f‘)

Check for
updates

Business Process Compliance using Reference
Models of Law

Hugo A. Lépez!3®, Sgren Debois?®, Tijs Slaats'@®, and Thomas T.
Hildebrandt!

1 Software, Data, People & Society Section
Department of Computer Science
Copenhagen University, Denmark
{hala,slaats,hilde}@di.ku.dk
2 Computer Science Department, IT University of Copenhagen, Denmark
debois@itu.dk
3 DCR Solutions A/S, Denmark

Abstract. Legal compliance is an important part of certifying the cor-
rect behaviour of a business process. To be compliant, organizations
might hard-wire regulations into processes, limiting the discretion that
workers have when choosing what activities should be executed in a case.
Worse, hard-wired compliant processes are difficult to change when laws
change, and this occurs very often. This paper proposes a model-driven
approach to process compliance and combines a) reference models from
laws, and b) business process models. Both reference and process models
are expressed in a declarative process language, The Dynamic Condition
Response (DCR) graphs. They are subject to testing and verification,
allowing law practitioners to check consistency against the intent of the
law. Compliance checking is a combination of alignments between events
in laws and events in a process model. In this way, a reference model
can be used to check different process variants. Moreover, changes in
the reference model due to law changes do not necessarily invalidate
existing processes, allowing their reuse and adaptation. We exemplify
the framework via the alignment of laws and business rules and a real
contract change management process, Finally, we show how compliance
checking for declarative processes is decidable, and provide a polynomial
time approximation that contrasts NP complexity algorithms used in
compliance checking for imperative business processes. All-together, this
paper presents technical and methodological steps that are being used
by legal practitioners in municipal governments in their efforts towards
digitalization of work practices in the public sector.

Keywords: Formal Models of Law, Dynamic Condition Response (DCR)
graphs, Compliance Checking, Process Calculi, Refinement

1 Introduction

Ensuring that business processes comply with applicable laws and regulations
has been a central concern with the arrival of regulatory technologies (RegTech),
© The Author(s) 2020

H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 378-399, 2020.
https://doi.org/10.1007/978-3-030-45234-6_ 19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_19&domain=pdf
http://orcid.org/0000-0001-5162-7936
http://orcid.org/0000-0002-4385-1409
http://orcid.org/0000-0001-6244-6970
http://orcid.org/0000-0002-7435-5563
https://doi.org/10.1007/978-3-030-45234-6_19

Business Process Compliance using Reference Models of Law 379

and bring together different disciplines ranging from legal theory to computer
science. We understand compliance as the “act/process to ensure that business
operations, processes, and practices are in accordance with prescriptive (often
legal) documents” [15]. Checking compliance requires ways to compare artefacts
coming from very different domains: the legal domain and the process domain.
On the one hand, business processes have as a main criteria the fulfilment of a
business goal. On the other hand, processes operate within a regulated context,
that sets certain limitations on how to achieve the goals, and defines responsi-
bilities for actors involved. In the public sector, being non-compliant is not an
option, as regulations determine the rights and obligations of their citizens. In
the private sector, the risk of being non-compliant equates to possible hefty fines
for the organization®.

Linking laws and processes have several challenges: First, how can we formally
interpret ambiguous regulations written in natural language? Second, how to pair
that formal interpretation of the law against a business process? Third, how to
reuse legal specifications in different process domains?, and fourth, what will
happen with compliance when the laws change? Compliance checking refers to
the verification procedure that compares regulations and processes: In its most
simple form, compliance checking can be expressed as the following problem:
given a formal specification of a law L and a business process P, we say that
the process is compliant if 1. Every action that P does is in accordance to the
permissions allowed by L, and 2. Every execution of P meets the set of obligations
established by L, and 3. Executions of P don’t do anything prohibited by L. In
any other case we will say that the process is not compliant.

In this paper we focus on the compliance checking problem from a mod-
elling/programming language perspective. First, we explore how declarative pro-
cess languages can describe the set of requirements expressed in legal documents.
The challenge is both at the level of language expressiveness (can the language
express the intended semantics of a legal text?), as well as understandability
(can a non-expert understand the specification?). Second, we look at the process
dimension: can we have a general framework that considers different process
artefacts? Third, we look at the alignment between the legal and the process
dimension: Can we provide an efficient algorithm to compute whether a process
is compliant with the legislation?

In [20], a taxonomy of the requirements needed to formally express laws was
presented. Overall, a formal language that expresses legal requirements should
be able to describe what can be done (permissions), what must be done (obli-
gations), and what should not happen (wiolations). Moreover, these so-called
deontic constraints are effectful (e.g.: an obligation might grant certain permis-
sions, e.g. “you must pay for delivery, but when you do so, you may decide
whether to pay now or upon delivery" and vice-versa, a permission may impose
certain obligations, e.g. “you may park here if you pay later"). The content of
the laws might also influence the choice of the language. Laws might describe

4 https://www.theverge.com/2019/1/21/18191591 /google-gdpr-fine-50-million-
euros-data-consent-cnil

https://www.theverge.com/2019/1/21/18191591/google-gdpr-fine-50-million-euros-data-consent-cnil
https://www.theverge.com/2019/1/21/18191591/google-gdpr-fine-50-million-euros-data-consent-cnil

380 H. A. Lopez et al.

constraints related to the control flow, temporal information, data, or resource
constraints [39]. Finally, the language of choice should be able to describe defea-
sible conditions [18], that is, when parts of the law become irrelevant, and are
superseded by other parts.

Compliance checking requires a formal representation of business goals and
processes. Such a representation traditionally takes the shape of traces (c.f.:
event-logs) at run-time, and of imperative process models at design-time. In the
imperative paradigm, languages such as BPMN [35] and UML Activity Dia-
grams [34] describe processes as activities and composition operators that pre-
scribe how the flow in the activities executed in the process. Rules and laws
are not first-class citizens in imperative models, and they need to be encoded as
annotations in the process language [13], or paired with additional languages,
such as BPMN-Q [4]. In contrast, declarative process models focus in the de-
scription of circumstantial information of processes (e.g.: the why of the pro-
cess). Languages such as Declare [37] and Dynamic Condition Response (DCR)
Graphs [10, 22] are some exponents of these types of languages. They describe
a process as a set of constraints between activities which can be translated to
specific business rules or goals. Their semantics is usually characterised by either
mapping the declarative model to a flow-based model (e.g. transition systems),
or by introducing an operational semantics that reasons over the state of the
different constraints and/or activities of the model.

The objective of this paper is two-fold. First, it explores whether existing
declarative process languages are expressive enough to formalise regulations;
second, it introduces compliance checking via declarative processes. The DCR
graphs process notation has been developed for the formalisation and digitalisa-
tion of collaborative, adaptive case management processes. The visual notation is
both supported by a range of formal techniques, and serves as the formal base for
the industrial (www.dcrgraphs.net) modelling and simulation tool. In contrast
to Declare, the DCR graphs technology has been succesfully employed in major
industrial case management systems, and at the moment it supports 70% of the
Danish Central Government institutions®. DCR graphs have been extended to
include both data [43], time [5,24], sub-processes [10], and choreographies [25].
In the present paper we consider the core notation with time, which is expres-
sive enough to represent both regular and omega-regular languages [10] as well
as so-called true concurrency [9]. In this work we only focus on laws describ-
ing control-flow and temporal constraints, leaving data, resource constraints or
inter-law dependencies for future work.

