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Abstract. We study k-synchronizability: a system is k-synchronizable
if any of its executions, up to reordering causally independent actions,
can be divided into a succession of k-bounded interaction phases. We
show two results (both for mailbox and peer-to-peer automata): first, the
reachability problem is decidable for k-synchronizable systems; second,
the membership problem (whether a given system is k-synchronizable)
is decidable as well. Our proofs fix several important issues in previous
attempts to prove these two results for mailbox automata.

Keywords: Verification - Communicating Automata - A/Synchronous
communication.

1 Introduction

Asynchronous message-passing is ubiquitous in communication-centric systems;
these include high-performance computing, distributed memory management,
event-driven programming, or web services orchestration. One of the parameters
that play an important role in these systems is whether the number of pending
sent messages can be bounded in a predictable fashion, or whether the buffering
capacity offered by the communication layer should be unlimited. Clearly, when
considering implementation, testing, or verification, bounded asynchrony is pre-
ferred over unbounded asynchrony. Indeed, for bounded systems, reachability
analysis and invariants inference can be solved by regular model-checking [5].
Unfortunately and even if designing a new system in this setting is easier, this is
not the case when considering that the buffering capacity is unbounded, or that
the bound is not known a priori . Thus, a question that arises naturally is how
can we bound the “behaviour” of a system so that it operates as one with un-
bounded buffers? In a recent work [4], Bouajjani et al. introduced the notion of
k-synchronizable system of finite state machines communicating through mail-
boxes and showed that the reachability problem is decidable for such systems.
Intuitively, a system is k-synchronizable if any of its executions, up to reordering
causally independent actions, can be chopped into a succession of k-bounded in-
teraction phases. Each of these phases starts with at most k send actions that are
followed by at most k receptions. Notice that, a system may be k-synchronizable
even if some of its executions require buffers of unbounded capacity.

As explained in the present paper, this result, although valid, is surprisingly
non-trivial, mostly due to complications introduced by the mailbox semantics of
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communications. Some of these complications were missed by Bouajjani et al.
and the algorithm for the reachability problem in [4] suffers from false positives.
Another problem is the membership problem for the subclass of k-synchronizable
systems: for a given k and a given system of communicating finite state machines,
is this system k-synchronizable? The main result in [4] is that this problem is
decidable. However, again, the proof of this result contains an important flaw at
the very first step that breaks all subsequent developments; as a consequence,
the algorithm given in [4] produces both false positives and false negatives.

In this work, we present a new proof of the decidability of the reachability
problem together with a new proof of the decidability of the membership pro-
blem. Quite surprisingly, the reachability problem is more demanding in terms of
causality analysis, whereas the membership problem, although rather intricate,
builds on a simpler dependency analysis. We also extend both decidability results
to the case of peer-to-peer communication.

Outline. Next section recalls the definition of communicating systems and re-
lated notions. In Section 3 we introduce k-synchronizability and we give a graphi-
cal characterisation of this property. This characterisation corrects Theorem 1
in [4] and highlights the flaw in the proof of the membership problem. Next,
in Section 4, we establish the decidability of the reachability problem, which is
the core of our contribution and departs considerably from [4]. In Section 5, we
show the decidability of the membership problem. Section 6 extends previous
results to the peer-to-peer setting. Finally Section 7 concludes the paper dis-
cussing other related works. Proofs and some additional material are available
at https://hal.archives-ouvertes.fr/hal-02272347.

2 Preliminaries

A communicating system is a set of finite state machines that exchange messages:
automata have transitions labelled with either send or receive actions. The paper
mainly considers as communication architecture, mailboxes: i.e., messages await
to be received in FIFO buffers that store all messages sent to a same automaton,
regardless of their senders. Section 6, instead, treats peer-to-peer systems, their
introduction is therefore delayed to that point.

Let V be a finite set of messages and P a finite set of processes. A send
action, denoted send(p, q, v), designates the sending of message v from process
p to process ¢. Similarly a receive action rec(p,q,v) expresses that process ¢
is receiving message v from p. We write a to denote a send or receive action.
Let S = {send(p,q,v) | p,qg € P,v € V} be the set of send actions and
R = {rec(p,q,v) | p,q € P,v € V} the set of receive actions. S, and R, stand
for the set of sends and receives of process p respectively. Each process is encoded
by an automaton and by abuse of notation we say that a system is the parallel
composition of processes.

Definition 1 (System). A system is a tuple G = ((Lp,ép,lg) | p € P) where,

for each process p, Ly, is a finite set of local control states, §, C (Lp X (SpURy) X
L,) is the transition relation (also denoted | =, 1') and 19 is the initial state.
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Definition 2 (Configuration). Let & = ((Ly, 6, )| pe P), a configuration

is a pair (I,Buf) where [ = (Ip)per € HpepLy is a global control state of & (a
local control state for each automaton), and Buf = (b,),ep € (V*)F is a vector
of buffers, each b, being a word over V.

We write 13 to denote the vector of initial states of all processes p € P, and Bufy
stands for the vector of empty buffers. The semantics of a system is defined by
the two rules below.

