
Controlling a random population?

Thomas Colcombet1, Nathanaël Fijalkow2,3(B), and Pierre Ohlmann1

1 Université de Paris, IRIF, CNRS, Paris, France
{thomas.colcombet,pierre.ohlmann}@irif.fr

2 CNRS, LaBRI, Bordeaux, France
nathanael.fijalkow@labri.fr

3 The Alan Turing Institute of data science, London, United Kingdom

Abstract. Bertrand et al. introduced a model of parameterised systems,
where each agent is represented by a finite state system, and studied the
following control problem: for any number of agents, does there exist a
controller able to bring all agents to a target state? They showed that
the problem is decidable and EXPTIME-complete in the adversarial
setting, and posed as an open problem the stochastic setting, where the
agent is represented by a Markov decision process. In this paper, we show
that the stochastic control problem is decidable. Our solution makes
significant uses of well quasi orders, of the max-flow min-cut theorem,
and of the theory of regular cost functions.

1 Introduction

The control problem for populations of identical agents. The model we study
was introduced in [3] (see also the journal version [4]): a population of agents
are controlled uniformly, meaning that the controller applies the same action
to every agent. The agents are represented by a finite state system, the same
for every agent. The key difficulty is that there is an arbitrary large number of
agents: the control problem is whether for every n ∈ N, there exists a controller
able to bring all n agents synchronously to a target state.

The technical contribution of [3,4] is to prove that in the adversarial setting
where an opponent chooses the evolution of the agents, the (adversarial) control
problem is EXPTIME-complete.

In this paper, we study the stochastic setting, where each agent evolves in-
dependently according to a probabilistic distribution, i.e. the finite state system
modelling an agent is a Markov decision process. The control problem becomes
whether for every n ∈ N, there exists a controller able to bring all n agents
synchronously to a target state with probability one.

? The authors are committed to making professional choices acknowledging the cli-
mate emergency. We submitted this work to FoSSaCS for its excellence and because
its location induces for us a low carbon footprint. This work was supported by the
European Research Council (ERC) under the European Union’s Horizon 2020 re-
search and innovation programme (grant agreement No.670624), and by the DeLTA
ANR project (ANR-16-CE40-0007).

c© The Author(s) 2020
J. Goubault-Larrecq and B. König (Eds.): FOSSACS 2020, LNCS 12077, pp. 119–135, 2020.
https://doi.org/10.1007/978-3-030-45231-5 7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45231-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-45231-5_7

120 T. Colcombet et al.

Our main technical result is that the stochastic control problem is decidable.
In the next paragraphs we discuss four motivations for studying this problem:
control of biological systems, parameterised verification and control, distributed
computing, and automata theory.

Modelling biological systems. The original motivation for studying this model
was for controlling population of yeasts ([21]). In this application, the concen-
tration of some molecule is monitored through fluorescence level. Controlling the
frequency and duration of injections of a sorbitol solution influences the concen-
tration of the target molecule, triggering different chemical reactions which can
be modelled by a finite state system. The objective is to control the popula-
tion to reach a predetermined fluorescence state. As discussed in the conclusions
of [3,4], the stochastic semantics is more satisfactory than the adversarial one for
representing the behaviours of the chemical reactions, so our decidability result
is a step towards a better understanding of the modelling of biological systems
as populations of arbitrarily many agents represented by finite state systems.

From parameterised verification to parameterised control. Parameterised verifi-
cation was introduced in [12]: it is the verification of a system composed of an
arbitrary number of identical components. The control problem we study here
and introduced in [3,4] is the first step towards parameterised control : the goal
is control a system composed of many identical components in order to ensure a
given property. To the best of our knowledge, the contributions of [3,4] are the
first results on parameterised control; by extension, we present the first results
on parameterised control in a stochastic setting.

Distributed computing. Our model resembles two models introduced for the
study of distributed computing. The first and most widely studied is popula-
tion protocols, introduced in [2]: the agents are modelled by finite state systems
and interact by pairs drawn at random. The mode of interaction is the key
difference with the model we study here: in a time step, all of our agents per-
form simultaneously and independently the same action. This brings us closer
to broadcast protocols as studied for instance in [8], in which one action involves
an arbitrary number of agents. As explained in [3,4], our model can be seen as
a subclass of (stochastic) broadcast protocols, but key differences exist in the
semantics, making the two bodies of work technically independent.