Our approach for process compliance can be summarised as follows: both the
legal domain and the business/organisational domain are defined as independent
DCR graphs, and compliance checking is reduced to process refinement. These
two independent models allow for a separation of concerns on what is legal and
what is business/organisational requirements and goals, and it eases compliance
checking when either laws or organisational processes change. It is worth to point
out that at its core, the choice of a process language can be replaced to any

5 https://www.kmd.dk/indsigter /fleksibilitet- og-dynamisk-sagsbehandling-i-staten

www.dcrgraphs.net
https://www.kmd.dk/indsigter/fleksibilitet-og-dynamisk-sagsbehandling-i-staten

Business Process Compliance using Reference Models of Law 381

existing process language (including imperative ones), as compliance checking is
mainly defined over traces. Changes in regulations might affect existing running
processes: the typical example is governmental case work, where processes need
to be revised every time a new regulation is signed. In addition, organisational
changes or process optimisation efforts might modify a business process in a
way that stops being compliant with existing laws. Finally, the separation of the
legal and business domains supports different stages of the compliance life cycle:
designing new processes that are compliant with the laws (e.g.: Compliance-
by-Design (CbD) [14]), as well as the verification of existing or mined process
models [33] becomes possible.

Contributions This paper presents the first compliance framework for declar-
ative process models that 1) can represent safety and omega-regular liveness
properties, 2) is supported by industrial design and simulation tools, and 3)
is currently in use in the digitalization strategies of municipal governments,
and 4) allows for a separation of concerns between what is legal and what is
process-specific. Thanks to having the same formal language for laws and busi-
ness processes, we can use efficient verification techniques based on process re-
finement, This comes in contrast to approaches based in annotated imperative
business processes, where the complexity of compliance checking belongs to the
non-polynomial complexity class [45].

Document Structure Section 2 introduces the compliance framework. Sec-
tion 3 presents DCR graphs, and illustrates its use on a case study. Section 4
explains the construction of reference models. Section 5 describes our compliance
checking technique. Results from validation with organizations are documented
in Section 6. Related work is compared in 7. We conclude in Section 8.

2 Regulatory Compliance Framework

The overall components of our compliance framework are described in Fig. 1.
It shows the interactions between two different type of roles: The compliance
officer, with a background in law, identifies the applicable regulations, and for
each law she generates a reference model. Laws might be abstract, e.g.: “Any in-
formation relating to an identified or identifiable natural person (‘data subject’)”
(Art. 4 in GDPR [7]). Consequently, the officer might need to combine the law
with implementation acts (e.g. the Danish Data Protection Act [8]). In this way,
the specification must narrow down ambiguities such as: “What corresponds to
any information”?, “in which ways will the process identify a person"? or “who
constitutes a natural person”? While the disambiguation process is mostly a man-
ual processes that depends on the expertise of the compliance officer, computer
support might provide help in the elicitation phase. Dual-coding tools support
lawyers in the generation of formal specifications [29], and NLP techniques can
be used to speedup the identification of process-related information [30]. The
output will be a collection of reference models, each of them describing a law.
Each model describe roles, rights, obligations, and the relations between them.

382 H. A. Lopez et al.

Interprets Regulatory Process
Documents Description
i

c“T""f&iﬁPf‘“’ Stakeholders H Process Specialist
egal edge . N H _—— .
! Disambiguates | | - i Domain nowledge

e e peeeee e TH A

q—————-—.....-...-._-...-_.._-*.-_.----:---'.--.

i : { !
[1 i)
U i 3 ------ Corrects |..... Process Validates |
i .
Validates H " Compliance 1
; e :
S| W !
! ' '
H '
H '

i

Checking
Validatio _Validation
------ — — — . L]
| Y 1
) '
| Discovers : i
T Reference Term Alignment 1 1
models .
| . !
—_—_——— = — — — : '
~ '
']]
' v]
1 g |=f== N L]
' Event Lags : Process Engine |
' Discovery] Execution]
Regulatory Space Compliance Space Process Space
Legend
.,‘ Pﬁa.se.s.': p‘z:]l:r : —p Automated step ----+= Manual step — Semi-automated step

Fig. 1. Compliance Framework

Compliance checking assumes the existence of a process. This can be elicited
from stakeholders via standard techniques [12] or, if the process already exists,
via process mining [33]. Process models contain the activities performed, roles,
and resource information (time & data) used. Alternatively, one can consider
disregarding process discovery and perform compliance checking directly over
event logs, as in classical process conformance approaches [1].

Both models and process models are subject to verification and validation
phases. Scenario replays, reachability and deadlock-livelock checkers provide
guarantees that both structural properties of the models are preserved.

The last dimension revolves compliance, and it constitutes the core of this
paper. Since reference models are specific to a given regulation, they need to
be instantiated in terms of the business process. This requires the alignment
between events identified in the reference model, and activities in the business
process. Compliance checking is then reduced to trace refinement: all traces in
the process model are a subset of the traces in the reference model.

The separation between reference and compliance models allows for modu-
lar verification. When laws and processes change, their models can be changed
separately, only needing to revise the alignment between events and activities.

Business Process Compliance using Reference Models of Law 383

T,U == e fo f condition | eoti>f response

| e—+f inclusion | e=%f exclusion

| e—of milestone | T || U parallel composition

|0 unit
M,N = M,e: P |e¢ marking & := (h,i,p) event state

Au=ANe:l|e labelling h =1 | ¢ (h)appened t¢ ticks in the past
P,Q = [M] XT process tu=1f|t (i)ncluded
pu=1]0]ts (p)ending deadline
to € NU{0} 0-time to € NU{w} w-time

Fig. 2. DCR Processes Syntax.

3 DCR Graphs

In this section, we recall the syntax and semantics of Dynamic Condition Re-
sponse (DCR) processes. We use the core term-based definition with time, with-
out bound events and subprocesses, following the original presentation in [5].

We assume a fixed universe of events £ ranged over by e, f with a special
symbol tick ¢ £. A DCR process [M] T comprises a marking M, a term T. Its
syntax is given in Figure 2.

A term represents a process model consisting of events (which may be ac-
tivities, tasks, or the identification of the state of affairs) and their relations.
In a DCR graph, events are the nodes and relations are the arcs. A marking
represents the current state of a process by specifying for every event the event
state (whether the event previously happened, is currently included, and/or is
pending). A process is then represented by the process model (a term) and its
current state (a marking). Relations can take the following shape:

— Condition e’ f: It defines a prohibition, or a precondition for f. Before f
can occur, e must have happened at least ¢ time units ago, or e must have
been excluded. In the case that ¢t = 0, we simply write e—eo f.

— Response eoLf: It defines an obligation for e. If e has happened, then f
must occur within ¢ time units, or be excluded. In the case t = w, this will
be treated as eventually in LTL, that is, not bounded by any time constraint.
For such a case we can simply write ee— f.

— Dynamic Inclusion e—+f: It defines relevance of an event. After executing
event e, event f is included among the possible actions to take. Notice that
the inclusion of f does not deem its necessity (captured by a response).

— Dynamic Exclusion e—Y% f: It defines irrelevance of an event. The result of
executing e is that event f becomes excluded. Moreover, all conditions f-—eg
and milestones f—og are ignored (unless f is included again).

— Milestone e—o f: A reaction chain. Initially f is included among the possible
actions, but if e becomes pending, then f cannot occur until e has occurred.

384 H. A. Lopez et al.

Finally, term 0 denotes the null process. Note that it is possible to specify a
relation twice, e.g., e—=%f || e—%f; this duplication has no additional effect.

