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Abstract. Family-based SPL model checking concerns the simultaneous
verification of multiple product models, aiming to improve on enumera-
tive product-based verification, by capitalising on the common features
and behaviour of products in a software product line (SPL), typically
modelled as a featured transition system (FTS). We propose efficient
family-based SPL model checking of modal p-calculus formulae on FTSs
based on variability parity games, which extend parity games with con-
ditional edges labelled with feature configurations, by reducing the SPL
model checking problem for the modal p-calculus on FTSs to the vari-
ability parity game solving problem, based on an encoding of FTSs as
variability parity games. We validate our contribution by experiments on
SPL benchmark models, which demonstrate that a novel family-based
algorithm to collectively solve variability parity games, using symbolic
representations of the configuration sets, outperforms the product-based
method of solving the standard parity games obtained by projection with
classical algorithms.

1 Introduction

Software product line engineering (SPLE) is a software engineering method for
cost-effective and time-efficient development of a family of software-intensive
configurable systems, according to which individual products (system variants)
can be distinguished by the features they provide, where a feature is typically
understood as some user-aware (difference in) functionality [1,2]. The intrinsic
variability of SPLs challenges formal methods and analysis tools, because the
number of possible products may be exponential in the number of features and
each product may moreover exhibit a large behavioural state space.

The SPL model checking problem, first recognised in the seminal paper [3],
generalises the classical model checking problem in the following way: given a
formula, determine for each product whether it satisfies the formula (and, ideally,
provide a counterexample for each product that does not satisfy the formula). A
straightforward way to solve this problem is to provide a model for each product
and apply classical model checking. This enumerative, product-based method has
several drawbacks. Most importantly, the state-space explosion problem —typical
of model checking— is amplified with the number of products, while products of a
product line usually have a large amount of features and behaviour in common.
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Therefore, Classen et al. have extended labelled transition systems (LTSs)
with features to concisely describe and analyse the combined behaviour of a fam-
ily of models [3-5]. Concretely, transitions in the resulting featured transition
systems (FTSs) are labelled with actions and feature expressions. Given a prod-
uct, a transition can be executed if the product fulfills the feature expression.
Hence, an FTS incorporates all eligible product behaviour, and each individual
product’s behaviour can be obtained as an LTS. Moreover, F'TSs cater for the si-
multaneous verification of multiple products, known as family-based analysis [6].

Properties of behavioural models for SPLs such as FTSs can be verified with
dedicated SPL model checkers like SNIP [7], ProVeLines [8], VMC [9], Pro-
Feat [10,11], or QFLan [12,13], or with classical model checkers like NuSMV [14,
15], SPIN [16], Maude [17], or mCRL2 [18,19]. The advantage of using estab-
lished off-the-shelf model checkers for SPL analysis is obvious: it lifts the burden
of maintaining dedicated model checkers in favour of highly optimised tools with
a broad user base. In [19], it was shown how to perform family-based SPL model
checking with mCRL2 [20, 21] of properties of FTSs expressed in a feature-
oriented variant of the modal p-calculus to deal with transitions labelled with
feature expressions [22]. However, this approach is based on a decision procedure
for the binary partitioning of the product space into products that do and those
that do not satisfy a given formula, and it is underlined that computing suitable
partitionings for the conducted experiments is a largely manual activity.

In this paper, we present efficient family-based SPL model checking of modal
p-calculus formulae on FT'Ss based on parity games with variability. Years after
its introduction [3,14], family-based model checking of SPLs or program fam-
ilies is still a popular topic [10, 16, 19,23-26], including a few game-theoretic
approaches based on solving (3-valued) model checking games on featured sym-
bolic automata and on modal transition systems. A parity game is a 2-player
turn-based graph game. It is well known that the model checking problem for
modal p-calculus formulae on LTSs is equivalent to parity game solving, for which
Zielonka defined a recursive algorithm that performs well in practice [27-29].

Here we introduce variability parity games as a generalisation of parity games
with conditional edges labelled with feature configurations. We then show how
the SPL model checking problem for modal u-calculus formulae on FTSs can be
reduced to the variability parity game solving problem based on an encoding of
FTSs as variability parity games. Finally, we show the results of implementing
two different methods, product-based and family-based, to solve variability par-
ity games and of experimenting with them on two well-known SPL case studies,
the minepump and the elevator. The product-based method simply projects a
variability parity game to the different configurations and independently solves
all resulting parity games with existing algorithms. The family-based method, in-
stead, is based on a novel algorithm to collectively solve variability parity games,
using symbolic representations of sets of configurations. The experiments clearly
show that the family-based method outperforms the product-based method.

Outline. After defining some preliminary notions in Section 2, we introduce
SPL model checking in Section 3. In Section 4, we introduce variability parity
games and show how they can be used to solve the SPL model checking problem.
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In Section 5, we present a family-based, collective strategy for recursively solving
variability parity games, which we experiment with on two SPL case studies in
Section 6. Section 7 concludes the paper and provides directions for future work.
Relevant related work other than the above is mentioned throughout the paper.

2 Preliminaries

We give a brief overview of labelled transition systems and the modal p-calculus.

Definition 1. A labelled transition system or LTS L over a non-empty set of
actions Act is a triple L = (S, —, s0), where S is the set of states with sy € S
and — C S x Act x S is the transition relation.

The modal p-calculus is an expressive logic, subsuming LTL and CTL, for rea-
soning about the behaviours of LTSs, among others.

Definition 2. Formulae in the modal u-calculus are given by the following (min-
imal) grammar.

¢ :=true |false | X [ A G| 6V & | ()6 | [l | X0 | vX.0

where a € Act is an action and X € X is some propositional variable taken from
a sufficiently large set of variables X .

Next to the Boolean constants and the propositional connectives, the modal u-
calculus contains the existential diamond operator ( ) and its dual universal box
operator [ ] of modal logic as well as the least and greatest fixed point operators
w and v that provide recursion used for ‘finite’ and ‘infinite’ looping, respectively.