[SEND] [RECEIVE]

send(p,q,v) rec(p,q,v)
, 2OV = by v [N A

(I Bug) "0, ({1, /1), But by /bg]) (I Bug) "L, (11, /1], Bus(b /b))

A send action adds a message in the buffer b of the receiver, and a receive action
pops the message from this buffer. An execution e = a; -- - a, is a sequence of
actions in S U R such that (Ig,Bufy) <% --- 2% (I,Buf) for some | and Buf.
As usual = stands for 25 ... 2% We write asEx(&) to denote the set of
asynchronous executions of a system &. In a sequence of actions e = ay - an,
a send action a; = send(p, ¢, Vv) is matched by a reception a; = rec(p’,q’,v’)
(denoted by a; Ha;) if ¢ < j, p=1p', ¢ = ¢, v= v, and there is £ > 1 such
that a; and a; are the ¢th actions of e with these properties respectively. A send
action a; is unmatched if there is no matching reception in e. A message exchange
of a sequence of actions e is a set either of the form v = {a;,a;} with a; H a; or
of the form v = {a;} with a; unmatched. For a message v;, we will note v; the
corresponding message exchange. When v is either an unmatched send(p, ¢, v)
or a pair of matched actions {send(p, q,v),rec(p,q,v)}, we write procg(v) for p
and procg(v) for . Note that procy(v) is defined even if v is unmatched. Finally,
we write procs(v) for {p} in the case of an unmatched send and {p, ¢} in the case
of a matched send.

An execution imposes a total order on the actions. We are interested in
stressing the causal dependencies between messages. We thus make use of mes-
sage sequence charts (MSCs) that only impose an order between matched pairs
of actions and between the actions of a same process. Informally, an MSC will be
depicted with vertical timelines (one for each process) where time goes from top
to bottom, that carry some events (points) representing send and receive actions
of this process (see Fig. 1). An arc is drawn between two matched events. We
will also draw a dashed arc to depict an unmatched send event. An MSC is, thus,
a partially ordered set of events, each corresponding to a send or receive action.

Definition 3 (MSC). A message sequence chart is a tuple (Ev, A, <), where

— FEv is a finite set of events,
— X: Ev— SUR tags each event with an action,
— <= (<po U <sre)t 48 the transitive closure of =po and =g, where:
o <,, 15 a partial order on Ev such that, for all process p, <po induces a
total order on the set of events of process p, i.e., on \™1(S, U Ry,)
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Fig.1: (a) and (b): two MSCs that violate causal delivery. (c¢) and (d): an MSC
and its conflict graph

e <. 18 a binary relation that relates each receive event to its preceding

send event :
x for all events r € A"1(R), there is exzactly one events s such that
5 <sre T
x for all events s € A\7Y(S), there is at most one event r such that
5 <sre T

* for any two events s,r such that s <s.c T, there are p,q,v such that
A(s) = send(p, q,v) and \(r) = rec(p, q,V).

We identify MSCs up to graph isomorphism (i.e., we view an MSC as a labeled
graph). For a given well-formed (i.e., each reception is matched) sequence of
actions e = ay ... an, we let msc(e) be the MSC where Ev = [1..n], <,, is the
set of pairs of indices (4,j) such that ¢ < j and {a;,a;} C S, U R, for some
p € P (i.e., a; and a; are actions of a same process), and <. is the set of pairs
of indices (¢,7) such that a; H a;. We say that e = a1...a, is a linearisation
of msc(e), and we write asTr (&) to denote {msc(e) | e € asEx (&)} the set of
MSCs of system S.

Mailbox communication imposes a number of constraints on what and when
messages can be read. The precise definition is given below, we now discuss some
of the possible scenarios. For instance: if two messages are sent to a same process,
they will be received in the same order as they have been sent. As another
example, unmatched messages also impose some constraints: if a process p sends
an unmatched message to r, it will not be able to send matched messages to r
afterwards (Fig. 1a); or similarly, if a process p sends an unmatched message to
r, any process ¢ that receives subsequent messages from p will not be able to
send matched messages to r afterwards (Fig. 1b). When an MSC satisfies the
constraint imposed by mailbox communication, we say that it satisfies causal
delivery. Notice that, by construction, all executions satisfy causal delivery.

Definition 4 (Causal Delivery). Let (Ev, A, <) be an MSC. We say that it
satisfies causal delivery if the MSC has a linearisation e = a; . . . ay, such that for
any two events i < j such that a; = send(p,q,v) and a; = send(p’,q, V'), either
a; is unmatched, or there are i, j' such that a; H ay, aj Haj, and i’ < j'.

Our definition enforces the following intuitive property.
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Proposition 1. An MSC msc satisfies causal delivery if and only if there is a
system & and an execution e € asEx(S) such that msc = msc(e).

We now recall from [4] the definition of conflict graph depicting the causal
dependencies between message exchanges. Intuitively, we have a dependency
whenever two messages have a process in common. For instance an 55 depen-
dency between message exchanges v and v’ expresses the fact that v’ has been
sent after v, by the same process.

Definition 5 (Conflict Graph). The conflict graph CG(e) of a sequence of

actions e = ay - - - ay, s the labeled graph (V, {g}x7y6{375}) where V is the set
of message exchanges of e, and for all XY € {S, R}, for all v,v' € V, there is

a XY dependency edge v XX W between v and v' if there are i < j such that
{a;} =vNX, {a;} =" NY, and procy (v) = procy (v').

Notice that each linearisation e of an MSC will have the same conflict graph.
We can thus talk about an MSC and the associated conflict graph. (As an exam-
ple see Figs. 1c and 1d.)

We write v — v/ if v 2 o' for some X,Y € {R, S}, and v —* v’ if there is
a (possibly empty) path from v to v’.

3 k-synchronizable Systems

In this section, we define k-synchronizable systems. The main contribution of
this part is a new characterisation of k-synchronizable executions that corrects
the one given in [4].

In the rest of the paper, k denotes a given integer k£ > 1. A k-exchange
denotes a sequence of actions starting with at most k sends and followed by at
most k receives matching some of the sends. An MSC is k-synchronous if there
exists a linearisation that is breakable into a sequence of k-exchanges, such that
a message sent during a k-exchange cannot be received during a subsequent one:
either it is received during the same k-exchange, or it remains orphan forever.