All relations refer to a marking M, a finite map from events to triples of
variables (h,i,p), referred to as the event state and indicating whether or not
the event previously (h)appened, is currently (i)ncluded, and/or is (p)ending.
A pending event represents an unfulfilled obligation, and the values it can take
denote whether the event is not pending (p = f), it has a finite deadline (p €
NU{0}), or it should be eventually executed (p = w). We write markings as finite
lists of pairs of events and event states, e.g. e; : @1,...,e, : P but treat them
as maps, writing dom(M) and M(e), and understand M, e : ¢ to be undefined
when e € dom(M). The free events fe(T') of a term T is simply the set of events
appearing in it.

With respect to the original presentation [5], our syntax extends the process
definition with labels. Labelling A defines a total function from events to labels.
However, we often omit the labelling function, as it rarely changes, writing [M] T
instead of [M] AT . We assume that event labels are unique, e.g.: if e, f € fe(T)
then A\(e) # A(f) or e = f, therefore, A has an inverse, which we will denote by
A~L. A substitution o = {ey,...,en/f1,..., fn} maps each event e; and replaces
it with f;, being 1 < ¢ < n and e; pairwise distinct. The application of o to a
process term T is denoted by T'o, and it applies similarly for markings and for
processes, being ([M] T)o = [Mo] To. We require of a process P = [M] AT
that fe(T") € dom(M) = dom(A), and so define fe(P) = dom(M). The alphabet
alph(P) is the set of labels of its free events.

Example 3.1. We use a contract change management process from the construc-
tion industry as our running example. The process model in Fig. 3 has been ex-
tracted from structured interviews with domain specialists, and then validated
in a workshop. We will focus on the most salient aspects of the process, and
direct to [2] for the complete specification. The process includes three significant
roles: a subcontractor, a project manager and a trade package manager (TPM)
—external to the organization—, collaborating via a document management sys-
tem. The process starts when the subcontractor notices that additional work
is required compared to an original construction contract. To be paid for the
extra work, it is their responsibility to justify using supportive documentation
(Al). Hence, the subcontractor submits a change management request on the
platform (A2). Further, the TPM must notify the subcontractor that his request
has been initiated (A5), as well as checking the request specifications against the
initial contract requirements and the technical documentation (A4). Once the
request is checked, the TPM can decide whether to accept the change request
(A7), to reject the request (A8) or to ask for additional documents that sup-
port the subcontractors’ claim (AG6). If the TPM decides to reject the claim, she
must attach reasoning for the decision and communicate it to the subcontrac-
tor. Next, the subcontractor can evaluate the rejection (A16). If there is need
for further documentation to support the claim, the TPM must send a request
for additional information (A1). If the TPM agrees with the change, she must
forward documentation describing what changes from the initial contract to the

Business Process Compliance using Reference Models of Law 385

.
Subcontractor
. processing phase
A1: Prepare
Coolnootaton Decision wrt documentation) Evalgglion Phase Take action
....... 9
- M Foroject Managerl
Decide on change request ' i
1 1
Subcontractor ™M A6: Send request Project Manager] WA13: Send request
for additional I approvaland I
Ad: Check [o~al information : contract updated §
iCheck o) | Mormeten oA L)| | | || peonvectumdatedy H mmmm——— a
1 [)
A2 submit [P "“:n"r:fi:l“" A10: Evalvate [~ A11: Accept —1 1 Subcontractor |
change request e - request change request | i
i Tl ———<11! Ll | LLl p=====-- A
Sl i I oy ¢ S
I 1 I 1
AT:Forward | T4 Y | | ! 1 jePproved changey
- .
Subcontractor o request and - rAe:o:::w?; — ‘“‘/i ________ :
o lanalysis to project 1 "o ec"g“ H
o manager o 1
A3: Cancel TPM A12: Reject ——— d
request change request n
AS5: Notifies M
processing to
I subcentractor n
Project Manager AB: Reject and n
provide reasoning|
for rejection
A17: Delete -
request =
n

oSy

| Subcontractor |

1

1 A16: Receive |
Ireason for changel
rejection

Fig. 3. Contract Change Management Process Pspec

project manager. The project manager must evaluate the request (A10). He is
responsible for taking the final decision, whether to accept (A11) or reject (A12)
the request. In case of rejection, the project manager must notify the subcon-
tractor about the decision and substantiate with reasoning (A14). Besides, if the
answer is an acceptance, the project manager is responsible for sending an up-
dated contract form (A13). Once the new contract is received, the subcontractor
must attach it to the old contract (A15). As part of the DMS capabilities, the
subcontractor is allowed to cancel the change request (A3) at any point after
submission, with the effects of deleting the application (A17).

The diagram in Fig. 3 provides a visual representation of process Pspe. de-
scribed aboveS. Events are denoted via boxes, and arrows describe the relations
introduced in the previous section. Each event has a label presenting its descrip-
tion, as well as the role of the agent(s) that can execute the event. An included
event is represented with a solid border, with a dashed line if it is excluded.
Included events can be executed at any time (unless they become excluded),
and, unless preceded by a response relation, they can also be left unexecuted.
Relations can point to events or to events “collections” (boxes marked with “n”).
As formalised in [23], such collections are referred to as “nestings” and are just
a visual shorthand, understanding arrows to (from) nestings to represent arrows
to (from) every event inside the nesting.

6 The process is available for simulation and execution at https://www.dcrgraphs.net /
tool/main/Graph?id=43ea382d-delb-4278-8eff-591426244d90

https://www.dcrgraphs.net/tool/main/Graph?id=43ea382d-de1b-4278-8eff-591426244d90
https://www.dcrgraphs.net/tool/main/Graph?id=43ea382d-de1b-4278-8eff-591426244d90

386 H. A. Lopez et al.

i=h>k
(M,e:(hyi,), f:(_t, Neefbf:(0,0,0) [Me:(,t,)eosfre:(D,0,{f:k})
i=(p=")
Mye:(_,i,p), f:(_,t,)e—oft f:(0,0,0) [M,e: (_,t,)e=+fte:(0,{f},0)
[M,e:(_,t,)e=%fte:({f},0,0) [Mye:(_,t,)]OFe:(0,0,0)
e#f Re{Fe, 0} e#f Re{ef o+, %}
Mye: (_,t,)]fRfFe:(0,0,0) [Mye: (_,t,)]fRf Fe:(0,0,0)

[M] Til—e: (Ex,-,lni,Pei) 12{1,2}
[M] Ty H Toke: (EX1 U Exa,Iny Ulng, Pe; U Peg)

Fig. 4. Enabling & effects. We write “_” for “don’t care”, i.e., either true t or false f

We point to some of the behavioural aspects in the model. The condition
relation between Al and A2 forbids the subcontractor to perform a submission
without documentation. The exclusion relation to itself in Al says that such
activity can be done once per case, and it will cease to be available until it
is included again (via the execution of A6). The response between “Decide on
change request" and “Take action” says that once the activities A11 or A12 have
been performed, it is obligatory to execute the included activities in the take
action part. Only one decision can be taken per round, as the execution of A11
and A12 exclude each other. The chain of milestones and responses between A10
and A15 ensures that the attached copy only corresponds to the most updated
decision: every time a project manager executes A10, the activities inside “de-
cide on change request" become pending. This will inhibit any action until the
decision has been revised. Finally, the timed response between A4 and A5 says
that notification must be done within 30 time units of the execution of A4.

