bitcoin blockchain
dynamics: The selfish-mine strategy in the presence of propagation delay. Perfor-
mance Evaluation, 104:23–41, 2016.

12. Y. Guo and C. Liang. Blockchain application and outlook in the banking industry.
Financial Innovation, 2(1):24, 2016.

13. O. Gutiérrez, J. J. Saavedra, P. M. Wightman, and A. Salazar. Bc-med: Plataforma
de registros médicos electrónicos sobre tecnología blockchain. In Colombian Con-
ference on Communications and Computing (COLCOM), pages 1–6. IEEE, 2018.

14. E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth, B. Moore,
D. Park, Y. Zhang, A. Stefanescu, et al. KEVM: A complete formal semantics
of the Ethereum virtual machine. In Computer Security Foundations Symposium
(CSF), pages 204–217. IEEE, 2018.

15. H. Hou. The application of blockchain technology in E-government in China. In
International Conference on Computer Communication and Networks (ICCCN),
pages 1–4. IEEE, 2017.

16. S. Huh, S. Cho, and S. Kim. Managing IoT devices using blockchain platform.
In International Conference on Advanced Communication Technology (ICACT),
pages 464–467. IEEE, 2017.

17. C. Kaligotla and C. M. Macal. A generalized agent based framework for modeling
a blockchain system. In 2018 Winter Simulation Conference (WSC), pages 1001–
1012. IEEE, 2018.

18. E. Karafiloski and A. Mishev. Blockchain solutions for big data challenges: A
literature review. In 17th International Conference on Smart Technologies, pages
763–768. IEEE, 2017.

19. J. Kreku, V. A. Vallivaara, K. Halunen, J. Suomalainen, M. Ramachandran,
V. Muñoz, V. Kantere, G. Wills, and R. Walters. Evaluating the efficiency of
blockchains in iot with simulations. In IoTBDS, pages 216–223, 2017.

20. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science, 96:73–155, 1992.

21. S. Munir and M. S. I. Baig. Challenges and security aspects of blockchain based
on online multiplayer games, 2019.

Algorithmic Analysis of Blockchain Efficiency with Communication Delay 419

22. S. Nakamoto et al. Bitcoin: A peer-to-peer electronic cash system. 2008.
23. S. Ølnes, J. Ubacht, and M. Janssen. Blockchain in government: Benefits and

implications of distributed ledger technology for information sharing, 2017.
24. G. Rosu. Formal design, implementation and verification of blockchain languages.

In International Conference on Formal Structures for Computation and Deduction,
2018.

25. J. J. Sikorski, J. Haughton, and M. Kraft. Blockchain technology in the chemical
industry: Machine-to-machine electricity market. Applied Energy, 195:234–246,
2017.

26. A. Tapscott and D. Tapscott. How blockchain is changing finance. Harvard Busi-
ness Review, 1(9):2–5, 2017.

27. H. Treiblmaier. Toward more rigorous blockchain research: Recommendations for
writing blockchain case studies. Frontiers in Blockchain, 2:3, 2019.

28. J. Vatjus-Anttila, J. Kreku, J. Korpi, S. Khan, J. Saastamoinen, and K. Tien-
syrjä. Early-phase performance exploration of embedded systems with ABSOLUT
framework. Journal of Systems Architecture, 59(10, Part D):1128 – 1143, 2013.

29. R. Zhang and B. Preneel. Lay down the common metrics: Evaluating proof-of-work
consensus protocols’ security. In Symposium on Security and Privacy (SP), pages
175–192. IEEE, 2019.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Algorithmic Analysis of Blockchain Efficiency with Communication Delay
	1 Introduction
	2 An Overview of Proof-of-work Blockchains
	3 A Random Network Model for Blockchains
	4 Algorithmic Analysis of Blockchain Efficiency
	4.1 Network Simulation with a Priority Queue
	4.2 A Faster Simulation Algorithm
	4.3 An Approximation Algorithm for Unbounded Number of Workers

	5 Empirical Evaluation of Blockchain Efficiency
	6 Related Work and Concluding Remarks
	References