Definition 6 (k-synchronous). An MSC msc is k-synchronous if:

1. there exists a linearisation of msc e = ey - eg--- e, where for all i € [1..n],
e; € SSF. RSk,

2. msc satisfies causal delivery,

3. for all j,j" such that a; H a; holds in e, aj H a; holds in some e;.

An execution e is k-synchronizable if msc(e) is k-synchronous.

We write sTr, (&) to denote the set {msc(e) | e € asEx(S) and msc(e) is
k-synchronous}.

Ezample 1 (k-synchronous MSCs and k-synchronizable Ezecutions).
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Fig.2: (a) the MSC of Example 1.1. (b) the MSC of Example 1.2. (c¢) the MSC
of Example 2 and (d) its conflict graph.

1. There is no k such that the MSC in Fig. 2a is k-synchronous. All messages
must be grouped in the same k-exchange, but it is not possible to schedule
all the sends first, because the reception of vi happens before the sending of
vs. Still, this MSC satisfies causal delivery.

2. Let ey = send(r,q, v3)-send(q,p, va)-send(p, q,v1)-rec(q,p, va)-rec(r, q, vs)
be an execution. Its MSC, msc(e;) depicted in Fig. 2b satisfies causal deliv-
ery. Notice that e; can not be divided in 1-exchanges. However, if we consider
the alternative linearisation of msc(e1): e = send(p, q,v1) - send(q,p, va) -
rec(q,p, va) - send(r, q,vs) - rec(r, q, vs), we have that es is breakable into 1-
exchanges in which each matched send is in a 1-exchange with its reception.
Therefore, msc(ey) is 1-synchronous and ey is 1-synchronizable. Remark that
€9 1s not an execution and there exists no execution that can be divided into
l-exchanges. A k-synchronous MSC highlights dependencies between mes-
sages but does not impose an order for the execution.

Comparison with [4]. In [4], the authors define set sEx (&) as the set of k-
synchronous executions of system & in the k-synchronous semantics. Nonetheless
as remarked in Example 1.2 not all executions of a system can be divided into
k-exchanges even if they are k-synchronizable. Thus, in order not to lose any
executions, we have decided to reason only on MSCs (called traces in [4]).

Following standard terminology, we say that a set U C V of vertices is a
strongly connected component (SCC) of a given graph (V, —) if between any two
vertices v,v’ € U, there exist two oriented paths v —* v’ and v —* v. The
statement below fixes some issues with Theorem 1 in [4].

Theorem 1 (Graph Characterisation of k-synchronous MSCs). Let msc
be a causal delivery MSC. msc is k-synchronous iff every SCC in its conflict
graph is of size at most k and if no RS edge occurs on any cyclic path.

Ezample 2 (A 5-synchronous MSC). Fig. 2¢ depicts a 5-synchronous MSC, that
is not 4-synchronous. Indeed, its conflict graph (Fig. 2d) contains a SCC of size
5 (all vertices are on the same SCC).
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Comparison with [4]. Bouajjani et al. give a characterisation of k-synchronous
executions similar to ours, but they use the word cycle instead of SCC, and
the subsequent developments of the paper suggest that they intended to say
Hamiltonian cycle (i.e., a cyclic path that does not go twice through the same
vertex). It is not the case that a MSC is k-synchronous if and only if every
Hamiltonian cycle in its conflict graph is of size at most k£ and if no RS edge
occurs on any cyclic path. Indeed, consider again Example 2. This graph is not
Hamiltonian, and the largest Hamiltonian cycle indeed is of size 4 only. But as we
already discussed in Example 2, the corresponding MSC is not 4-synchronous.

As a consequence, the algorithm that is presented in [4] for deciding whether
a system is k-synchronizable is not correct as well: the MSC of Fig. 2¢ would be
considered 4-synchronous according to this algorithm, but it is not.

4 Decidability of Reachability for k-synchronizable
Systems

We show that the reachability problem is decidable for k-synchronizable systems.
While proving this result, we have to face several non-trivial aspects of causal
delivery that were missed in [4] and that require a completely new approach.

Definition 7 (k-synchronizable System). A system & is k-synchronizable
if all its executions are k-synchronizable, i.e., sTri(6) = asTr(S).

In other words, a system & is k-synchronizable if for every execution e of G,
msc(e) may be divided into k-exchanges.

Remark 1. In particular, a system may be k-synchronizable even if some of its
executions fill the buffers with more than k messages. For instance, the only
linearisation of the 1-synchronous MSC Fig. 2b that is an execution of the system
needs buffers of size 2.

For a k-synchronizable system, the reachability problem reduces to the rea-
chability through a k-synchronizable execution. To show that k-synchronous
reachability is decidable, we establish that the set of k-synchronous MSCs is
regular. More precisely, we want to define a finite state automaton that accepts
a sequence ej - eg - - - e, of k-exchanges if and only if they satisfy causal delivery.

We start by giving a graph-theoretic characterisation of causal delivery. For
this, we define the extended edges v X v’ of a given conflict graph. The relation
X% is defined in Fig. 3 with X, Y € {S, R}. Intuitively, v X expresses that
event X of v must happen before event Y of v/ due to either their order on
the same machine (Rule 1), or the fact that a send happens before its matching
receive (Rule 2), or due to the mailbox semantics (Rules 3 and 4), or because
of a chain of such dependencies (Rule 5). We observe that in the extended con-
flict graph, obtained applying such rules, a cyclic dependency appears whenever
causal delivery is not satisfied.
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XN vNR#D RR
(Rule 1) 112 (Rule 2) Tf (Rule 3) 2L %2
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(Rule 4) __PoCrv1) = Proca(v2) (Rule 5) -
SS vy % vy
V1 ——* V2

Fig. 3: Deduction rules for extended dependency edges of the conflict graph

Ezample 3. Fig. 5a and 5b depict an MSC and its associated conflict graph with
some extended edges. This MSC violates causal delivery and there is a cyclic

ss
dependency vy --» v1.