3.1 Semantics

We first define when an event is enabled and what effects it has if executed. The
judgement [M] T+ e : (Exc, Inc, Pen), defined in Figure 4, should be read: “in
the marking M, the term T allows the event e to happen, with the effects of
excluding events Exc, including events Inc, and making events Pen pending.”
The first rule says that if e is a condition for f, then f can happen only if (1)
it is itself included, and (2) if e is included, then e happened at least k steps ago.
The second rule says that if e is a milestone for f, then f can happen only if (1) it
is itself included, and (2) if e is included, then e must not be pending. The third
rule says that if f is a response to e and e is included, then e can happen with the
effect of making f pending with a deadline of k. The fourth (respectively fifth)
rule says that if f is included (respectively excluded) by e and e is included,
then e can happen with the effect of including (respectively excluding) f. The
sixth rule says that for an unconstrained process 0, an event e can happen if
it is included. The seventh rule says that a relation allows any included event
e to happen without effects when e is not the relation’s right-hand-side event.

Business Process Compliance using Reference Models of Law 387

[M] 7; Fe:d (EveNT] deadlln'e<M> >0 (Trn]
T+ M 5 b(e(M)) 7+ 0 5K, giek(ar)

Fig. 5. Transition semantics.

Finally, the last rule says that enabledness for parallel composition depends on
its constituents (we omit symmetric rules for sake of clarity).

Given enabling and effects of events, we define the action of respectively an
event e and an effect 6 = (Ex,In,Pe) on a marking M pointwise by the action
on individual event states f : (h,i,r) as follows. Assume e is enabled in the
process [M] T with effect § = (Ex, In, Pe). The state of e tracks that the event
has happened now, setting its executed flag to 0. Similarly, we say that it is
not longer pending. The effect of executing e in a marking M, written e(M), is
inductively defined as follows:

€ if M =e¢
e(M)=<X e(N),f:(0,3,f) if M=N,f:(_,i,)hNe=f
e(N), f: (h,i,7)if M =N, f:(hyi,r) Ne# f.

The application of effect § = (Ex, In, Pe) over a marking M, denoted 6(M), is
inductively defined as follows:

€ if M =e¢
(M) = {5(N>,f: (h, (iNfFEEX)V fEIn, r') if M=N,f:(hi,r)

included?

Where 7" = min{d | (f,d) € Pe} if (f,d) € Pe and ' = r otherwise. That is, the
event only stays included (second component) if f ¢ Ex (it is not excluded) or
f € In (it is included). The pending flag takes the minimal deadline for which
f: d € Pe, otherwise, it keeps the flag unchanged. Note that an event can be
both excluded and included by the effect, conceptually the exclusion happens
first, followed by the inclusion.

The transition semantics requires us to account for the time that has passed
between events. The deadline function is inductively defined over markings:

w ifM=c¢

deadline(M) = {min{p',deadline(M')} if M =M’ e: (h,i,p)

With p’ taking the value of p if ¢ = t, otherwise p’ = w. Basically, only deadlines
of included events are considered. The deadline function sets a lower limit for
events to happen. Moreover, we need to update the marking by incrementing
the time after an event has fired. The tick function is inductively defined over
markings with such purpose:

tick (M) = € ifM=c¢
¢ T\ tick(M"), e: (h+1,i,max{0,p — 1}) if M = M’ e: (h,i,p)

Extending the 4+ and — operators such that f +1 = f and f — 1 = f, and
w—1=w.

Figure 5 introduces the transition semantics of processes. In rule [EVENT],

the marking M fires an enabled event e, generating as a result a marking M’.

388 H. A. Lopez et al.

Note that transitions are non-deterministic: more than one event can be enabled
in M. In rule [TME|, the marking M is updated in one unit, generating M’.
Intuitively, a transition 7'+ M < M’ expresses that process [M] AT fires an
event e and modifies its marking to M’. As customary, we denote with LNy
the transitive closure of <. Moreover, we define the state space of [M] T as
PIM|T)={MT|T+-M & M'}. Event transitions give rise to a labelled
transition system lts([M] AT) = (P(M),[M] T,&',—, X, \), where [M] T €
P([M] T) is the initial state, &’ = EU{tick} is the set of labels, —C P([M] T') x
E'"xP(IM]T), X is an alphabet, and a labelling function A’ C £ x X' defined by
Ae) = A(e) for e € &, and N (tick) = tick.

We equip with the LTS with notions of accepting runs, incorporating similar
notions defined for DCR Graphs [6,32] to their timed setting:

Definition 1 (Runs, Accepting Runs). A run of [M] T is a finite or infinite
sequence of transitions [M] T = [My] To — eq--- . A run is accepting iff for
every state [M;] T;, when M;(e) = (_,t,t) then there exists j > i s.t. either
Mj(e) = (_.f,) or [Mj] Ty = [Mj11] T

In other words, an accepting run consider transitions that either execute
pending events, or excludes them. Note that since an event e may happen more
than once, even processes with only finitely many events may have infinite runs.
Having defined the LTS and runs we can define the language defined by a DCR
process to be its set of accepting runs.

Definition 2 (Traces). A trace of a process [M] AT is a possibly infinite
string s = (s3)ier s.t. [M] T has an accepting run [M;] Ty <% [M;y1] Tt
with s; = A(e;). Finally, the process [M] T has the language lang([M] AT) =

{s | s is a trace of [M] AT}.

4 Compliance Rules

Not all law paragraphs are created equal. Different articles describe definitions,
commencement periods, amendments, and other provisions. We focus on self-
contained procedural articles, those paragraphs that do not depend on the state
of affairs of events described in other paragraphs. One example is GDPR Art.
21 §1:

(Right to Object) §1. The data subject shall have the right to object, on grounds re-
lating to his or her particular situation, at any time to processing of personal data
concerning him or her [...[. The controller shall no longer process the personal data
unless the controller demonstrates compelling legitimate grounds for the processing
which override the interests, rights and freedoms of the data subject or for the estab-
lishment, exercise or defence of legal claims.

Business Process Compliance using Reference Models of Law

389

Legal Text

Policy

Compliance Rule

GDPR Art. 21 §1.

95/46/EC. Sect IV,
Art. 11. §1. [...] The
controller [...| must at

the time of undertaking

If the subcontractor
submits a change re-
quest, he may cancel
it afterwards. Af-
ter cancellation, the
project manager must
eventually delete the
request.

After the subcontrac-
tor submits a change
request, eventually the

RC1 = [ey : (f,t,f),ea: (f,t,f),e3: (f, t,f)] MiTh
T1 =e1 oez || ex +oe3 || exe—es

A1(e1) = “A2: submit a change request”

A1 (e2) = “A3: cancel change request”

A1(es) = “Al7: delete the request”

RC2 = [64 : (f,t,f),65 : (f,t,f)] AoTo
Ty = ego—es || ea—oes

the recording of per- TPM will notify the Az(eq) = “A2: Submit change

A subcontractor about request
sonal data |[...] provide _ GAE. ifies o
the data subject with the processing of re- Aaz(es) = “Ab: Notifies processing
at least txhe followin quest, including the to subcontractor”
N . g personal data used.
information [...].
Organization KPL RC3=leg: (F,t,6),er: (F,F,6), es: (F,t,)] AsTy
A change request The change request is 60 60 0
should take a maxi- valid for 60 working 13 = 66_2"‘57 I ece — e II'es es)!‘ eg—oer
mum amount of time, days and afterwards it Az (es) = “A?:,Subm‘t change requeit
otherwise it becomes is closed. Az(er) = “Finish Processing request
— A3(eg) = “Cancel Processing”

Fig. 7. Elicitation of Compliance Rules

We observe dependencies between
two events, (Bp) processing of per-
sonal data, and (Bsg) the right to ob-
ject. We also observe the consequences
of applying Bs. For the sake of clarity
we assume “no longer process personal
data” as the event (Bs) “stop process-
ing”. The process for Art. 21 §1 is:

RF1 = [Bl : (f,t, f),BQ : (f,t,f),Bz; : (f,t,f)] Bl Bg || 320%33

The reference model requires a mapping from abstract rights such as “right
to object” into activities/events in the business process. Further knowledge from
implementation guidelines is used to determine the proper mapping for concepts
such as “data subject”, “controller” or “personal data”. Fig. 6 presents a mapping
between events Art. 21 §1 and and events in P, in Fig. 3.