The focus of the distributed computing community when studying population
or broadcast protocols is to construct the most efficient protocols for a given
task, such as (prominently) electing a leader. A growing literature from the
verification community focusses on checking the correctness of a given protocol
against a given specification; we refer to the recent survey [7] for an overview.
We concentrate on the control problem, which can then be seen as a first result
in the control of distributed systems in a stochastic setting.

Alternative semantics for probabilistic automata. It is very tempting to con-
sider the limit case of infinitely many agents: the parameterised control question

Controlling a random population 121

becomes the value 1 problem for probabilistic automata, which was proved un-
decidable in [13], and even in very restricted cases ([10]). Hence abstracting
continuous distributions by a discrete population of arbitrary size can be seen
as an approximation technique for probabilistic automata. Using n agents cor-
reponds to using numerical approximation up to 2−n with random rounding;
in this sense the control problem considers arbitrarily fine approximations. The
plague of undecidability results on probabilistic automata (see e.g. [9]) is nicely
contrasted by our positive result, which is one of the few decidability results
on probabilistic automata not making structural assumptions on the underlying
graph.

Our results. We prove decidability of the stochastic control problem. The first
insight is given by the theory of well quasi orders, which motivates the introduc-
tion of a new problem called the sequential flow problem. The first step of our
solution is to reduce the stochastic control problem to (many instances of) the
sequential flow problem. The second insight comes from the theory of regular
cost functions, providing us with a set of tools for addressing the key difficulty
of the problem, namely the fact that there are arbitarily many agents. Our key
technical contribution is to show the computability of the sequential flow prob-
lem by reducing it to a boundedness question expressed in the cost monadic
second order logic using the max-flow min-cut theorem.

Related work. The notion of decisive Markov chains was introduced in [1] as
a unifying property for studying infinite-state Markov chains with finite-like
properties. A typical example of decisive Markov chains is lossy channel sys-
tems where tokens can be lost anytime inducing monotonicity properties. Our
situation is the exact opposite as we are considering (using the Petri nets ter-
minology) safe Petri nets where the number of tokens along a run is constant.
So it is not clear whether the underlying argument in both cases can be unified
using decisiveness.

Organisation of the paper. We define the stochastic control problem in Section 2,
and the sequential flow problem in Section 3. We construct a reduction from the
former to (many instances of) the latter in Section 4, and show the decidability
of the sequential flow problem in Section 5.

2 The stochastic control problem

Definition 1. A Markov decision process (MDP for short) consists of

– a finite set of states Q,
– a finite set of actions A,
– a stochastic transition table ρ : Q×A → D (Q).

The interpretation of the transition table is that from the state p under action
a, the probability to transition to q is ρ(p, a)(q). The transition relation ∆ is

122 T. Colcombet et al.

defined by

∆ = {(p, a, q) ∈ Q×A×Q : ρ(p, a)(q) > 0} .

We also use ∆a given by {(p, q) ∈ Q×Q : (p, a, q) ∈ ∆}.
We refer to [17] for the usual notions related to MDPs; it turns out that very

little probability theory will be needed in this paper, so we restrict ourselves to
mentioning only the relevant objects. In an MDP M, a strategy is a function
σ : Q → A; note that we consider only pure and positional strategies, as they
will be sufficient for our purposes.

Given a source s ∈ Q and a target t ∈ Q, we say that the strategy σ almost
surely reaches t if the probability that a path starting from s and consistent
with σ eventually leads to t is 1. As we shall recall in Section 4, whether there
exists a strategy ensuring to reach t almost surely from s, called the almost
sure reachability problem for MDP can be reduced to solving a two player Büchi
game, and in particular does not depend upon the exact probabilities. In other
words, the only relevant information for each (p, a, q) ∈ Q × A × Q is whether
ρ(p, a)(q) > 0 or not. Since the same will be true for the stochastic control
problem we study in this paper, in our examples we do not specify the exact
probabilities, and an edge from p to q labelled a means that ρ(p, a)(q) > 0.