Given a formula ¢, an occurrence of a variable X in ¢ is said to be bound
iff this occurrence is within a formula v, where pX.1) or v X.¢ is a subformula
of ¢; an occurrence of a variable is free otherwise. A formula ¢ is closed iff all
variables occurring in ¢ are bound; here we only consider closed formulae. For
simplicity, we assume that the formulae that we consider are well-named, i.e.,
formulae do not contain two fixed point subformulae binding the same variable.

Given an LTS, the semantics of a p-calculus formula is the set of states of
the LTS that satisfy the formula. Since we focus on games in this paper, we
introduce two auxiliary concepts, viz. the Fischer-Ladner closure of a formula
and the alternation depth of a formula. The Fischer-Ladner closure FL(¢) of a
formula ¢ is the smallest set of formulae satisfying

— ¢ € FL();

—if gf)l A\ (152 S FL(gf)) or (;51 \/Qf)z € FL(¢) then (151,(,252 S FL(gb),
it (@)1 & FL(0) or [aler € FL(¢) then 1 € FL(9):

if 0X.¢1 € FL(¢) then ¢ [X :=0X.¢1] € FL(¢).

Note that for a closed formula ¢, the set FL(¢$) contains no variables.

The complexity of a u-calculus formula is given by its alternation depth; the
larger the alternation depth, the harder the formula is to solve (and, incidentally,
also to understand). The alternation depth of a formula ¢ is defined as the largest
alternation depth of the bound propositional variables in ¢, defined as follows.
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Definition 3. The dependency order on bound variables of a formula ¢ is the
smallest partial order <4 satisfying X <4Y if X occurs free in oY.p. The alter-
nation depth of a p-variable X in ¢, denoted AD 4(X), is the mazimal length of a
chain X1 <¢ -+ <y Xy, where X1 =X, variables X1, X3, ... are p-variables and
Xo, Xy, ... arev-variables. Analogously for the alternation depth of a v-variable.

Definition 4. A parity game is a tuple G = (V, E, p, (Vy, V1)) where

— V is a finite set of vertices, partitioned into a set Vy of vertices owned by
player 0 and a set V1 of vertices owned by player 1;

— ECV xV is the edge relation;

— p:V — N is the priority function.

We depict parity games as graphs in which diamond-shaped vertices represent
vertices owned by player 0 and box-shaped vertices represent vertices owned by
player 1. Edges are annotated with configurations while priorities are typically
written inside vertices.

We write v — w instead of (v, w) € F and let « range over the set of players,
i.e. « € {0,1}. For a given vertex v, we write vE to denote the set {w € V|
v—w} of successors of v. Likewise, Ev denotes the set {w € V | w—wv} of
predecessors of v. A sequence of vertices vy --- v, is a path if for all 1 <m <n
we have v,,,41 € v, F. Infinite paths are defined in a similar way. We write m,, to
denote the n-th vertex in a path 7 and 7<" to indicate the prefix 7 - - - 7, of 7.

A play, starting in a vertex v € V, starts by placing a token on that vertex.
Players then move the token according to a single simple rule: if a token is on
a vertex u € V, and uE # (), player « pushes it to some successor vertex w €
uwFE. The finite and infinite paths thus constructed are referred to as plays. For
an infinite play, and the infinite sequence of priorities it induces, the parity of
the highest priority that occurs infinitely often on that play defines its winner:
player 0 wins if this priority is even; player 1 wins otherwise. A finite play is won
by the player that does not own the vertex on which the token is stuck.

The moves of players 0 and 1 are determined by their respective strategies.
Informally, a strategy for a player a determines, for a vertex m; € V,, the next
vertex ;41 that will be visited if a token is on m;, provided m; has successors.
In general, a strategy is a partial function o : V*V,, — V which, for a given
history of vertices of the locations of the token and a vertex on which the token
currently resides, determines the next vertex by selecting an edge to that vertex.
A finite or infinite path 7 conforms to a given strategy o if for all prefixes 7<°
for which ¢ is defined, we have ;.1 = o(7<?).

A strategy o for player « is winning from a vertex v iff « is the winner
of every play starting in v that conforms to o. Parity games are known to be
positionally determined [30]. This means that a vertex is won by player « iff «
has a winning strategy that does not depend on the history of vertices visited by
the token. Such strategies can be represented by partial functions o : V, — V.
Note that every vertex in a parity game is won by one of the two players.

Closed modal p-calculus formulae can be interpreted by associating a game
semantics to these formulae. The definition we provide below is adopted from [30].
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Table 1. The game semantics for a closed modal p-calculus formula ¢: vertex v (1st
column), its owner a (2nd column), its successors (if any) w € vE (3rd column),
and priority p(v) (4th column). Vertices of the form (s, (a)y) and (s, [a]t)) have no
successors when s has no a-successors.

Vertex Owner Successor(s) Priority

(s, true) 1 0

(s, false) 0 0

(5,91 A p2) 1 (s,%1) and (s,v2) 0

(5,91 V 2) 0 (s,%1) and (s,2) 0

(s, [aly) 1 (t,) for every s — t 0

(s, (a)®p) 0 (t,%) for every s — t 0

(s,vX.4) 1 (s, Y[ X (= vX.]) 2|ADy(X)/2]

(5, X.10) 1 (5, PIX 1= pX.0)) 2[AD4(X)/2] +1

Definition 5. Let L = (S, —,s0) be an LTS and ¢ be a closed modal p-calculus
formula. A state s € S satisfies formula ¢, denoted by L, s = ¢, iff vertex (s, d)
is won by player 0 in the game G » = (V, E,p, (Vy, V1)), where V. =S x FL(¢),
and the sets E, Vi, and V1 and priority function p are given by Table 1.

If the context is such that no confusion can arise, we write s = ¢ for L, s = ¢.

For a more in-depth treatment of the modal p-calculus, we refer to [30].
Here, we finish by illustrating the game semantics on a small example, drawing
inspiration from an example in [19].