Theorem 2 (Graph-theoretic Characterisation of Causal Delivery). An
MSC satisfies causal delivery iff there is no cyclic causal dependency of the form

ss
v -—» v for some vertex v of its extended conflict graph.

Let us now come back to our initial problem: we want to recognise with finite
memory the sequences e, es ... e, of k-exchanges that composed give an MSC
that satisfies causal delivery. We proceed by reading each k-exchange one by one
in sequence. This entails that, at each step, we have only a partial view of the
global conflict graph. Still, we want to determine whether the acyclicity condition
of Theorem 2 is satisfied in the global conflict graph. The crucial observation
is that only the edges generated by Rule 4 may “go back in time”. This means
that we have to remember enough information from the previously examined k-
exchanges to determine whether the current k-exchange contains a vertex v that
shares an edge with some unmatched vertex v’ seen in a previous k-exchange
and whether this could participate in a cycle. This is achieved by computing two
sets of processes Cs, and Cg  that collect the following information: a process
q is in Cg, if it performs a send action causally after an unmatched send to
p, or it is the sender of the unmatched send; a process g belongs to Cr ), if it
receives a message that was sent after some unmatched message directed to p.
More precisely, we have:

Csp = {procg(v) | v/ 5% 0 & o' is unmatched & procy(v') = p}
Cr,p = {procg(v) | v 5% u & o' is unmatched & procp(v') =p & vN R # 0}

These sets abstract and carry from one k-exchange to another the necessary
information to detect violations of causal delivery. We compute them in any local
conflict graph of a k-exchange incrementally, i.e., knowing what they were at the
end of the previous k-exchange, we compute them at the end of the current one.
More precisely, let € = 1+ 8y + 71+ Ty be a k-exchange, CG(e) = (V, E) its
conflict graph and B : P — (2% x 2F) the function that associates to each p € P
the two sets B(p) = (Cs,p, Cr,p). Then, the conflict graph CG(e, B) is the graph
(V,E') with V! =V U{¢, | p € P} and E' D E as defined below. For each
process p € P, the “summary node” 1), shall account for all past unmatched
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€=81""Sm Tl Tm/ S1-Sm€S" ri--rpy €R* 0<m' <m<k
(I.Bufo) = (I, Buf) for some Buf
forall p € P B(p) = (Csp,Crp) and B'(p) = (Csp, Cr p),
Unm, = {¢} U {v | v is unmatched, procy(v) = p}
ss
C;{,p =CxpU{p|p € Cx,q,v - g, (procg(v) =p or v=1p)} U
{procy (v) | v € Unmp, NV, X = S} U {procy (v') | v 55 v',v € Unmp,v N X # 0}
for all p € P,p & Cr,,
e,k

(I.B) = (I, B)

Fig.4: Definition of the relation e:’:>
Ci

messages sent to p that occurred in some k-exchange before e. E’ is the set E

of edges XX among message exchanges of e, as in Definition 5, augmented with
the following set of extra edges that takes into account summary nodes.

{4y SX v | procy (v) € Cgp & vN X # () for some X € {S, R}}

(
U {¢, 55 v | procy (v) € Crp & vN R # 0 for some X € {S,R}}

U {4y 250 | procy(v) € Cr,p & v is unmatched}

(v)
(W) =p&vNR#D} U {230, |p e Cryl

U {v LN ¥y | procg

These extra edges summarise/abstract the connections to and from previous

. . . sS. SR
k-exchanges. Equation (1) considers connections — and — that are due to
two sends messages or, respectively, a send and a receive on the same process.

Equations (2) and (3) considers connections B and 25 that are due to two
received messages or, respectively, a receive and a subsequent send on the same
process. Notice how the rules in Fig. 3 would then imply the existence of a

. SS . . . . SS
connection --», in particular Equation (3) abstract the existence of an edge --»
built because of Rule 4. Equations in (4) abstract edges that would connect the
current, k-exchange to previous ones. As before those edges in the global conflict
graph would correspond to extended edges added because of Rule 4 in Fig. 3.
Once we have this enriched local view of the conflict graph, we take its extended

XY
version. Let --» denote the edges of the extended conflict graph as defined from
rules in Fig. 3 taking into account the new vertices 1, and their edges.

Finally, let G be a system and e:’d> be the transition relation given in Fig. 4
C

among abstract configurations of the form (l_: B). [is a global control state of

G and B: P — (QIP X ZP) is the function defined above that associates to each

process p a pair of sets of processes B(p) = (Cs p, Cr,p). Transition %’% updates
C

these sets with respect to the current k-exchange e. Causal delivery is verified by
checking that for all p € P, p ¢ C’j%,p meaning that there is no cyclic dependency



166 C. Di Giusto et al.

- " ss| ss sslss Orr= 0
€1 ,/ // /' \ C;S‘,r - {Q}
T I A it s Cho= (o
g N A N S R I \ e
ity | !
= " SS ll RR //I SS 1/}7. Rf?// CS,T - {q}
“ v \\ @j v 88 Uﬂk CR,T = {5}
4 N \ R \ 7
| ‘. ss| ss ' ss g,s”' - g’g
N . , SS \\ R R,r — )

() (b) ()

Fig.5: (a) an MSC (b) its associated global conflict graph, (c) the conflict graphs
of its k-exchanges

as stated in Theorem 2. The initial state is (lo, Bo), where By : P — (2F x 2F)
denotes the function such that By(p) = (0,0) for all p € P.