Let us now fix an MDP M and consider a population of n tokens (we use
tokens to represent the agents). Each token evolves in an independent copy of
the MDP M. The controller acts through a strategy σ : Qn → A, meaning
that given the state each of the n tokens is in, the controller chooses one action
to be performed by all tokens independently. Formally, we are considering the
product MDP Mn whose set of states is Qn, set of actions is A, and transition
table is ρn(u, a)(v) =

∏n
i=1 ρ(ui, a)(vi), where u, v ∈ Qn and ui, vi are the ith

components of u and v.
Let s, t ∈ Q be the source and target states, we write sn and tn for the

constant n-tuples where all components are s and t. For a fixed value of n,
whether there exists a strategy ensuring to reach tn almost surely from sn can
be reduced to solving a two player Büchi game in the same way as above for a
single MDP, replacing M byMn. The stochastic control problem asks whether
this is true for arbitrary values of n:

Problem 1 (Stochastic control problem). The inputs are an MDP M, a source
state s ∈ Q and a target state t ∈ Q. The question is whether for all n ∈ N,
there exists a strategy ensuring to reach tn almost surely from sn.

Our main result is the following.

Theorem 1. The stochastic control problem is decidable.

The fact that the problem is co-recursively enumerable is easy to see: if the
answer is “no”, there exists n ∈ N such that there exist no strategy ensuring
to reach tn almost surely from sn. Enumerating the values of n and solving the
almost sure reachability problem for Mn eventually finds this out. However, it
is not clear whether one can place an upper bound on such a witness n, which

Controlling a random population 123

would yield a simple (yet inefficient!) algorithm. As a corollary of our analysis
we can indeed derive such an upper bound, but it is non elementary in the size
of the MDP.

In the remainder of this section we present a few interesting examples.

Example 1 Let us consider the MDP represented in Figure 1. We show that
for this MDP, for any n ∈ N, the controller has an almost sure strategy to reach
tn from sn. Starting with n tokens on s, we iterate the following strategy:

– Repeatedly play action a until all tokens are in q;
– Play action b.

The first step is eventually successful with probability one, since at each iteration
there is a positive probability that the number of tokens in state q increases. In
the second step, with non zero probability at least one token goes to t, while the
rest go back to s. It follows that each iteration of this strategy increases with
non zero probability the number of tokens in t. Hence, all tokens are eventually
transferred to tn almost surely.

Fig. 1. The controller can almost surely reach tn from sn, for any n ∈ N.

Example 2 We now consider the MDP represented in Figure 2. By convention,
if from a state some action does not have any outgoing transition (for instance
the action u from s), then it goes to the sink state ⊥.

We show that there exists a controller ensuring to transfer seven tokens from
s to t, but that the same does not hold for eight tokens. For the first assertion,
we present the following strategy:

– Play a. One of the states qi11 for i1 ∈ {u, d} receives at least 4 tokens.
– Play i1 ∈ {u, d}. At least 4 tokens go to t while at most 3 go to q1.
– Play a. One of the states qi22 for i2 ∈ {u, d} receives at least 2 tokens.
– Play i2 ∈ {u, d}. At least 2 tokens go to t while at most 1 token goes to q2.
– Play a. The token (if any) goes to qi3 for i3 ∈ {u, d}.

124 T. Colcombet et al.

– Play i3 ∈ {u, d}. The remaining token (if any) goes to t.

Now assume that there are 8 tokens or more on s. The only choices for a strategy
are to play u or d on the second, fourth, and sixth move. First, with non zero
probability at least 4 tokens are in each of qi1 for i ∈ {u, d}. Then, whatever the
choice of action i ∈ {u, d}, there are at least 4 tokens in q1 after the next step.
Proceeding likewise, there are at least 2 tokens in q2 with non zero probability
two steps later. Then again two steps later, at least 1 token falls in the sink with
non zero probability.