The result of combining the dependencies from laws and business process
information gives rise to compliance policies that are specific to the domain. A
natural language policy such as “in case (the subcontractor) submits a change
request, (the subcontractor) may cancel the change request. If (the subcontractor)
cancels the request, (the project manager) must eventually delete the request”.
These policies are formalized in terms of DCR processes. Fig. 7 present some
exemplary policies. We will refer as compliance rules to the resulting DCR pro-
cesses in this stage.

We capture event dependencies by relying on test-driven development [42,
46], which serves as means of validation when introducing constraints in the
model. Interestingly, test-driven development aligns with current practices when
introducing changes in a law. Scenarios correspond to legal precedents [27]. In

Event in Legislation|Activity/event in

Process Model

A2: Submit change re-
quest

Bs: Right to object A3: Cancel request

Bj: Stop processing A17: Delete request
Fig. 6. Instantiation of Art 21. GDPR for

process in Fig. 3

B1:
data

Process personal

390 H. A. Lopez et al.

common law, a legal precedent corresponds to a previous case that establishes
a principle or rule. This principle is then used by judicial bodies when deciding
later cases with similar issues or facts. Compliance rules can be tested against
scenarios representing legal precedents, where valid rules should at least be able
to reach the same decisions from earlier precedents.

The last step in the elicitation of compliance rules is the alignment between
the compliance rules and the process model.

Definition 3 (Term Alignment & Target events). Let L, L' C L.

A term alignment is the total function g : L — L'. If P,Q are DCR processes
with labels L, L' respectively, we say that g is a term alignment from P to Q if
g is a term alignment from L to L'. Moreover, we define the target events of g
for e in P as tg(g,e, P) = A" (g(\(e))).

Although term alignment is an arbitrary function defined by the compliance
officer, we require for simplicity of the exposition that there is exactly a single
target event for each event.

Note that more than one g can be defined if the rules in the law applies to
more than one set of events in the process. Also, g will typically be non-surjective
since the business process might contain activities that do not map to any legal
requirement.

Definition 4 (Instances of a Compliance Rule). Let G = {g1,...,9n} be
a set of term alignments from P to . An instance of P under ¢ in @, written
Pl,Q for g € G, is Po with labelling X (e) = g(A(e)), such that o = {f1,..., fn/
e1,...,en} where f; = tg(g,e;, P). We denote by Inst(P,G,Q) = {Pl,Q | g €
G} the set of all instances of P under G in Q.

Ezample 4.2. The term alignments g1, go are built from the obvious maps from
events in RC1 and RC?2 to events with same labels in Psp.. in Fig. 3. Two term
alignments are required for RC3:

Te‘rm Label Reference Model |Event |[Label Process Model
Alignment
Pspec
gs A2: submit a change request| f1 A2: submit a change request
Finish Processing request fa A15: Amend initial contract
Cancel Processing f3 A3: Delete request
ga A2: submit a change request| f1 A2: submit a change request
Finish Processing request fa A16: Receive reason for change rejection
Cancel Processing f3 A15: Delete request

The set of term alignments for each compliance rule is respectively G; =
{01},G2 = {g2}, and G3 = {g3,94}. As can be seen from Def. 4, the set of
instances substitute the events for the corresponding ones in Pspe., S0

Inst(RC3, Gs, Pspec) =

[fr: (4,6, fo: (F,6,0), f5: (D] Xafiotfo || oS fo || /o
[fr: (F6F), fa s (F6,6), fa: (40 Aafiot fa || frosfa || f1°

60

3l fs—=%f2,
I3 |l fs—%fa

0

Moreover, labels have also changed, being A3(f2) = “A15: Amend initial contract
with approved change", and A3(f4) = “A16: Receive reason for change rejection”.

}

Business Process Compliance using Reference Models of Law 391

5 Compliance Checking by Refinement

In previous sections we showed how to use DCR processes for the specification of
declarative workflows (c.f. Section 3), and the generation of compliance rules (c.f.:
Section 4). In this section, we will consider compliance as a particular instance
of DCR process refinement [10], between each of the instances generated by a
compliance rule, and the process specification.

Abstractly, we take refinement to be just inclusion of languages (trace sets).
Given a sequence s, write s; for the i-th element of s, and s|x for the largest
sub-sequence s’ of s such that s; € X for 0 < i < |s|; e.g, if s = AABC then
sla,c = AAC. We lift projection to sets of sequences point-wise.

Definition 5 (Refinement [11]). Let P,Q be processes. We say that Q is a
refinement of P iff lang(Q)laipn(py C lang(P). We will write RC P whenever R
is a refinement of P.

In practice, we will use a notion of refinement by composition, as introduced
in [11] to define a "refines" relation between a process and an instance of a
compliance rule. To define composition, we need to merge parallel markings and
effects. Merge on markings is partial, since it is only defined on markings that
agree on their overlap:

(Mi,e:m)® (Mz,e:m) = (M @ Msz),e:m
(Mi,e:m)® Mz = (M ® Mz),e: m when e & dom(Ma)
My & (Mz,e:m) = (My1 & Mz2),e: m when e & dom(M).

The merge of effects § is defined as the pointwise union of each of the sets of
excluded/included /pending events: (Excy, Incy, Peny) & (Exca, Ince, Peng) =
(Ezcy U Excy, Incy U Incg, Peny U Peny).

Definition 6 (Merge & Marking Compatibility). The merge of processes
[M] M T and [N] AU is defined if the merge of markings M & N is defined
and the labelling functions agree as well, in which case [M] M T @ [N] AU =
[M @ N] (M UX) (T || U). If the merge of two processes is defined, we say that
they are marking compatible.

We can now define the refines relation between an instance P of a compliance
rule and a marking compatible process @ (i.e.: the process model) as follows.

Definition 7 (Refines). Let P, Q be marking compatible processes. We say that
Q refines P iff P& QLC P.

Note that even though P& Q = Q& P, it may still be the case that PEQ C P
but not of P ® Q£ Q.

Definition 8 (Compliance). Let P,R be DCR processes, and G be a set of
term alignments from R to P. We say that P is strongly (resp. weakly) compliant
with R under G, written P<}%R (resp. P<&R) if VR, € Inst(R,G,P), P
refines R; (resp. if AR; € Inst(R, G, P), P refines R;).

392 H. A. Lopez et al.

That is, take rule R, a process P and a term alignment mapping labels in
R to P. (Strong) compliance requires us to 1) generate all instances of R in P
and 2) check whether the merge of each instance with the P is compatible (i.e.
refines) the instance. Notice that while instances and the process will have their
merge defined, P might have different constraints that might affect refinement.

We close this section stating results regarding the decidability and tractability
of compliance checking for DCR, processes.