Ezample 4 (An Invalid Execution). Let e = e1 - e2 with e; and ey the two
2-exchanges of this execution. such that e; = send(q,7,v1) - send(q, s, va) -
rec(q, s, va) and es = send(p, s,v3) - rec(p, s, vs) - send(p,r,vy) - rec(p,r,vy).
Fig. ha and 5c show the MSC and corresponding conflict graph of each of the
2-exchanges. Note that two edges of the global graph (in blue) “go across” k-
exchanges. These edges do not belong to the local conflict graphs and are mim-
icked by the incoming and outgoing edges of summary nodes. The values of
sets Cs, and Cg,, at the beginning and at the end of the k-exchange are given
on the right. All other sets Cg, and Cgr, for p # r are empty, since there is
only one unmatched message to process r. Notice how at the end of the second
k-exchange, r € C;-E,r signalling that message v, violates causal delivery.

Comparison with [4]. In [4] the authors define :> in a rather different way:

they do not explicitly give a graph-theoretic characterlsatlon of causal delivery;
instead they compute, for every process p, the set B(p) of processes that either
sent an unmatched message to p or received a message from a process in B(p).
They then make sure that any message sent to p by a process ¢ € B(p) is
unmatched. According to that definition, the MSC of Fig. 5b would satisfy causal
delivery and would be 1-synchronous. However, this is not the case (this MSC
does not satisfy causal delivery) as we have shown in Example 3. Due to to the
above errors, we had to propose a considerably different approach. The extended
edges of the conflict graph, and the graph-theoretic characterisation of causal
delivery as well as summary nodes, have no equivalent in [4].

Next lemma proves that Fig. 4 properly characterises causal delivery.
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Lemma 1. An MSC msc is k-synchronous iff there ise = ey ---e, a lineari-
e,k €n,

sation such that (ly, Bo) = :dk> (I, B") for some global state I and some
B':P— (2F x 2P).

_ Note that there are only finitely many abstract configurations of the form
(I, B) with [ a tuple of control states and B : P — (2F x 2F). Moreover, since V
is finite, the alphabet over the possible k-exchange for a given k is also finite.

e k. . .
Therefore ():’d> is a relation on a finite set, and the set sTr, (&) of k-synchronous

Ci
MSCs of a system & forms a regular language. It follows that it is decidable
whether a given abstract configuration of the form (I, B) is reachable from the
initial configuration following a k-synchronizable execution.

Theorem 3. Let S be a k-synchronizable system and la global control state of
&. The problem whether there exists e € asEx(S) and Buf such that (1, Bufy) =
(I,Buf) is decidable.

Remark 2. Deadlock-freedom, unspecified receptions, and absence of orphan mes-
sages are other properties that become decidable for a k-synchronizable system
because of the regularity of the set of k-synchronous MSCs.

5 Decidability of k-synchronizability for Mailbox Systems

We establish the decidability of k-synchronizability; our approach is similar to
the one of [4] based on the notion of borderline violation, but we adjust it to
adapt to the new characterisation of k-synchronizable executions (Theorem 1).

Definition 8 (Borderline Violation). A non k-synchronizable execution e is
a borderline violation if e = €’ - r, v is a reception and €' is k-synchronizable.

Note that a system & that is not k-synchronizable always admits at least one
borderline violation €’ - r € asEx(&) with r € R: indeed, there is at least one
execution e € asEx(S) which contains a unique minimal prefix of the form e’ -r
that is not k-synchronizable; moreover since €’ is k-synchronizable, 7 cannot be a
k-exchange of just one send action, therefore it must be a receive action. In order
to find such a borderline violation, Bouajjani et al. introduced an instrumented
system &’ that behaves like &, except that it contains an extra process m, and
such that a non-deterministically chosen message that should have been sent
from a process p to a process ¢ may now be sent from p to 7, and later forwarded
by 7 to q. In &', each process p has the possibility, instead of sending a message
v to g, to deviate this message to m; if it does so, p continues its execution as if it
really had sent it to q. Note also that the message sent to 7 get tagged with the
original destination process g. Similarly, for each possible reception, a process
has the possibility to receive a given message not from the initial sender but from
m. The process 7 has an initial state from which it can receive any messages from
the system. Each reception makes it go into a different state. From this state,
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it is able to send the message back to the original recipient. Once a message
is forwarded, 7 reaches its final state and remains idle. The following example
illustrates how the instrumented system works.

Ezample 5 (A Deviated Message).

Let e, es be two executions of a system & with
MSCs respectively msc(ey) and msc(ez). e; is not 1-
synchronizable. It is borderline in &. If we delete the last
reception, it becomes indeed 1-synchronizable. msc(ez)
is the MSC obtained from the instrumented system &’ v v
where the message vy is first deviated to m and then <
sent back to ¢ from . Vi
Note that msc(es) is 1-synchronous. In this case, the
instrumented system &’ in the 1-synchronous semantics
“reveals” the existence of a borderline violation of &.

=
S
i
S
3

(qv Vl)

>
Y

msc(er) msc(es)

For each execution e - r € asEx(G) that ends with a reception, there exists
an execution deviate(e - ) € asEx(G’) where the message exchange associated
with the reception r has been deviated to 7; formally, if e-r = e - s eq - r with
r =rec(p,q,v) and s H r, then

deviate(e-r) = ey-send(p, 7, (q,v))-rec(p, m, (q,v))-ez-send(w, q, (v))-rec(r, q,v).