Fig. 2. The controller can synchronise up to 7 tokens on the target state t almost
surely, but not more.

Generalising this example shows that if the answer to the stochastic control
problem is “no”, the smallest number of tokens n for which there exist no almost
surely strategy for reaching tn from sn may be exponential in |Q|. This can
further extended to show a doubly exponential in Q lower bound, as done in [3,4];
the example produced there holds for both the adversarial and the stochastic
setting. Interestingly, for the adversarial setting this doubly exponential lower
bound is tight. Our proof for the stochastic setting yields a non-elementary
bound, leaving a very large gap.

Example 3 We consider the MDP represented in Figure 3. For any n ∈ N,
there exists a strategy almost surely reaching tn from sn. However, this strategy
has to pass tokens one by one through q1. We iterate the following strategy:

– Repeatedly play action a until exactly 1 token is in q1.
– Play action b. The token goes to qi for some i ∈ {l, r}.
– Play action i ∈ {l, r}, which moves the token to t.

Note that the first step may take a very long time (the expectation of the number
of as to be played until this happens is exponential in the number of tokens),

Controlling a random population 125

but it is eventually successful with probability one. This very slow strategy is
necessary: if q1 contains at least two tokens, then action b should not be played:
with non zero probability, at least one token ends up in each of ql, qr, so at the
next step some token ends up in ⊥. It follows that any strategy almost surely
reaching tn has to be able to detect the presence of at most 1 token in q1. This is
a key example for understanding the difficulty of the stochastic control problem.

Fig. 3. The controller can synchronise any number of tokens almost surely on the target
state t, but they have to go one by one.

3 The sequential flow problem

We let Q be a finite set of states. We call configuration an element of NQ and

flow an element of f ∈ NQ×Q. A flow f induces two configurations pre(f) and
post(f) defined by

pre(f)(p) =
∑
q∈Q

f(p, q) and post(f)(q) =
∑
p∈Q

f(p, q).

Given c, c′ two configurations and f a flow, we say that c goes to c′ using f and
write c→f c′, if c = pre(f) and c′ = post(f).

A flow word is f = f1 . . . f` where each fi is a flow. We write c f c′ if there

exists a sequence of configurations c = c0, c1, . . . , c` = c′ such that ci−1→ fi ci
for all i ∈ {1, . . . , `}. In this case, we say that c goes to c′ using the flow word f .

We now recall some classical definitions related to well quasi orders ([15,16],
see [19] for an exposition of recent results). Let (E,6) be a quasi ordered set
(i.e. 6 is reflexive and transitive), it is a well quasi ordered set (WQO) if any
infinite sequence contains an increasing pair. We say that S ⊆ E is downward
closed if for any x ∈ S, if y 6 x then y ∈ S. An ideal is a non-empty downward

126 T. Colcombet et al.

closed set I ⊆ E such that for all x, y ∈ I, there exists some z ∈ I satisfying
both x 6 z and y 6 z.

Lemma 1.

– Any infinite sequence of decreasing downward closed sets in a WQO is even-
tually constant.

– A subset is downward closed if and only if it is a finite union of incomparable
ideals. We call it its decomposition into ideals (or simply, its decomposi-
tion), which is unique (up to permutation).

– An ideal is included in a downward closed set if and only if it is included in
one of the ideals of its decomposition.

We equip the set of configurations NQ and the set of flows NQ×Q with the
quasi order 6 defined component wise, yielding thanks to Dickson’s Lemma [6]
two WQOs.

Lemma 2. Let X be a finite set. A subset of NX is an ideal if and only if it is
of the form

a↓= {c ∈ NX | c 6 a},

for some a ∈ (N ∪ {ω})X (in which ω is larger than all integers).

We represent downward closed sets of configurations and flows using their

decomposition into finitely many ideals of the form a ↓ for a ∈ (N ∪ {ω})Q or
a ∈ (N ∪ {ω})Q×Q.

Problem 2 (Sequential flow problem). Let Q be a finite set of states. Given a
downward closed set of flows Flows ⊆ NQ×Q and a downward closed set of final
configurations F ⊆ NQ, compute the downward closed set

Pre∗(Flows , F) = {c ∈ NQ | c f c′ ∈ F, f ∈ Flows∗} ,

i.e. the configurations from which one may reach F using only flows from Flows .