Ezxample 1. Consider the LTS L depicted in the bottom-left corner of Fig. 1,
modelling a coffee machine that after inserting one or two units of some currency
(indicated by action ins) can dispense a standard regular coffee (indicated by
action std) or an extra large coffee (indicted by action xxI), respectively.

The LTL-type formula ¢, depicted in the top-left corner of Fig. 1, asserts that
on all infinite runs of the coffee machine, it infinitely often dispenses a regular
coffee. (Note, nothing is required to hold on finite runs.) The parity game that
can answer whether sg = ¢ holds is depicted on the right in Fig. 1. Each node
is annotated with a pair consisting of a state of the LTS and a (sub)formula
of ¢. Note that the references to ¢, ¢, and ¢3 are meant as an indication and
not to be interpreted exactly, since they lack the substitution that needs to be
carried out. We remark that the parity game is solitair: only one player can make
decisions. Vertex (sg,¢) is won by player 1 by enforcing a 1-dominated infinite
play, bypassing the vertex with priority 2 on the loop. Consequently, sg = ¢. O

3 Software Product Lines Model Checking

Software products with variability can be modelled effectively using so-called
featured transition systems or FTSs [3]. Fix a finite non-empty set F of features,
with f as typical element. Let B[F] denote the set of Boolean expressions over F.
Elements x and -y of B[F] are referred to as feature expressions. A product P is
a set of features, P denotes the set of products, thus P C 27.
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(s0, [std]¢) (s0, [xxI]¢1)
P2
vX.pY. ([ins]Y A [xx]]Y Afstd] X ) (0, 61) (50, [ins]¢1)
D (1 ——{o}——{o}——f0]
o3 (s0,#2)  (so, #3)
b1
[1](81 , ¢1)
(s0, )
L std [0](327 [xxI¢1) Uj(sh b2)
(s1, [std])
() (om0
(s2,¢3)[0] [o] [1] {o] [0](s1,3)
xx1 (s1, [ins]$1)
(s2, [ins]e1) 0] (s2,[std]¢) (s, [xxll¢1)[0]

Fig. 1. Parity game encoding the model checking problem sg = ¢

A feature expression -, as Boolean expression over F, can be interpreted as
a set of products P,, viz. all products P for which the induced truth assignment
(true for £ € P, false for £ ¢ P) validates 7. Reversely, for each family P C P we
fix a feature expression yp to represent it. The constant T denotes the feature
expression that is always true. We now recall FTSs from [4] as a model for
software product lines, using the notation of [19,22].

Definition 6. An FTS F over Act and F is a triple F = (5,0, s0), where S
is the set of states with so € S and 0 : S x Act x S — B[F] is the transition
constraint function.

For states s,t € S, we write s a|—7>p tif 0(s,a,t) = v and v # L. The projection

of F' onto a product P € P is the LTS F|P = (S, —pp, 50) over Act with

] i>F|p tiff P € P, for a transition s a|—7>F tof F.

Ezxample 2. Assume that the coffee machine from Example 1 is to model a family
of coffee machines for different countries, depending on whether a coffee machine
accepts the insertion of dollars or euros, or both. Let P be a product line of coffee
machines, with the independent features $ and €, representing the presence of a
coin slot accepting dollars or euros, respectively, leading to a set of four products:
{2,{8},{€},{8,€}}. The FTS F below models the family behaviour of P.

F std|€ Flpy F|P, std
@m@ ins|$ @ ' ins . ins . ‘ ins ! .
xxI| T xx1 xx1

The idea is that extra large coffee is exclusively available for 2 dollars, whereas
1 euro or dollar suffices for a standard regular coffee. The behaviour of products
P; = {$} and Py = {€} is modelled by the LTSs F'|P; and F'|P, depicted above.
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Note that coffee machine F'|P; accepting only dollars lacks the transition from
s1 to s requiring feature €, while coffee machine F'|P, accepting only euros lacks
the one from s; to sy requiring feature $. The behaviour of product P; = {$, €}
is modelled by the LTS L = F|{$,€} depicted in Fig. 1. Finally, the product
without any features is not depicted, but it deadlocks at state s;. O

Definition 7. The SPL model checking problem is to compute, for a given
FTS F=(S,0,s0) and closed modal p-calculus formula ¢, the largest subsets PT
and P~ of P such that F|P,sq = ¢ for allP€ PT and F|P,so = ¢ for allPe P,

Sets PT and P~ partition P: a formula either does or does not hold in a state.

Example 3. Tt is not difficult to see that the formula ¢ from Example 1 does
not hold for all products. In fact, PT = {&,{€}} and P~ = {{$},{$,€}}. For
products with feature $, there is an infinite run that avoids action std altogether,
whereas for products not containing feature $, either all runs are finite, or all
infinite runs contain an infinite number of std actions. O

4 Variability Parity Games and SPL Model Checking

In practice, the model checking problem for LTSs, yielding a yes/no answer,
can efficiently be decided using parity game solving algorithms [27,30]. The SPL
model checking problem can be solved in a similar fashion by constructing parity
games associated with the formula and with each individual product separately.
Such an approach, however, does not take full advantage of the efficient, compact
representation of the variation points in the individual product LTSs represented
by an FTS. The wvariability parity games we introduce in Section 4.1, exploit
constructs similar to those in FTSs to compactly encode variation points in
the parity games they represent. We show in Section 4.2 that the SPL model
checking problem can be solved by solving such variability parity games.

4.1 Variability Parity Games

A variability parity game is a generalisation of a parity game. It is a two-player
game, again played by players odd, denoted by 1, and even, denoted by 0, on a
finite directed graph. Contrary to parity games, an edge in a variability parity
game is associated with a set of configurations.