Theorem 1 (Compliance checking is decidable). Let P,R be DCR pro-
cesses, and let G be a set of term alignments from R to P. Then checking P < &R
and P <G R is decidable.

Proof. We know from [11] that refinement of DCR processes is known to be
decidable; this fact relies on the state space of a DCR process being finite. Time
does not change this; see [24] for details. It is therefore sufficient to prove that for
any R and G, the set Inst(R, G, P) is finite. By Definition 3, this set is bounded
by the size of G and the number of possible substitutions o. But G is finite by
definition, and o is clearly uniquely determined given a g € G. O

While generally checking refinement for DCR processes is NP-hard already
in the absence of time, [11] showed that the refines relation can be approximated
by a static property, the non-invasiveness on the graphs recalled below.

Definition 9 (Non-invasiveness [11]). Let P = [Mp] Ap Tp and R be mark-
ing compatible processes. We say that P is non-invasive for R iff

1. For every context C[—|, such that Tp = Cle =% f] or Tp = Cle =+ f],
f € fe(R); and
2. For every label | € alph(P)Nalph(R), if e € fe(P) is labelled I, then e € fe(R).

That is, a process P is non-invasive for a process R if it does not introduce
inclusion or exclusion relations on the events of R. We note that this property
can straightforwardly be determined in polynomial time.

Lemma 1. Non-invasiveness is decidable in polynomial time.

Proof. Follows from Definition 9: an algorithm only needs to check for each
inclusion and exclusion relation in P if the target event exists in R.

In [11] it was also shown that non-invasiveness guarantees the refine relation.
This can be extended to timed processes.

Theorem 2. If P is non-invasive for R then P refines R.

Proof (sketch). We need to extend the proof in [11] to timed processes observing
the following: 1) in the case of conflicting deadlines the most strict deadlines
always take precedence, 2) therefore after composition of a R and P which
share a timed relation with a different deadline, the most strict deadline will
be followed, and 3) the composed process will not allow for traces which were
forbidden under the strictest deadline. O

Business Process Compliance using Reference Models of Law 393

We can apply this result to compliance, and show that a process is compliant
with a compliance rule, if it is non-invasive for all term alignments.

Lemma 2. Let P,R be DCR processes, and G be a set of term alignments
from R to P, P is strongly (resp. weakly) compliant with R under G if VR; €
Inst(R,G, P), P is non-invasive for R;.

Proof. Follows directly from Definition 8 and Theorem 2.

Correspondingly, this means that compliance checking is a polynomial time
task if P is non-invasive for R for all term alignments.

Theorem 3. If P is non-invasive VR; € Inst(R,G, P), then checking P <§&R
and P <R is polynomial in R,G, P.

Proof. Follows directly from Lemmas 1 and 2.

We conclude that through careful construction of the process model, in partic-
ular by avoiding the unnecessary introduction of exclusion and inclusion relations
on events which may be governed by compliance rules, we can significantly reduce
the time complexity of checking the compliance of the process. This comes in
contrast to approaches based in annotated imperative business processes, which
to a great extent belong to the non-polynomial complexity class [45].

Corollary 1. Py < g, RC1, Pypec < ¢, RC2, and Pypee £ ¢, RC3

6 Adoption considerations

We describe two uses of the compliance framework: one at the municipality of
Syddjurs (DK), and another at the municipality of Genoa (IT). The municipal-
ities selected processes in different domains: the provision of benefits offered to
young persons with special needs (DK), and the release of construction permits
(IT). They were regulated by different laws, for which reference models of se-
lected articles were created by compliance specialists. The reference models of
articles in the Danish Consolidation for Social Services [44] and the Construc-
tion Law of the Liguria region [40] vary on size and complexity, ranging from a
minimum of 4 events and 12 relations, up to 86 events and 125 relations in a
single article. The intended use of the framework varied: while Syddjurs aims at
driving a new implementation of their processes, Genoa wanted to verify their
current implementations with respect to the law. The work was carried out by
case workers within the municipality (DK), and a consultancy house (IT). We
collected feedback from users generating reference models of law about their use,
benefits and challenges. Both organisations commented that the pairing of laws
and models provide them traceability, and allowed lawyers to be part in the co-
creation of process implementations using their domain knowledge. Moreover,
law-process pairings helped them to understand the legislation, making evident
bottlenecks in a process (an activity that for which many other events depend

394 H. A. Lopez et al.

on), and showed them previously unknown paths for achieving goal, while still
be in accordance to the law. This aligns with previous studies on comprehension
of hybrid artefacts combining texts and declarative models [3]. On their use,
both organisations agreed that some laws are too general, and they required
implementation guidelines to complete their models. A challenge concerned the
writing style of the guidelines: if guidelines have been written in an impera-
tive style, there is a risk of over-constraining the model. When asked about the
understandability of the models, they reported that after an initial training, gen-
erated models were understandable for compliance specialist, and they could be
used as communication artefacts. However, they also reported challenges on the
understandability of large models, and suggested the inclusion of abstractions to
increase model comprehension. With respect to compliance, the main challenge
concerned term alignment, as it currently needs to be hard-coded (no tool sup-
port). In some cases, an event in the law had a 1-to-many correspondence with
the process. Another suggestion was to extend feedback support to reasons for
non-compliance, rather than yes/no outputs.

7 Related Work

We can divide related approaches into four categories:

Model Checking techniques: Most model checking techniques for compliance
[19] represent the process as a finite state machine and the laws in a temporal
logic. We differ from such approaches in that we use a declarative process lan-
guage both for defining the process and laws. The reasons are threefold: First, it
is known that some of these languages present technical difficulties when mod-
elling permissions, obligations and defeasible (i.e.: exceptional) conditions [16].
These concepts are straightforward in DCR, graphs: permissions are encoded as
enabled events, obligations are the composition of events using a response re-
lation, and defeasible conditions are represented by mutual exclusion relations
between events. The second advantage is the possibility of combining process
narratives and visual notations: our work puts forward the recommendations
from [36] that states that higher cognitive loads can be achieved when combin-
ing process descriptions with graphical notations. This is particularly important
in our case, as compliance specialists in local governments do not have prior
training in using verification techniques using temporal logics. Finally, verifica-
tion is efficient: it relies on refinement of transition systems with responses [6,28],
and although the complexity process refinement belongs to the category of NP-
hard problems [11], we have shown that we can use syntactic restrictions to check
compliance in polynomial time.

Compliance Refinement: Seaflows [31] proposes an alignment of compliance
requirements into business processes. Laws are modelled in terms of constraints
over event traces that can be verified at design-time and monitored at run-time.
However, no specific constraint specification language is provided. The work
in [41] presents a refinement-based approach where abstract business processes
representing laws are incrementally refined until executable processes can be

Business Process Compliance using Reference Models of Law 395

generated. The nature of such abstract business processes is imperative, given
in BPMN diagrams, which imposes rigidity on how to achieve certain rights.
Compliance-by-design (CbD): FCL/PCL & Regorous [13,14,17,18,21] treats
compliance as a property of the process to execute while not violating the laws
in a regulation. Compliance checking requires to 1. identify the deontic effects
of the set of modelled regulations, 2. determine the tasks and the obligations
in force for each task, and 3. check whether the obligations have been fulfilled
or postponed after the execution of a task. While we subscribe to CbD as a
methodology, our approach differs in the fact that there is no need to map a
declarative language (such as PCL and FCL) into an imperative specification.
Visual Languages for Compliance: The work in [26] introduces eCRG, a vi-
sual modelling notation for compliance rules including control flow, interaction,
time, data, and resource perspectives. eCRG rules are then paired with event
logs to determine whether completed or running process instances are compliant.
While our approach is mostly tailored to design stages, [26] focuses on after-the-
fact compliance. Finally, the BPMN-Q language [4] provides a visual notation
to CTL, and the language describes compliance rules including control and data
flow aspects, that are later model-checked against BPMN models. Declare [38]
is LTL based and in principle, the compliance checking approach presented here
could also be used. However, its LTL-semantics has been shown to present tech-
nical difficulties when modelling obligations and defeasible conditions [16].