4 Reduction of the stochastic control problem to the
sequential flow problem

Let us consider an MDP M and a target t ∈ Q. We first recall a folklore result
reducing the almost sure reachability question for MDPs to solving a two player
Büchi game (we refer to [14] for the definitions and notations of Büchi games).
The Büchi game is played between Eve and Adam as follows. From a state p:

1. Eve chooses an action a and a transition (p, q) ∈ ∆a;
2. Adam can either choose to

agree and the game continues from q, or
interrupt and choose another transition (p, q′) ∈ ∆a, the game continues

from q′.

Controlling a random population 127

The Büchi objective is satisfied (meaning Eve wins) if either the target state t
is reached or Adam interrupts infinitely many times.

Lemma 3. There exists a strategy ensuring almost surely to reach t from s if
and only if Eve has a winning strategy from s in the above Büchi game.

We now explain how this reduction can be extended to the stochastic control
problem. Let us consider an MDP M and a target t ∈ Q. We now define an
infinite Büchi game GM. The set of vertices is the set of configurations NQ. For
a flow f , we write supp(f) =

{
(p, q) ∈ Q2 : f(p, q) > 0

}
. The game is played as

follows from a configuration c:

1. Eve chooses an action a and a flow f such that pre(f) = c and supp(f) ⊆ ∆a.

2. Adam can either choose to

agree and the game continues from c′ = post(f)

interrupt and choose a flow f ′ such that pre(f ′) = c and supp(f ′) ⊆ ∆a,
and the game continues from c′′ = post(f ′).

Note that Eve choosing a flow f is equivalent to choosing for each token a
transition (p, q) ∈ ∆a, inducing the configuration c′, and simiarly for Adam
should he decide to interrupt.

Eve wins if either all tokens are in the target state, or if Adam interrupts
infinitely many times.

Note that although the game is infinite, it is actually a disjoint union of
finite games. Indeed, along a play the number of tokens is fixed, so each play is
included in Qn for some n ∈ N.

Lemma 4. Let c be a configuration with n tokens in total, the following are
equivalent:

– There exists a strategy almost surely reaching tn from c,

– Eve has a winning strategy in the Büchi game GM starting from c.

Lemma 4 follows from applying Lemma 3 on the product MDP Mn.

We also consider the game G(i)
M for i ∈ N, which is defined just as GM except

for the winning objective: Eve wins in G(i)
M if either all tokens are in the target

state, or if Adam interrupts more than i times. It is clear that if Eve has a

winning strategy in GM then she has a winning strategy in G(i)
M . Conversely, the

following result states that G(i)
M is equivalent to GM for some i.

Lemma 5. There exists i ∈ N such that from any configuration c ∈ NQ, Eve

has a winning strategy in GM if and only if Eve has a winning strategy in G(i)
M .

128 T. Colcombet et al.

Proof: Let X(i) ⊆ NQ be the winning region for Eve in G(i)
M . We first argue that

X =
⋂

iX
(i) is the winning region in GM. It is clear that X is contained in the

winning region: if Eve has a strategy to ensure that either all tokens are in the
target state, or that Adam interrupts infinitely many times, then it particular
this is true for Adam interrupting more than i times for any i. The converse
inclusion holds because GM is a disjoint union of finite Büchi games. Indeed, in
a finite Büchi game, since Adam can restrict himself to playing a memoryless
winning strategy, if Eve can ensure that he interrupts a certain number of times
(larger than the size of the game), then by a simple pumping argument this
implies that Adam will interrupt infinitely many times.

To conclude, we note that each X(i) is downward closed: indeed, a winning
strategy from a configuration c can be used from a configuration c′ where there
are fewer tokens in each state. It follows that (X(i))i≥0 is a decreasing sequence
of downward closed sets in NQ, hence it stabilises thanks to Lemma 1, i.e. there
exists i0 ∈ N such that X(i0) =

⋂
iX

(i), which concludes. �

Note that Lemma 4 and Lemma 5 substantiate the claims made in Section 2:
pure positional strategies are enough and the answer to the stochastic control
problem does not depend upon the exact probabilities in the MDP. Indeed, the
construction of the Büchi games do not depend on them, and the answer to the
former is equivalent to determining whether Eve has a winning strategy in each
of them.