Definition 8 (Variability Parity Game). A variability parity game G is a
sextuple G = (V, E, €, p, 0, (Vy, V1)), where

— V is a finite set of vertices, partitioned into sets Vi and Vy of vertices owned
by player 0 and player 1, respectively;

E CV xV is the edge relation;

— € is a finite set of configurations;

— p:V — N is the priority function that assigns priorities to vertices;

— 0:E — 2%\ {0} is the configuration mapping.
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In line with our depiction of parity games, we visualise variability parity games
as graphs with diamond-shaped and box-shaped vertices, and directed edges
connecting vertices. Moreover, edges are annotated with configurations. A vari-
ability parity game G = (V, E, €, p, 0, (Vy, V1)) is called total if, for all u € V, it
holds that [J{ 0(u,v) |v €V, (u,v) € E} =¢€.

As before, we write v — w for (v,w) € E, and we use « to range over {0, 1}.
We use v = w to denote v —w and ¢ € 0(v,w) and say that the edge between v
and w is compatible with c. The notions of a finite and infinite path from parity
games carry over to variability parity games, and we use similar notation to
denote the prefixes of a path and the vertices along a path. A finite path vy - - - v,
is admitted for a configuration ¢ € € iff for all m < n, ¢ € (v, Vme1). In a
similar vein, an infinite path can be said to be admitted for a given configuration.

A play starts by placing a configured token ¢ € € on vertex v € V. The
players move configured token ¢ in the game according to the following rule: if
token ¢ € € is on some vertex v € V,, player a pushes ¢, if possible, to some
adjacent vertex w along an edge compatible with ¢, i.e. ¢ € 8(v,w). The finite
and infinite paths thus constructed are admitted by ¢, and are again referred to
as plays; the conditions for players 0 and 1 for winning such plays are identical
to those for parity games.

For a configuration ¢ € €, a strategy is a partial function o, : V*V, — V
which, when defined for 7S¢, yields a vertex ;4 that is reachable from ; via an
edge that is compatible with ¢. A path 7, admitted by configuration ¢, conforms
to a given strategy o. iff for all prefixes 7<% for which ¢ is defined, we have
Tir1 = 0.(mS?). Strategy o, for player a and configuration ¢ is winning from a
vertex v iff v is the winner of every play starting in v that conforms to o.

Definition 9. The variability parity game solving problem for a vertex v is the
problem of computing the largest set of configurations Cy,C1 C € such that:

— player 0 has a winning strategy for v for each ¢ € Cy;
— player 1 has a winning strategy for v for each ¢ € C4.

For a given variability parity game G and a configuration ¢ € €, we define the
projection of G onto ¢, denoted G|c as the parity game obtained by retaining only
those edges from G that are compatible with ¢. We note that it follows rather im-
mediately that variability parity games are also positionally determined: player 0
(player 1, respectively) has a winning strategy o, for vertex v for configuration ¢
iff she has a winning strategy for v in the projection of the variability parity
game onto configuration c¢. Since parity games are positionally determined, so
are variability parity games. Consequently, the variability parity game solving
problem asks for the computation of a partition of the set of configurations €.

4.2 Solving SPL Model Checking Using Variability Parity Games

If we ignore the representation of the sets of configurations decorating the edges,
a variability parity game is a compact representation of a set of parity games. The
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Table 2. Transformation of the SPL model checking problem to the variability parity
game solving problem. For a given vertex v (1st column), its owner « (2nd column),
successors w € vE (3rd column) and configuration mapping 6(v,w) (3rd column), and
priority p(v) (4th column) are given.

Vertex Owner Successor(s) | Configurations Priority

(s, true) 1 0

(s, false) 0 0

(s, 91 Aa) 1 (s,%1) | P and (s,v¢2) | P 0

(5,91 V 12) 0 (s,%1) | P and (s,v¢2) | P 0

(s, [a]y) 1 (t, ) | Py for every s a\_’y}F t 0

(s, (a)¥)) 0 (t, ) | Py for every s ﬂF t 0

(5, vX.19) 1 (s, WX = v X.9)) | P 2/ AD4(X)/2]

(5 X .10) 1 (5, WX == pX.0]) | P 2[AD4(X)/2] + 1

next definition shows how to exploit these configurations to efficiently encode the
SPL model checking problem as a variability parity game solving problem, based
on the game-based semantics of the modal p-calculus we presented in Section 2.

Definition 10. Let F = (5,0, s0) be an FTS, let P be the set of all products,
and let ¢ be a closed modal p-calculus formula. The variability parity game Fy =
(V,E, €, p,0,(Vo, V1)) associated with F and ¢, with V =5 x FL(¢) and € = P,
is defined by the rules given in Table 2.

Note that the size of the graph underlying variability parity game Fj, measured
in terms of |V|+ |E)|, is linear in the size of formula ¢ and the FTS F', measured
in terms of S|+ |{(s,a,t) € S x Act x S| (s,a,t) # L}|. Hence, the structural
information in an F'TS is compactly reflected in the variability parity game which
encodes the SPL model checking problem for the FTS. The correctness of the
encoding is expressed by the Theorem 1.

Theorem 1. For a given FTS F, a closed modal p-calculus formula ¢, and a
product P, we have F|P,s |= ¢ iff player 0 wins the vertex (s, ¢) for configura-
tion P in the variability parity game Fy associated to F' and ¢.

Proof (sketch). Fix an FTS F and a closed modal p-calculus formula ¢. Let P
be a product. It is not hard to show that the parity game we obtain by encoding
the model checking problem F|P,s = ¢ (cf. Definition 5) is isomorphic to the
projection of Fy, onto P, viz. Fy|P. O

We revisit the SPL model checking problem of Example 3, illustrating the encod-
ing of Definition 10. By abuse of notation, we write feature expressions instead
of sets of configurations in variability parity games associated to SPL model
checking problems.

Example 4. Consider the FTS F of Example 2 and the modal p-calculus for-
mula ¢ of Example 1, both for convenience repeated in Fig. 2. The variability
parity game Fy encoding the SPL model checking problem for F' and ¢ is de-
picted on the right in Fig. 2 (ignoring all dashed self loops for now). We omitted
most state annotations to yield a more readable figure.
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¢2
vX.pY. ([ins]Y A [xxI]Y Alstd] X))

b3
1
(s0, ®)
T
F o std|e [0](s2, xxl]¢1) - >[o]
(s1, [std]¢)

ins| T ins|$ T
*Q‘j (2) T '
0 (1] 0]

xx1| T
T
T>0]

Fig. 2. Variability parity game encoding the SPL model checking problem for F' and ¢.