Definition 9 (Feasible Execution, Bad Execution). A k-synchronizable
execution €' of &' is feasible if there is an execution e -r € asEx(S) such that
deviate(e-r) = ¢’. A feasible execution ¢/ = deviate(e-r) of & is bad if execution
e -1 is not k-synchronizable in S.

Ezample 6 (A Non-feasible Execution). p q¢ T p (
Let €’ be an execution such that msc(e’) is as depicted (4, V1)
on the right. Clearly, this MSC satisfies causal delivery
and could be the execution of some instrumented system >
G&'. However, the sequence e-r such that deviate(e-r) = ¢’ Vi
does not satisfy causal delivery, therefore it cannot be
an execution of the original system &. In other words,
the execution €’ is not feasible.

V2

msc(e’) msc(e - r)

Lemma 2. A system S is not k-synchronizable iff there is a k-synchronizable
execution € of & that is feasible and bad.

As we have already noted, the set of k-synchronous MSCs of &’ is regular.
The decision procedure for k-synchronizability follows from the fact that the
set of MSCs that have as linearisation a feasible bad execution as we will see,
is regular as well, and that it can be recognised by an (effectively computable)
non-deterministic finite state automaton. The decidability of k-synchronizability
follows then from Lemma 2 and the decidability of the emptiness problem for
non-deterministic finite state automata.
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Recognition of Feasible Executions. We start with the automaton that
recognises feasible executions; for this, we revisit the construction we just used
for recognising sequences of k-exchanges that satisfy causal delivery.

In the remainder, we assume an execution e’ € asExz(&’) that contains
exactly one send of the form send(p, 7, (¢q,v)) and one reception of the form

rec(m,q, v), this reception being the last action of e’. Let (V, {g}X’YG{R’S}) be
the conflict graph of ¢’. There are two uniquely determined vertices Ustart, Ustop €
V such that procg(vstart) = 7 and procg(vstop) = 7 that correspond, respectively,
to the first and last message exchanges of the deviation. The conflict graph of
e - r is then obtained by merging these two nodes.

Lemma 3. The execution €' is not feasible iff there is a vertex v in the conflict
, SS RR
graph of €' such that Ustart —=* V —= Ustop-

In order to decide whether an execution €’ is feasible, we want to forbid that
a send action send(p’,q,v') that happens causally after vga is matched by a
receive rec(p’, ¢, v') that happens causally before the reception vsop. As a matter
of fact, this boils down to deal with the deviated send action as an unmatched
send. So we will consider sets of processes C§ and C'} similar to the ones used

for :> but with the goal of computing which actions happen causally after the

send to w. We also introduce a summary node ¥stat and the extra edges following
the same principles as in the previous section. Formally, let B : P — (2F x 2F),
CE,C% C P and e € SSFRSF be fixed, and let CG(e, B) = (V',E') be the
constraint graph with summary nodes for unmatched sent messages as defined
in the previous section. The local constraint graph CG(e, B,CZ,CF,) is defined
as the graph (V" E") where V" = V' U {¢start} and E” is E’ augmented with

{Wstart 5X v | procx (v) € C§ & vN X # () for some X € {S, R}}
U {¥start S5 | procy (v) € Ck & vN R # () for some X € {S, R}}

U {¥start 55 | procg(v) € CF & v is unmatched} U {tstant 55 vy | p € CR}

XY
As before, we consider the “closure” --» of these edges by the rules of Fig. 3.

The transition relation j:> is defined in Fig. 6. It relates abstract configurations
eas

of the form (I, B, C, dest ) with C' = (Cs,r, Cr.x) and dest, € PU{L} storing to
whom the message deviated to m was supposed to be delivered. Thus, the initial
abstract configuration is (lg, By, (0,0), L), where | means that the processus
dest, has not been determined yet. It will be set as soon as the send to process
7 is encountered.

Lemma 4. Let ¢’ be an execution of &'. Then €' is a k-synchronizable feasible
execution iff there are e’ = ey --- e, - send(m, q,v) - rec(m, q,v) with €1, 560 €
S<kR<k B P — 2F, ' e (2%)2, and a tuple of control states I’ such that
msc(e’) = msc(e”), m & Cr,q (with B'(q) = (Cs,q,C&q ), and

(o, Bo, (0,0), L) =& 22 (77 B (1 q).

feas feas
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(I, B) =k (', B) e=ai--an (Vo) procg(v) # 7

cd
(Vv,v") procg(v) = procp(v') =7 = v=1v'Adestr = L
(Vv) v > send(p,, (g, v)) = dest,, =q destr # | = dest) = dest,
C%' = CT U {procy (v') | v 25 v/ & v/ N X # 0 & (procy(v) = 7 or v = taan)}
U {procg(v) | procg(v) =7 & X = S}

sSs
U{p|p€Cx,q&v-->19y & (procg(v) = or v = Pstart) }
destl ¢ CF’

(I B,C3,CF. desty) == (I/, B, C§',C}, dest},)

feas

Fig. 6: Definition of the relation %
eas

Comparison with [4]. In [4] the authors verify that an execution is feasible with
a monitor which reviews the actions of the execution and adds processes that
no longer are allowed to send a message to the receiver of . Unfortunately, we
have here a similar problem that the one mentioned in the previous comparison
paragraph. According to their monitor, the following execution ¢’ = deviate(e-r)
is feasible, i.e., is runnable in &’ and e - r is runnable in &.

e = send(q,,(r,v1)) - rec(q,m, (r,v1)) - send(q, s, va) - rec(q, s, va)-

send(p, s,v3) - rec(p, s,vs) - send(p,r,v4) - rec(p,r,vy)-

send(m,r,v1) - rec(m,r,vy)

However, this execution is not feasible because there is a causal dependency
between vy and vs. In [4] this execution would then be considered as feasible
and therefore would belong to set sTr;(&’). Yet there is no corresponding exe-
cution in asTr(S), the comparison and therefore the k-synchronizability, could
be distorted and appear as a false negative.