We are now fully equipped to show that a solution to the sequential flow
problem yields the decidability of the stochastic control problem.

Let F be the set of configurations for which all tokens are in state t. we let

X(i) ⊆ NQ denote the winning region for Eve in the game G(i)
M . Note first that

X(0) = Pre∗(Flows0, F) where

Flows0 = {f ∈ NQ×Q : ∃a ∈ A, supp(f) ⊆ ∆a}.

Indeed, in the game G(0)
M Adam cannot interrupt as this would make him lose

immediately. Hence, the winning region for Eve in G(0)
M is Pre∗(Flows0, F).

We generalise this by setting Flowsi for all i > 0 to be the set of flows f ∈
NQ×Q such that for some action a ∈ A,

– supp(f) ⊆ ∆a, and
– for f ′ with pre(f ′) = pre(f) and supp(f ′) ⊆ ∆a, we have post(f ′) ∈ X(i−1).

Equivalently, this is the set of flows for which, when played in the game GM
by Eve, Adam cannot use an interrupt move and force the configuration outside
of X(i−1).

We now claim that
X(i) = Pre∗(Flowsi, F)

for all i ≥ 0.
We note that this means that for each i computing X(i) reduces to solving one

instance of the sequential flow problem. This induces an algorithm for solving

Controlling a random population 129

the stochastic control problem: compute the sequence (X(i))i≥0 until it stabilises,
which is ensured by Lemma 5 and yields the winning region of GM. The answer
to the stochastic control problem is then whether the initial configuration where
all tokens are in s belongs to the winning region of GM.

Let us prove the claim by induction on i.

Let c be a configuration in Pre∗(Flows i, F). This means that there exists
a flow word f = f1 · · · f` such that fk ∈ Flowsi for all k, and c f c′ ∈ F .
Expanding the definition, there exist c0 = c, . . . , c` = c′ such that ck−1→ fk ck
for all k.

Let us now describe a strategy for Eve in G(i)
M starting from c. As long as

Adam agrees, Eve successively chooses the sequence of flows f1, f2, . . . and the
corresponding configurations c1, c2, If Adam never interrupts, then the game
reaches the configuration c′ ∈ F , and Eve wins. Otherwise, as soon as Adam
interrupts, by definition of Flowsi, we reach a configuration d ∈ X(i−1). By
induction hypothesis, Eve has a strategy which ensures from d to either reach F
or that Adam interrupts at least i − 1 times. In the latter case, adding the
interrupt move leading to d yields i interrupts, so this is a winning strategy for

Eve in G(i)
M , witnessing that c ∈ X(i).

Conversely, assume that there is a winning strategy σ of Eve in G(i)
M from

a configuration c. Consider a play consistent with σ, it either reaches F or
Adam interrupts. Let us denote by f = f1, f2, . . . , f` the sequence of flows until
then. We argue that fk ∈ Flows i for k ∈ {1, . . . , `}. Let f = fk for some k, by
definition of the game supp(f) ⊆ ∆a for some action a. Let f ′ such that pre(f ′) =
pre(f) and supp(f ′) ⊆ ∆a. In the game GM after Eve played fk, Adam has
the possibility to interrupt and choose f ′. From this configuration onward the

strategy σ is winning in G(i−1)
M , implying that f ∈ Flowsi. Thus f = f1f2 . . . f`

is a witness that c ∈ X(i).

5 Computability of the sequential flow problem

Let Q be a finite set of states, Flows ⊆ NQ×Q a downward closed set of flows and
F ⊆ NQ a downward closed set of configurations, the sequential flow problem is
to compute the downward closed set Pre∗ defined by

Pre∗(Flows , F) = {c ∈ NQ | c f c′ ∈ F, f ∈ Flows∗} ,

i.e. the configurations from which one may reach F using only flows from Flows .