Observe that the graph structure of the variability parity game Fy is the same
as that of the parity game of Example 1 in Fig. 1. The construction leading to
the variability parity game only differs in the construction of the parity game
with respect to the edge annotations. Furthermore, note that vertex (s, @) is
won by player 0 for the set of configurations —$, whereas player 1 wins the
set of configurations $: for configurations containing the feature $, player 1 can
essentially reuse the strategy of Example 1, avoiding the vertex with priority 2.
For configurations not containing the feature $, this option is not available, since
the vertex (s1, [ins]¢1) is a sink. For products with feature € but not $, the only
infinite play infinitely often visits vertex (sg, ¢). For products without features
€ and $ all plays starting in (s, ¢) are finite. Hence, by Theorem 1, the solution
to the SPL model checking problem is the pair (—$,$), as expected. O

5 Recursively Solving Variability Parity Games

Given a variability parity game G and a vertex v of G, a straightforward way
of solving the variability parity game problem for v is by simply solving the
standard parity game problem G|c for every ¢ € €. In doing so, however, we ignore
that players can potentially use (parts of) a single strategy for possibly many
different configurations. As opposed to the above solving strategy, to which we
refer as the individual solving strategy, we investigate an alternative for variability
parity games, called the collective solving strategy.

We provide an algorithm, Algorithm 1, for solving variability parity games
inspired by the classical recursive algorithm for solving parity games [27]. The
recursive algorithm is, despite its unappealing theoretical worst-case complexity,
in practice one of the most effective algorithms for solving parity games [28,29].
It is a divide-and-conquer algorithm that relies on two building blocks, viz. the
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concept of a subgame computation and of an attractor computation. We generalise
and adapt these concepts to the setting of variability parity games.

Fix a variability parity game G = (V, E, &, p, 0, (Vy, V1)). For simplicity we
assume that G is total. This is not a limitation; any variability parity game can
be turned into a total one. The auxiliary notion of a restriction is a mapping
o0:V — 2% which, for a variability parity game G, indicates which configurations
are under consideration for a vertex. Given such a restriction g, we say that a
vertex v for configuration ¢ € € is won by player « in the game G restricted to o
iff ¢ € p(v) and the winning strategy for a only passes through vertices v’ for
which ¢ € p(v"). We say that G is total with respect to g iff for all v € V and all
¢ € o(v), there is a vertex w such that w € vE and ¢ € 0(v, w) N p(w).

Let U,U’ : V — 2% be arbitrary mappings. The union of U and U’, denoted
U U U, is defined point-wise, i.e. (U UU’)(v) = U(v) U U(v'). We say that
mapping U is a sub-mapping of o iff for all v € V we have U(v) C o(v). The
reduction of p with respect to a sub-mapping U, denoted p\U, is a new restriction
defined as (o\U)(v) = o(v)\U(v).

For a given sub-mapping U : V — 2% of a restriction o, the a-attractor
towards U is a sub-mapping of ¢ which assigns those configurations to a vertex
for which player o can force the play to reach some vertex v for which that
configuration belongs to U(v). Formally, we define Attér, (U), in the context of o
and G, as Attr, (U)(v) = U;so Attrl(U)(v), where

Attr2(U)(v) = U(v)
AttriTH(U) (v) = Attrl (U) (v) U
{ceo) |veVyATwevE: ceb(v,w)No(w)N Attr’ (U)(w) } U
{ce€ o) |veVzgAVwevE: ce (E\(O(v,w) N p(w))) U Attr. (U)(w) }

= —

Thus, in case v € V,, and ¢ € o(v), configuration ¢ is in Attr:™ (U)(v) if for a
move by player a to some vertex w allowed for configuration ¢, the sub-attractor
Attrl (U)(w) can be reached. In case v € Vg and ¢ € g(v), configuration ¢ is in
Attr:TH(U) (v) if all moves for player @ are not allowed for configuration ¢ or lead

to a vertexw in the sub-attractor Attr’ (U)(w) for player o for A.

Example 5. Reconsider the variability parity game of Example 4. First, observe
that it is not total. In this case, the variability parity game can be made total
without changing the solution by taking into account also the dashed self loops.

Let o(v) = € and define U(sg,¢) = € and U(v) = & for all v # (s, @).
For vertex (sg, ¢) we have Attry(U)(so, ) = {2, {$}, {€}, {$,€}}. All vertices v
on the (single) path starting in (so, [ins]¢1) and ending in (s, [std]¢) satisfy
Attry(U)(v") = {{$,€}}. The remaining vertices v’ satisfy Attry(U)(v') = @.
Note that for no configuration the immediate predecessor of (sg, [ins]¢) is at-
tracted to U because of the escape to the sink that player 1 can use. 0O

We have the following result, which can be proven by induction on i following
the definition of Attr, (U)(v) = ;5 Attr,(U)(v).
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Algorithm 1 Recursive Algorithm for a fixed variability parity game G =
(V,E,&,p,0,(Vy,V1)). Given a restriction ¢ : V — 2%, the algorithm returns
a pair of functions (Wy, W;) where Wy, Wy : V. — 2% denote, for each vertex,
which set of configurations is won by player 0 (player 1, respectively).

1: function SOLVE(p)

2 if p=MXv e V.0 then

3 (Wo,Wﬂ‘—(AUEV@,)\’UEV.@)
4 else

5: m «— max{p(v) |[vEV Ao(v) #0}
6: o «— m mod 2

7 U — v e V.{o(v) | p(v) = m}
8: A — Attr,(U)

9: (W5, W1i) = SoLvE(p\A)
10: if Wy = Mv € V.0 then
11: Wao — WLUA
12: Wa «— Wé
13: else
14: B «— Attrg(W§)
15: (Wg',W{') = SovE(e\B)
16: Weo — WY
17: Was — WZUB
18: end if
19: end if

20: return (Wy, Wh)
21: end function

Lemma 1. Let G = (V,E,€,p,0, (Vy, V1)) be a variability parity game, let o :
V — 2% q restriction, and let o be an arbitrary player. Then for all sub-
mappings U of o, also Attr,(U) is a sub-mapping of o. a

Totality of a game is preserved for the complements of attractors of sub-mappings.