Recognition of Bad Executions. Finally, we define a non-deterministic finite
state automaton that recognizes MSCs of bad executions, i.e., feasible executions
e/ = deviate(e - r) such that e - r is not k-synchronizable. We come back to the

“non-extended” conflict graph, without edges of the form X Let Post™(v) =
{v € V| v =* v'} be the set of vertices reachable from v, and let Pre*(v) =
{v' € V| v/ =* v} be the set of vertices co-reachable from v. For a set of vertices
U C V,let Post™(U) = [J{Post™(v) | v € U}, and Pre*(U) = | J{Pre*(v) | v € U}.

Lemma 5. The feasible execution e’ is bad iff one of the two holds

x RS *
1. Ustart ? ?— Ustop, OT
2. the size of the set Post™ (Ustart) N Pre™(vsiop) is greater or equal to k + 2.

In order to determine whether a given message exchange v of CG(e’) should
be counted as reachable (resp. co-reachable), we will compute at the entry and
exit of every k-exchange of ¢/ which processes are “reachable” or “co-reachable”.
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Ezample 7. (Reachable and Co-reachable Processes)

Consider the MSC on the right made of five 1-exchanges.
While sending message (s, vp) that corresponds to vstart,
process r becomes “reachable”: any subsequent message
exchange that involves r corresponds to a vertex of the v
conflict graph that is reachable from vgat. While send- vs [*

ing vg, process s becomes “reachable”, because process Vi

r will be reachable when it will receive message va. Sim- Vo
ilary, ¢ becomes reachable after receiving vz because r
was reachable when it sent v3, and p becomes reachable
after receiving v, because ¢ was reachable when it sent
vy. Co-reachability works similarly, but reasoning backwards on the timelines.
For instance, process s stops being “co-reachable” while it receives vq, process
r stops being co-reachable after it receives vy, and process p stops being co-
reachable by sending v;. The only message that is sent by a process being both
reachable and co-reachable at the instant of the sending is va, therefore it is the
only message that will be counted as contributing to the SCC.

(57 VO)

msc(e)

More formally, let e be sequence of actions, CG(e) its conflict graph and
P,Q two sets of processes, Post.(P) = Post” ({v | procs(v) N P # @}) and

Pre.(Q) = Pre” ({v | procs(v) N Q # @}) are introduced to represent the local

view through k-exchanges of Post™(Ustart) and Pre®(vswop). For instance, for e
as in Example 7, we get Post.({m}) = {(s, Vo), va, V3, v4,vo} and Pre.({7}) =
{vo,va,v1,(s,vo)}. In each k-exchange e; the size of the intersection between
Post,, (P) and Pre., (Q) will give the local contribution of the current k-exchange

to the calculation of the size of the global SCC. In the transition relation E:’]:>
a

this value is stored in variable cnt. The last ingredient to consider is to recognise
if an edge RS belongs to the SCC. To this aim, we use a function lastisRec :
P — {True, False} that for each process stores the information whether the last
action in the previous k-exchange was a reception or not. Then depending on
the value of this variable and if a node is in the current SCC or not the value of
sawRS is set accordingly.

The transition relation -Z—’%> defined in Fig. 7 deals with abstract confi-
a

gurations of the form (P, @, cnt, sawRS, lastisRec’) where P,Q C P, sawRS is a
boolean value, and cnt is a counter bounded by k+ 2. We denote by lastisRecg
the function where all lastisRec(p) = False for all p € P.

Lemma 6. Let €’ be a feasible k-synchronizable execution of &'. Then €’ is a bad
execution iff there are ¢ = ey - - e, - send(mw,q,v) - rec(m,q,v) with ey, ..., e, €
S<kR<F and msc(e/) = msc(e”), P',Q C P, sawkS € {True,False}, cnt €
{0,...,k+2}, such that

el,k

({r},Q,0, False, lastisRecy) — e:z’dk (P',{r}, cnt, sawRS, lastisRec)
a a
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P’ = procs(Post.(P)) Q@ = procs(Pre.(Q’))
SCC. = Post.(P) N Pre.(Q")
cnt’ = min(k + 2,cnt +n)  where n = |SCC.|
lastisRec’(g¢) & (Jv € SCCe.procy(v) = gAvN R # B)V
(lastisRec(q)A Av € V.procg(v) = q)

sawRS’ = sawRSV
(3v € SCC.)(Fp € P\ {7}) procg(v) = p A lastisRec(p) Ap € PNQ

k .
(P, Q, cnt, sawRS, lastisRec) % (P',Q', cnt’, sawRS’, lastisRec’)

a

Fig. 7: Definition of the relation z:’:>
a

and at least one of the two holds: either sawRS = True, or cnt = k + 2.

Comparison with [4]. As for the notion of feasibility, to determine if an execution
is bad, in [4] the authors use a monitor that builds a path between the send to
process 7 and the send from 7. In addition to the problems related to the wrong
characterisation of k-synchronizability, this monitor not only can detect an RS
edge when there should be none, but also it can miss them when they exist. In
general, the problem arises because the path is constructed by considering only
an endpoint at the time.

We can finally conclude that:

Theorem 4. The k-synchronizability of a system & is decidable for k > 1.

6 k-synchronizability for Peer-to-Peer Systems

In this section, we will apply k-synchronizability to peer-to-peer systems. A peer-
to-peer system is a composition of communicating automata where each pair of
machines exchange messages via two private FIFO buffers, one per direction of
communication. Here we only give an insight on what changes with respect to
the mailbox setting.