The following classical result of [22] allows us to further reduce our problem.

Lemma 6. The task of computing a downward closed set can be reduced to the
task of deciding whether a given ideal is included in a downward closed set.

Thanks to Lemma 6, it is sufficient for solving the sequential flow problem
to establish the following result.

130 T. Colcombet et al.

Lemma 7. Let I be an ideal of the form a↓ for a ∈ (N ∪ {ω})Q, and Flows ⊆
NQ×Q be a downward closed set of flows. It is decidable whether F can be reached
from all configurations of I using only flows from Flows.

We call a vector a ∈ (N ∪ {ω})Q×Q a capacity. A capacity word is a finite
sequence of capacities. For two capacity words w,w′ of the same length, we
write w ≤ w′ to mean that wi ≤ w′i for each i. Since flows are particular cases
of capacities, we can compare flows with capacities in the same way.

Before proving Lemma 7 let us give an example and some notations.
Given a state q, we write q ∈ NQ for the vector which has value 1 on the q

component and 0 elsewhere. More generally we let αq for α ∈ N ∪ {ω} denote
the vector with value α on the q component and 0 elsewhere. We use similar
notations for flows. For instance, ωq1 + q2 has value ω in the q1 component, 1 in
the q2 component, and 0 elsewhere.

In the instance of the sequential flow problem represented in Figure 4, we ask
the following question: can F be reached from any configuration of I = (ωq2)↓?
The answer is yes: the capacity word w = (acn−1b)n is such that nq2 f nq4 ∈ F
for a flow word f 6 w, the begining of which is described in Figure 5.

Fig. 4. An instance of the sequential flow problem. We let Flows = a ↓ ∪ b ↓ ∪ c ↓
where a = ω(q2, q2) + (q2, q3) + ω(q4, q4), b = ω(q1, q2) + (q3, q4) + ω(q4, q4), and c =
ω(q1, q1) + (q2, q1) + ω(q2, q2) + ω(q3, q3) + ω(q4, q4). Set also F = (ωq4)↓.

Fig. 5. A flow word f = f1f2 . . . fn+1 6 acn−1b such that nq2 goes to (n − 1)q1 + q4
using f . This construction can be extended to f 6 w such that nq2 goes to nq4 using f .

We write a[ω ← n] for the configuration obtained from a by replacing all ωs
by n.

Controlling a random population 131

The key idea for solving the sequential flow problem is to rephrase it using
regular cost functions (a set of tools for solving boundedness questions). Indeed,
whether F can be reached from all configurations of I = a ↓ using only flows
from Flows can be equivalently phrased as a boundedness question, as follows:

does there exist a bound on the values of n ∈ N such that a[ω ← n] f c
for some c ∈ F and f ∈ Flows∗?

We show that this boundedness question can be formulated as a boundedness
question for a formula of cost monadic logic, a formalism that we introduce now.
We assume that the reader is familiar with monadic second order logic (MSO)
over finite words, and refer to [20] for the definitions. The syntax of cost monadic
logic (cost MSO for short) extends MSO with the construct |X| ≤ N , where X is
a second order variable and N is a bounding variable. The semantics is defined
as usual: w, n |= ϕ for a word w ∈ A∗, with n ∈ N specifying the bound N .
We assume that there is at most one bounding variable, and that the construct
|X| ≤ N appears positively, i.e. under an even number of negations. This ensures
that the larger N , the more true the formula is: if w, n |= ϕ, then w, n′ |= ϕ
for all n′ ≥ n. The semantics of a formula ϕ of cost MSO induces a function
A∗ → N ∪ {∞} defined by ϕ(w) = inf {n ∈ N | w, n |= ϕ}.

The boundedness problem for cost monadic logic is the following problem:
given a cost MSO formula ϕ over A∗, is it true that the function A∗ → N∪{∞}
is bounded, i.e.:

∃n ∈ N, ∀w ∈ A∗, w, n |= ϕ?