Lemma 2. Let G = (V,E,€,p,0,(Vy, V1)) be a variability parity game and let
0:V — 2% be a restriction such that G is total with respect to o. Then G is total
with respect to o\ Attr, (U) for all sub-mappings U of o and each player «.

Proof. Let G and p be as stated. Consider an arbitrary mapping U : V — 2%, and
let A = Attr,, (U) be the a-attractor towards U. By Lemma 1, A is a sub-mapping
of p. Towards a contradiction, assume that G is not total with respect to o\A.
Then there is some vertex v € V and some configuration ¢ € (p\A)(v) such
that for all w € vE, if ¢ € 6(v,w) then ¢ ¢ (0\A)(w). Pick such a vertex v and
configuration c. Since G is total with respect to ¢, we know that there is at least
one w € vE with ¢ € 8(v,w) and ¢ € p(w). Let w € vE be such that ¢ € (v, w)
and ¢ € g(w). It then follows that ¢ ¢ (o\A)(w), and, hence, ¢ € A(w). So, for
all w € vE for which ¢ € 6(v,w) and ¢ € p(w) we have ¢ € A(w). But then, by
definition of a-attractor, also ¢ € A(v). Contradiction, since ¢ € (p\A)(v). O

We proceed with the following result regarding the propagation of winning with
respect to a sub-mapping along an attractor.
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Lemma 3. Let G = (V,E,€,p,0,(Vy, V1)) be a variability parity game and let
0:V — 2% be a restriction. Let o be an arbitrary player and suppose U is a
sub-mapping of o. If for all v € V, player a wins vertex v for all configurations
c € U(v), then a wins vertex v for all configurations ¢ € Attr,,(U)(v).

Proof. Let g, a and U be as stated. We proceed by induction on i with respect
to the definition of Attr’ (U).

Base case (i = 0): Follows by assumption. Induction step (¢ > 0): Suppose
player o wins vertex v for all configurations ¢ € Attr’ (U)(v). Pick an arbitrary
vertex v’ and configuration ¢ € Attri™H(U)(v'). Since ¢ € Attrit(U)(v'), we
have ¢’ € o(v). If ¢ € Attr! (U)(v'), the result follows instantly by induction. If
d ¢ Attr’ (U)(v'), then we distinguish two cases.

Case v’ € V,,: Then there must be some w € v'E such that ¢ € 8(v',w) and
¢ € Attr! (U)(w). Let w be such. Then player o can play a ¢-configured token
from v’ to w and, by induction, win vertex w for configuration ¢’. But then she
also wins vertex v’ for configuration ¢’.

Case v/ € V3. Then, for all w € ¢'E such that ¢ € 6(v',w), also ¢ €
Attr! (U)(w). Since regardless of how player @ moves the ¢-configured token
from v’ along an edge admitting ¢/, she will end up in a vertex that, by induction,
is won by « for configuration ¢’ O

The next theorem captures the correctness of Algorithm 1.

Theorem 2. Let G = (V,E,€,p,0,(Vy, V1)) be a variability parity game and
let o : V. — 2% be a restriction such that G is total with respect to p. Then
SOLVE(p) returns the mappings Wo, Wy : V. — 2% such that for all v € V,
Wo(v) UWi(v) = € and both for player 0 and 1, for each ¢ € Wy (v), player o
wins vertex v for configuration c.

Proof. Fix a total variability parity game G = (V, E, €, p, 0, (Vo,V1)). We prove a
slightly stronger property, viz. for all restrictions o : V — 2% such that G is total
with respect to o, procedure SOLVE(p) returns mappings Wy, Wy : V' — 2¢ that
are sub-mappings of ¢ such that for all v € V' it holds that Wy (v)UW7(v) = o(v)
and player « wins vertex v for each configuration ¢ € W, (v). Let us define
lo| = >_,cy lo(v)|. The proof will proceed by induction on |g| and closely follows
the standard proofs of correctness for parity games.

Base case: We have o(v) = ) for all v € V. Consequently, the algorithm
returns the functions Wy and Wi satisfying Wy(v) = Wi(v) = 0 for all v € V.
Trivially Wy and W satisfy the statement.

Induction step: Let ¢ be a restriction such that G is total with respect to p.
As our induction hypothesis, assume that the statement holds for all ¢’ such that
lo'| < |o|. Let m be the maximal priority among those vertices in G for which o
yields a non-empty set of configurations, and let a be m mod 2. Let U be the
sub-mapping of g for which U(v) = o(v) if p(v) = m, and U(v) = () otherwise,
and let A be the sub-mapping Attr, (U). By Lemma 2, G is total with respect
to o\ 4, and hence, by induction, the functions W/, Wy returned by SOLVE(p\ A)
satisfy the statement. Next, we distinguish two cases.
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Case W.(v) = () for all v. Then, by our induction hypothesis, player « wins all
vertices v for configurations ¢ € W/ (v) in the game restricted to o\ A. Regarding
the remaining vertices, note that for vertices v € V5 and configurations c€ W/, (v)
with an edge to a vertex w with c€ A(w), player & may escape to such vertices.
However, then a can force the play to visit a vertex with priority m. Remaining
in vertices with priority m means losing for &. Playing to any vertex other than
those in U leads to a play that remains either in W, or infinitely often revisits U.
In either case, @ wins such plays. For vertices v €V, and configurations c€ g(v),
player « either follows the winning strategy in W/, or the attractor strategy for A
towards a vertex in U. Consequently, a wins all vertices v for all configurations
c€ o(v), which is consistent with W, and W5 as returned by SOLVE.