Causal delivery reveals the order imposed by FIFO buffers. Definition 4 must
then be adapted to account for peer-to-peer communication. For instance, two
messages that are sent to a same process p by two different processes can be
received by p in any order, regardless of any causal dependency between the two
sends. Thus, checking causal delivery in peer-to-peer systems is easier than in the
mailbox setting, as we do not have to carry information on causal dependencies.

Within a peer-to-peer architecture, MSCs and conflict graphs are defined
as within a mailbox communication. Indeed, they represents dependencies over
machines, i.e., the order in which the actions can be done on a given machine, and
over the send and the reception of a same message, and they do not depend on
the type of communication. The notion of k-exchange remains also unchanged.
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Decidability of Reachability for k-synchronizable Peer-to-Peer Sys-
tems. To establish the decidability of reachability for k-synchronizable peer-to-

2
.. . e,k p<p .
peer systems, we define a transition relation :d> for a sequence of action e
C

describing a k-exchange. As for mailbox systems, if a send action is unmatched
in the current k-exchange, it will stay orphan forever. Moreover, after a process
p sent an orphan message to a process ¢, p is forbidden to send any matched
message to g. Nonetheless, as a consequence of the simpler definition of causal
delivery, , we no longer need to work on the conflict graph. Summary nodes and
extended edges are not needed and all the necessary information is in function
B that solely contains all the forbidden senders for process p.

The characterisation of a k-synchronizable execution is the same as for mail-
box systems as the type of communication is not relevant. We can thus conclude,
as within mailbox communication, that reachability is decidable.

Theorem 5. Let S be a k-synchronizable system and la global control state of
&. The problem whether there exists e € asEx(&) and Buf such that (ly, Bufy) =
(I,Buf) is decidable.

Decidability of k-synchronizability for Peer-to-Peer Systems. As in
mailbox system, the detection of a borderline execution determines whether a
system is k-synchronizable.

. » kPP . . . .
The relation transition ;:> allows to obtain feasible executions. Differ-
eas

ently from the mailbox setting, we need to save not only the recipient dest, but
also the sender of the delayed message (information stored in variable exp, ).
The transition rule then checks that there is no message that is violating causal
delivery, i.e., there is no message sent by exp, to dest, after the deviation.
Finally the recognition of bad execution, works in the same way as for mailbox
o . . kPP
systems. The characterisation of a bad execution and the definition of :z y
a

are, therefore, the same.

As for mailbox systems, we can, thus, conclude that for a given k, k-synchro-
nizability is decidable.

Theorem 6. The k-synchronizability of a system & is decidable for k > 1.

7 Concluding Remarks and Related works

In this paper we have studied k-synchronizability for mailbox and peer-to-peer
systems. We have corrected the reachability and decidability proofs given in [4].
The flaws in [4] concern fundamental points and we had to propose a consid-
erably different approach. The extended edges of the conflict graph, and the
graph-theoretic characterisation of causal delivery as well as summary nodes,

. . . . k & s
have no equivalent in [4]. Transition relations fe:> and % building on the
eas a
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graph-theoretic characterisations of causal delivery and k-synchronizability, de-
part considerably from the proposal in [4].

We conclude by commenting on some other related works. The idea of “com-
munication layers” is present in the early works of Elrad and Francez [8] or Chou
and Gafni [7]. More recently, Chaouch-Saad et al. [6] verified some consensus al-
gorithms using the Heard-Of Model that proceeds by “communication-closed
rounds”. The concept that an asynchronous system may have an “equivalent”
synchronous counterpart has also been widely studied. Lipton’s reduction [14]
reschedules an execution so as to move the receive actions as close as possible
from their corresponding send. Reduction recently received an increasing interest
for verification purpose, e.g. by Kragl et al. [12], or Gleissenthal et al. [11].

Existentially bounded communication systems have been studied by Ge-
nest et al. [10,15]: a system is existentially k-bounded if any execution can be
rescheduled in order to become k-bounded. This approach targets a broader class
of systems than k-synchronizability, because it does not require that the execu-
tion can be chopped in communication-closed rounds. In the perspective of the
current work, an interesting result is the decidability of existential k-boundedness
for deadlock-free systems of communicating machines with peer-to-peer channels.
Despite the more general definition, these older results are incomparable with
the present ones, that deal with systems communicating with mailboxes, and
not peer-to-peer channels.

Basu and Bultan studied a notion they also called synchronizability, but it
differs from the notion studied in the present work; synchronizability and k-
synchronizability define incomparable classes of communicating systems. The
proofs of the decidability of synchronizability [3,2] were shown to have flaws by
Finkel and Lozes [9]. A question left open in their paper is whether synchroni-
zability is decidable for mailbox communications, as originally claimed by Basu
and Bultan. Akroun and Salaiin defined also a property they called stability [1]
and that shares many similarities with the synchronizability notion in [2].

Context-bounded model-checking is yet another approach for the automatic
verification of concurrent systems. La Torre et al. studied systems of commu-
nicating machines extended with a calling stack, and showed that under some
conditions on the interplay between stack actions and communications, context-
bounded reachability was decidable [13]. A context-switch is found in an exe-
cution each time two consecutive actions are performed by a different partici-
pant. Thus, while k-synchronizability limits the number of consecutive sendings,
bounded context-switch analysis limits the number of times two consecutive ac-
tions are performed by two different processes.

As for future work, it would be interesting to explore how both context-
boundedness and communication-closed rounds could be composed. Moreover
refinements of the definition of k-synchronizability can also be considered. For
instance, we conjecture that the current development can be greatly simplified
if we forbid linearisation that do not correspond to actual executions.
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