8 Concluding Remarks

We presented a verification framework for the design of process models that
are compliant with regulations. This work exploits the similarities of declarative
process languages with logical languages to be able to express models of law.
In this manner, both process models and models of law are described in the
same declarative notation, and it becomes straightforward to verify whether
compliance is achievable. We show that compliance can be checked efficiently in
polynomial time, given careful construction of the models.

While the focus of this paper is centred on CbD approaches, it accommo-
dates after-the-fact compliance. In future work we will explore other variants of
compliance, such as process conformance based on event logs. Our results rely
on the choice of DCR as language for reference and process models, and in this
paper we have restricted ourselves to a version of DCR graphs without subpro-
cesses and locality. The decidability results in Thm. 1 will not hold with the
inclusion of these operators. We have not needed to consider such constructs in
the construction of compliance rules so far, but it would be interesting to revisit
them in future work, as well as multi-dimensional compliance policies [39].

Acknowledgments: Thanks to Nicklas Healy from Syddjurs Kommune,
and Paolo Gangemi from MAPS Group for their evaluations on the compli-
ance framework. This work has been financially supported by the Innovation
Fund Denmark project EcoKnow.org (7050-00034A), and the European Union
Marie Sklodowska-Curie grant agreement BehAPI No.778233.

396 H. A. Lopez et al.
References
1. Aalst, van der, W.: Process mining: discovery, conformance and enhancement of

10.

11.

12.

13.

14.

business processes. Springer, Germany (2011). https://doi.org/10.1007/978-3-642-
19345-3

Agafitei, S.: Usability and understandability studies of business process notations
within the construction industry. Master’s thesis, IT University of Copenhagen
(August 2019)

Andaloussi, A.A., Buch-Lorentsen, J., Lopez, H.A., Slaats, T., Weber, B.: Explor-
ing the modeling of declarative processes using a hybrid approach. In: Laender,
AH.F., Pernici, B., Lim, E.P. (eds.) Intl. Conference on Conceptual Modelling
(ER). Lecture Notes in Computer Science, vol. 11788. Springer (4 2019)

Awad, A., Weidlich, M., Weske, M.: Visually specifying compliance rules and ex-
plaining their violations for business processes. Journal of Visual Languages &
Computing 22(1), 30-55 (Feb 2011)

Basin, D.A., Debois, S., Hildebrandt, T.T.: In the nick of time: Proactive pre-
vention of obligation violations. In: IEEE 29th Computer Security Foundations
Symposium, CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016. pp. 120-134.
IEEE Computer Society (2016). https://doi.org/10.1109/CSF.2016.16

Carbone, M., Hildebrandt, T.T., Perrone, G., Wasowski, A.: Refinement for
transition systems with responses. In: Bauer, S.S., Raclet, J. (eds.) Pro-
ceedings Fourth Workshop on Foundations of Interface Technologies, FIT
2012, Tallinn, Estonia, 25th March 2012. EPTCS, vol. 87, pp. 48-55 (2012).
https://doi.org/10.4204/EPTCS.87.5

Council of European Union: Regulation (eu) 2016/679 of the european parliament
and of the council of 27 april 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of such data.
https://publications.europa.eu/s/lIVw (May 2016)

Danish Parliament (Folketinget): Act on supplementary provisions to the regula-
tion on the protection of natural persons with regard to the processing of personal
data and on the free movement of such data (the data protection act). https:
//www.datatilsynet.dk /media/6894/danish-data-protection-act.pdf (May 2018)
Debois, S., Hildebrandt, T., Slaats, T.: Concurrency and asynchrony in declarative
workflows. In: Business Process Management (BPM). LNCS, vol. 9253. Springer,
Cham (2016)

Debois, S., Hildebrandt, T.T., Slaats, T.: Safety, liveness and run-time refinement
for modular process-aware information systems with dynamic sub processes. In:
Bjgrner, N., de Boer, F.S. (eds.) FM. LNCS, vol. 9109, pp. 143-160. Springer
(2015). https://doi.org/10.1007/978-3-319-19249-9 10

Debois, S., Hildebrandt, T.T., Slaats, T.: Replication, refinement & reachabil-
ity: complexity in dynamic condition-response graphs. Acta Informatica pp. 1-32
(2017). https://doi.org/10.1007 /s00236-017-0303-8

Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A., et al.: Fundamentals of
business process management, vol. 1. Springer (2013)

Governatori, G.: The regorous approach to process compliance. In: Proceedings
of the 2015 IEEE 19th International Enterprise Distributed Object Computing
Conference Workshops and Demonstrations, EDOCW 2015. pp. 33-40 (2015)
Governatori, G., Sadiq, S.: The journey to business process compliance.
Handbook of Research on Business Process Modeling pp. 426-454 (2009).
https://doi.org/10.4018/978-1-60566-288-6.ch020

https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1109/CSF.2016.16
https://doi.org/10.4204/EPTCS.87.5
https://publications.europa.eu/s/llVw
https://www.datatilsynet.dk/media/6894/danish-data-protection-act.pdf
https://www.datatilsynet.dk/media/6894/danish-data-protection-act.pdf
https://doi.org/10.1007/978-3-319-19249-9_10
https://doi.org/10.1007/s00236-017-0303-8
https://doi.org/10.4018/978-1-60566-288-6.ch020

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Business Process Compliance using Reference Models of Law 397

Governatori, G.: Representing business contracts in ruleml. International Journal
of Cooperative Information Systems 14(02n03), 181-216 (2005)

Governatori, G.: Thou shalt is not you will. In: Proceedings of the 15th Interna-
tional Conference on Artificial Intelligence and Law. pp. 63-68. ICAIL ’15, ACM,
New York, NY, USA (2015). https://doi.org/10.1145/2746090.2746105
Governatori, G., Rotolo, A.: How do agents comply with norms? In: Proceedings
of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence
and Intelligent Agent Technology-Volume 03. pp. 488-491. IEEE Computer Society
(2009)

Governatori, G., Rotolo, A.: Norm Compliance in Business Process Modeling. In:
Semantic Web Rules. pp. 194-209. Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg (Oct 2010). https://doi.org/10.1007/978-3-642-16289-3 17
Hashmi, M., Governatori, G., Lam, H.P., Wynn, M.T.: Are we done with busi-
ness process compliance: state of the art and challenges ahead. Knowledge and
Information Systems pp. 1-55 (2018)

Hashmi, M., Governatori, G., Wynn, M.T.: Normative requirements for business
process compliance. In: Australian Symposium on Service Research and Innovation.
pp. 100-116. Springer (2013)

Hashmi, M., Governatori, G., Wynn, M.T.: Normative requirements for regulatory
compliance: An abstract formal framework. Information Systems Frontiers 18(3),
429-455 (2016)

Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as dis-
tributed dynamic condition response graphs. In: PLACES. vol. 69, pp. 59-73 (2010)
Hildebrandt, T.T., Mukkamala, R.R., Slaats, T.: Nested dynamic condition re-
sponse graphs. In: FSEN. LNCS, vol. 7141, pp. 343-350. Springer (2011)
Hildebrandt, T.T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Contracts for cross-
organizational workflows as timed dynamic condition response graphs. Journal of
Logic and Algebraic Programming 82(5-7), 164-185 (2013)

Hildebrandt, T.T., Slaats, T., Lopez, H.A., Debois, S., Carbone, M.: Declarative
choreographies and liveness. In: Formal Techniques for Distributed Objects, Com-
ponents, and Systems, FORTE. LNCS, Springer, Accepted for Publication (Febru-
ary 2019)

Knuplesch, D., Reichert, M.: A visual language for modeling multiple perspectives
of business process compliance rules. Software & Systems Modeling 16(3), 715-736
(2017)

Legal Information Institute, Cornell Law School: Stare decisis. https://www.law.
cornell.edu/wex/stare decisis (May 2019)

Lopez, H.A.: Foundations of Communication-Centred Programming. Ph.D. thesis,
IT University of Copenhagen (2012)

Lopez, H.A., Debois, S., Hildebrandt, T.T., Marquard, M.: The process high-
lighter: From texts to declarative processes and back. In: BPM (Disserta-
tion/Demos/Industry). CEUR Workshop Proceedings, vol. 2196, pp. 66-70.
CEUR-WS.org (2018)

Lopez, H.A., Marquard, M., Muttenhaler, L., Strgmsted, R.: Assisted declarative
process creation from natural language descriptions. In: Franke, U., Kornyshova, E.,
Lé, L.S. (eds.) 23rd IEEE International Enterprise Distributed Object Computing
(EDOC). vol. 2325-6605, pp. 96-99. IEEE (10 2019)

Ly, L.T., Rinderle-Ma, S., Géser, K., Dadam, P.: On enabling integrated process
compliance with semantic constraints in process management systems. Information
Systems Frontiers 14(2), 195-219 (Apr 2012). https://doi.org/10.1007 /s10796-009-
9185-9

https://doi.org/10.1145/2746090.2746105
https://doi.org/10.1007/978-3-642-16289-3_17
https://www.law.cornell.edu/wex/stare_decisis
https://www.law.cornell.edu/wex/stare_decisis
https://doi.org/10.1007/s10796-009-9185-9
https://doi.org/10.1007/s10796-009-9185-9

398

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

H. A. Lopez et al.

Mukkamala, R.R., Hildebrandt, T.T., Slaats, T.: Towards trustworthy adaptive
case management with dynamic condition response graphs. In: EDOC. pp. 127—
136. IEEE Computer Society (2013)

Nekrasaite, V., Parli, A.T., Back, C.O., Slaats, T.: Discovering responsibilities
with dynamic condition response graphs. In: Conference on Advanced Information
Systems Engineering (CAiSE) (2019)

Object Management Group UML Technical Committee: Unified Modeling Lan-
guage, version 2.5.1 (2017), http://www.omg.org/spec/UML/2.5.1/

OMG: Business Process Model and Notation (BPMN), Version 2.0 (January 2011),
http://www.omg.org/spec/BPMN /2.0

Ottensooser, A., Fekete, A., Reijers, H.A., Mendling, J., Menictas, C.: Making
sense of business process descriptions: An experimental comparison of graphical
and textual notations. Journal of Systems and Software 85(3), 596 — 606 (2012).
https://doi.org/https://doi.org/10.1016/j.jss.2011.09.023, novel approaches in the
design and implementation of systems/software architecture

Pesic, M., van der Aalst, W.: A Declarative Approach for Flexible Business Pro-
cesses Management. Lecture Notes in Computer Science 4103, 169 (2006)

Pesic, M., Schonenberg, H., Aalst, W.M.P.v.d.: DECLARE: Full Sup-
port for Loosely-Structured Processes. In: EDOC. pp. 287-287 (Oct 2007).
https://doi.org/10.1109/EDOC.2007.14

Ramezani, E., Fahland, D.; Aalst, W.M.P.v.d.: Where Did I Misbehave? Diagnostic
Information in Compliance Checking. In: Business Process Management. pp. 262—
278. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (Sep 2012).
https://doi.org/10.1007/978-3-642-32885-5 21

Regione Liguria: Legge regionale n.16 del 6 giugno 2008 e successive modifiche
(2008),

https://www.regione.liguria.it /components/com__publiccompetitions/includes/
download.php?id=9145:1egge-regionale-n-16-del-6-giugno-2008-e-successive-
modifiche.pdf

Schleicher, D.; Anstett, T., Leymann, F., Schumm, D.: Compliant Business Process
Design Using Refinement Layers. In: On the Move to Meaningful Internet Systems:
OTM 2010. pp. 114-131. Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg (Oct 2010). https://doi.org/10.1007/978-3-642-16934-2 11

Slaats, T., Debois, S., Hildebrandt, T.T.: Open to change: A theory for iterative
test-driven modelling. In: BPM. Lecture Notes in Computer Science, vol. 11080,
pp. 31-47. Springer (2018)

Strgmsted, R., Lopez, H.A., Debois, S., Marquard, M.: Dynamic evaluation
forms using declarative modeling. In: BPM (Dissertation/Demos/Industry). CEUR
Workshop Proceedings, vol. 2196, pp. 172-179. CEUR-WS.org (2018)

The Danish Ministry of Social Affairs and the Interior: Consolidation Act on So-
cial Services (Sep 2015), http://english.sm.dk/media/14900/consolidation-act-on-
social-services.pdf, Executive Order no. 1053 of 8 September 2015; File no. 2015-
4958

Tosatto, S.C., Governatori, G., van Beest, N.: Checking regulatory compliance: Will
we live to see it? In: International Conference on Business Process Management.
pp. 119-138. Springer (2019)

Zugal, S., Pinggera, J., Weber, B.: Creating declarative process models using test
driven modeling suite. In: International Conference on Advanced Information Sys-
tems Engineering. pp. 16-32. Springer (2011)

http://www.omg.org/spec/UML/2.5.1/
http://www.omg.org/spec/BPMN/2.0
https://doi.org/https://doi.org/10.1016/j.jss.2011.09.023
https://doi.org/10.1109/EDOC.2007.14
https://doi.org/10.1007/978-3-642-32885-5_21
https://www.regione.liguria.it/components/com_publiccompetitions/includes/download.php?id=9145:legge-regionale-n-16-del-6-giugno-2008-e-successive-modifiche.pdf
https://www.regione.liguria.it/components/com_publiccompetitions/includes/download.php?id=9145:legge-regionale-n-16-del-6-giugno-2008-e-successive-modifiche.pdf
https://www.regione.liguria.it/components/com_publiccompetitions/includes/download.php?id=9145:legge-regionale-n-16-del-6-giugno-2008-e-successive-modifiche.pdf
https://doi.org/10.1007/978-3-642-16934-2_11
http://english.sm.dk/media/14900/consolidation-act-on-social-services.pdf
http://english.sm.dk/media/14900/consolidation-act-on-social-services.pdf

Business Process Compliance using Reference Models of Law 399

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Business Process Compliance using Reference Models of Law
	1 Introduction
	2 Regulatory Compliance Framework
	3 DCR Graphs
	3.1 Semantics

	4 Compliance Rules
	5 Compliance Checking by Refinement
	6 Adoption considerations
	7 Related Work
	8 Concluding Remarks
	References