Case W1 (v) # () for some v. Since player & wins any vertex v for configuration
¢ € WL(v) in the game restricted to g\ A, and player a cannot force the play
to a vertex w for which ¢ € A(w), player @ also wins all such vertices and
configurations in G restricted to ¢. By Lemma 3, & thus also wins all vertices v
for configurations ¢ € B = Attry(W%)(v). By Lemma 2, G is total with respect
to o\B, and hence, by induction, the functions W', W}’ returned by the call
SOLVE(p\ B) satisfy the statement. It then follows that player « wins all vertices v
for configurations ¢ € W/ (v) and player & wins all vertices v for configurations
¢ € (W5 U B)(v) as set by SOLVE. O

Algorithm 1 requires that the attractor Attr,(U) for a sub-mapping U can be
computed (cf. line 8 of the algorithm). To cater for this, the attractor com-
putation for sub-mappings can be implemented following the pseudo-code of
Algorithm 2, the correctness of which is claimed by Lemma 4.

Lemma 4. For a restriction o : V. — 2%, a sub-mapping U : V — 2% of ¢ and
a player a, ATTR(a, U) terminates and returns a sub-mapping A of o satisfying
A = Attr, (U). O

Algorithm 2 is actually a straightforward implementation of the definition of
the attractor set computation following the high-level structure of the attractor
computation for standard parity games. We forego a detailed proof of Lemma 4,
which, for soundness, uses an invariant stating that the computed sub-mapping
A under-approximates Attr,(U) and for completeness uses an invariant that
asserts for all configurations c € Attr, (U)(v) either c€ A(v) or there is a vertex
v' € @ and attractor strategy underlying Attr, (U)(v) inducing a play for ¢,
starting in v, visiting v’ and not visiting vertices v" with c€ A(v") in between.

Instead, we briefly explain the underlying intuition. It conducts a typical
backwards reachability analysis, maintaining a queue @ of vertices that are at
the frontier of the search for at least some configurations. For each vertex w in
this frontier, its predecessors v € Fw are inspected in a for-loop. Either such a
predecessor is owned by player «, in which case all configurations that can reach
w in one step are added to the attractor set for v, or such a predecessor is owned
by player &, in which case all v’s successors must be inspected, and only those
configurations ¢ of v for which all their successor options are to move to some
vertex w’ already satistfying ¢ € A(w’) are added to its attractor.



Family-Based SPL Model Checking with Variability Parity Games 259

Algorithm 2 Attractor computation. Given a variability parity game G =
(V,E,&,p,0,(Vy,V1)), a restriction ¢ : V — 2% and a sub-mapping U of p,
the algorithm computes the a-attractor towards U.

1: function ATTR(w, U)

2: Queue Q — {v eV |Uw)#0}

3: AU

4: while @ is not empty do

5 we Qpop()

6: for every v € Ew such that o(v) N 6(v,w) N A(w) # 0 do
7: if v € V,, then

8: a «— o(v) NO(v,w) N A(w)

9: else

10: a — o(v)

11: for w’ € vE such that o(v) NO(v,w’) N o(w') # 0 do
12: a—an(C\ (Ov,w)New))uUA))

13: end for

14: end if

15: if a\ A(v) # 0 then

16: A(w) «— A(v)Ua

17: if v ¢ Q then Q.push(v)

18: end if

19: end for

20: end while
21: return A
22: end function

6 Implementation and Experiments

As an initial validation of our approach we experimented with two SPL examples,
viz. the well-known minepump and elevator case studies first recognised as SPLs
in [3,14], modelled for the mCRL2 toolset [20,21].

A prototype for solving variability parity games connecting to the mCRL2
toolset was implemented in C++ using the BuDDy package [31, 32| for BDD
operations. The prototype uses BDDs to represent product families; parity games
are represented as graphs with adjacency lists for incoming and outgoing edges.
For the recursive algorithm, bit vectors are used to represent sets of vertices
sorted by parity then by priority. All experiments were run on a standard Linux
desktop with Intel i5-4570 3.20Hz processor and 8GB DDR3 internal memory.>

6.1 Minepump Case Study

The minepump example of [33], in the SPL variant of [4], describes a configurable
software system coordinating the sensors and actuators of a pump for mine
drainage. The purpose of the system is to keep a mine shaft free from water.

3 Solvers and experiments: https://github.com/SjefvanLoo/VariabilityParityGames
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A controller operates a pump that may not start nor continue running in the
presence of dangerously high levels of methane gas. To this end, it needs to
communicate with sensors that measure the water and methane levels. The SPL
model has 11 features and 128 products; the resulting FT'S consists of 582 states
and 1376 transitions. The mCRL2 code of this model, developed for [19], closely
follows the fPROMELA code of [4] (also used in [16]) that is distributed with [8].

We verified nine properties, 1 to ¢g, for the minepump case study, examined
also elsewhere in the SPL literature (cf., e.g. [3,4,7, 16,19, 24, 34-36]). These
induce variability parity games consisting of approximately 3000 to 9200 vertices
and 2 to 4 different priorities. Specifically, for properties 1, @4, and @7, we used
the following formulae, expressed in the mCRL2 variant of the modal p-calculus,
which allows to mix fixed points, regular expressions, and first-order constructs.

Property p1. Absence of deadlock: [true*] <true> true

Property p4. The pump cannot be switched on infinitely often:

(mu X. nu Y. ([pumpStart] [!pumpStop*] [pumpStopl X &&
['pumpStart] Y )) && ( [truex] [pumpStart] mu Z. [!pumpStop]l Z )

Property ¢7. The controller can always eventually receive/read a message, i.e.
return to its initial state from any state: [truex] <truex> <receiveMsg> true

While ¢, is a common LTL-type formula, (7 is typical for CTL. Table 3 provides
the running times for verification of properties @1 to @g via variability parity
games, and the sizes of classes (P, P™) partitioning P. The results show that
the collective solving strategy for family-based SPL model checking outperforms
the individual solving strategy for product-based SPL model checking.

While a full baseline comparison with other SPL model checking algorithms
was not performed, our approach promises to be at least as efficient as related
approaches. This conjecture is based on the running times reported for properties
©1, 4, and g in [4,16,19] (all verified with standard computers of that time).

Table 3. Running times (in ms) for experiments for the product-based and family-
based SPL model checking of the minepump and elevator case studies using recursive
algorithm for variability parity games.

Minepump SPL Elevator SPL

Property [ product [ family [ |P+| /1P| Property [ product family [ \P+\ /1P|
©1 28.88 3.92 128/0 Py 14335 5409 2/30
©2 54.79 6.76 0/128 o 14988 5744 4/28
©3 184.7 24.70 0/128 3 16045 5020 4/28
©a 145.0 37.46 96/32 Py 16865 5272 4/28
©5 144.5 12.19 96/32 Y5 8954 3013 16/16
©6 242.9 42.79 112/16 e 4252 772 32/0
w7 134.3 11.71 128/0 Y7 4171 765 32/0
©s 17.44 1.058 128/0
©9 110.0 6.853 0/128
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6.2 Elevator Case Study

The other configurable system we considered is the elevator example of [37] of a
lift travelling between five floors. A product in the elevator system may or may
not provide the features of parking, load and overload detection, cancelling on
emptiness, and priority for specific floors. Absence or presence of specific features
in a system configuration generally leads to different behaviour. The behaviour of
the lift itself is governed by the so-called single button collective control strategy,
deciding which floor is visited next. Roughly speaking, and dependent on the
specific feature setting, the lift operates in sweeps, only changing direction if
there are no outstanding calls in the current direction. The FTS implementation
in mCRL2 underlying the experiments is derived from the 120 lines of SMV code
presented in [37]. Although the number of features in this SPL example is small,
viz. only 5 independent features resulting in 32 different configurations, the F'TS
consists of 95591 states and 622265 transitions.

The seven properties, 1 to 17 for the elevator case study, also examined
elsewhere in the literature (cf., e.g. [10-12, 14,15, 25, 26, 35, 38]), which we ex-
perimented with were adapted from [37]. These induce variability parity games
consisting of approximately 440000 to 18500000 vertices with 2 to 3 different
priorities. The properties cover a proper handling of requests, correct behaviour
with respect to the control strategy, proper behaviour when idling, and the pos-
sibility to stop at floors while passing. By way of illustration, properties ¥s, 13,
and 15 are expressed as follows in the mCRL2 variant of the modal p-calculus.

Property 1o. Invariantly, if a lift button is pressed for a floor, the lift will even-
tually open its doors on this floor:

[truex] forall i:Floor. [liftButton(i)]
(mu X. ( [topen(i)] X && <true> true ) )

Property 3. Invariantly, if the lift is travelling up while there are calls above
the lift will not change direction:

[truex] ( ([ direction(up).
(! (direction(down) || exists k:Floor. open(k)))* ]
forall i:Floor. val(l <= i && i <= 5) =>
[ open(i) ] forall j:Floor. val(i < j && j <= 5) =>
[ 1iftButton(j) ] mu Y. ( [lopen(j)] Y &&
[direction(down)] false && < true > true ) ) )

Property 5. Invariantly, if the lift is idling, it does not change floors:

( forall i:Floor. val(l <= i && i <= 5) =>
<true*.idling(i)> true ) &&

( [truex] forall i:Floor. val(l <= i && i <= 5) =>
[ idling(i) ] nu Y. <idling(i)> Y )
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It is noted, in particular with regard to property 15, that unlike the original SMV
elevator system, our lift idles with its doors open, to prevent the situation where
someone in the lift infinitely often presses the landing button for the current
floor, keeping the process busy without the lift making any movement.

Also in the case of the elevator system we notice a significant difference in
performance when doing product-based model checking calling the individual
solving strategy or family-based model checking calling the collective solving
strategy. The difference is, however, not that striking compared to the minepump
case study, which, we believe, is due to the small number of different features.

As said, a full baseline comparison with other SPL model checking algorithms
was not performed. For one, the efficiency of our approach with respect to related
approaches is not easily measured with the elevator case study. While properties
19 and 15 were verified also in [14,15,25,26,35,38], not much can be concluded
from the reported running times. First, our model’s mCRL2 code was developed
from scratch, following the SMV code from [37], and not the fPROMELA code
of [14,15, 25,26, 35, 38]. Moreover, the number of floors in these models ranges
from 4 to 6. In [10-12], finally, the models are probabilistic, the number of floors
ranges from 2 to 40, and different (probabilistic) properties were verified.

7 Conclusions

We have introduced variability parity games as a generalisation of parity games,
reflecting the generalisation by FTSs of LTSs, and have defined the SPL model
checking problem of modal p-calculus formulae on FTSs as a variability parity
game solving problem, for which we have provided a recursive algorithm based
on a collective, family-based solving strategy. To illustrate the efficiency of the
approach, we have applied it to two classical examples from the SPL literature,
viz. the minepump and the elevator case studies. The experiments show that the
collective, family-based strategy of solving variability parity games typically out-
performs the individual, product-based strategy of solving the standard parity
games obtained by projection from the variability parity games

Further experiments are needed to measure and pinpoint the differences in
efficiency. One direction for future work is to generate a sufficient number of
random variability parity games to this aim. In particular, the configuration sets
that label the edges of the variability parity games for the minepump and elevator
case studies obey a very specific distribution, typically admitting either 100%
or 50% of the configurations. It would be interesting to see how our approach
behaves in case of SPLs with more complexly structured feature diagrams.

There is a wealth of different algorithms available for parity games, of which
the recursive algorithm that we have here lifted to variability parity games is one
of the most competitive ones in practice. Nevertheless, we think it pays to study
other algorithms and lift these to variability parity games, too. Finally, we believe
that variability parity games have applications beyond SPL model checking; e.g.
in (parameter) synthesis problems. We leave these topics for future research.
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