The decidability of the boundedness problem is a central result in the theory of
regular cost functions ([5]). Since in the theory of regular cost functions, when
considering functions we are only interested in whether they are bounded or
not, we will consider functions “up to boundedness properties”. Concretely, this
means that a cost function is an equivalence class of functions A∗ → N ∪ {∞},
with the equivalence being f ≈ g if there exists α : N→ N such that f(w) is finite
if and only if g(w) is finite, and in this case, f(w) 6 α(g(w)) and g(w) 6 α(f(w)).
This is equivalent to stating that for all X ⊆ A∗, if f is bounded over X if and
only if g is bounded over X.

Let us now establish Lemma 7.

Proof: Let T = {q ∈ Q | a(q) = ω}. Note that for n sufficiently large, we have
a[ω ← n]↓= I ∩ {0, 1, . . . , n}. We let C ⊆ (N ∪ {ω})Q×Q be the decomposition
of Flows into ideals, that is, C is the minimal finite set such that

Flows =
⋃
b∈C

b↓ .

We let k denote the largest finite value that appears in the definition of C , that
is, k = max{b(q, q′) : b ∈ C , q, q′ ∈ Q, b(q, q′) 6= ω}.

Let us define the function

Φ : C ∗ −→ N ∪ {ω}
w 7−→ sup{n ∈ N : ∃f 6 w, a[ω ← n] f F}.

132 T. Colcombet et al.

By definition Φ is unbounded if and only if F can be reached from all configura-
tions of I. Since boundedness of cost MSO is decidable, it suffices to construct
a formula in cost monadic logic for Φ to obtain the decidability of our problem.
Our approach will be to additively decompose the capacity word w into a finitary
part w(fin) (which is handled using a regular language), and several unbounded
parts w(s) for each s ∈ T . The unbounded parts require a more careful analysis
which notably goes through the use of the max-flow min-cut theorem.

Note that a[ω ← n] decomposes as the sum of its finite part afin = a[ω ← 0]
and

∑
s∈T ns. Since flows are additive, it holds that f 6 w = w1 . . . wl is a

flow from cn to F if and only if the capacity word w may be decomposed into

(w(s))s∈T = (w
(s)
1 . . . w

(s)
l)s∈T and w(fin) = w

(fin)
1 . . . w

(fin)
l such that

– all the numbers appearing in the w
(s)
i capacities are bounded by k,

– for all i ∈ {1, . . . , l}, wi =
∑

s∈T∪{fin} w
(s)
i ,

– for all s ∈ T , ns f F for some flow word f 6 w(s),
– and afin f F for some flow word f 6 w(fin).

In order to encode such capacity words in cost MSO we use monadic variables

W
(s)
q,q′,p where q, q′ ∈ Q, p ∈ {0, . . . , k, ω} and s ∈ T ∪ {fin}. They are meant to

satisfy that i ∈W (s)
q,q′,p,s if and only if w

(s)
i (q, q′) = p. We use bold W to denote

the tuple (W
(s)
q,q′,p)q,q′,p,s, and W (s) for (W

(s)
q,q′,p)q,q′,p when s ∈ T ∪ {ω} is fixed.

The MSO formula IsDecomp(W , w) states that a decomposition (w(s))s∈T∪{ω}
is semantically valid and sums to w:

∀i,
[∧

q,q′,s

∨
p∈{0,...,k,ω}

(
i ∈W (s)

q,q′,p ∧
∧

p′ 6=p i /∈W
(s)
q,q′,p

)]
∧

[(∧
q,q′p wi(q, q

′) = p
)

=⇒
∨

(ps)s∈T∪{fin}∑
ps=p

∧
s∈T∪{fin} i ∈W

(s)
q,q′,ps

]

For s ∈ T , we now consider the function

Ψ (s) :
(
{0, 1, . . . , k, ω}Q×Q

)∗ −→ N ∪ {ω}

w(s) 7−→ sup{n ∈ N | ∃f 6 w(s), ns
f
F}.

We also define Ψ (fin) ⊆ ({0, . . . , k, ω})Q×Q to be the language of capacity words
w(fin) such that there exists a flow f 6 w(fin) with afin f F . Note that
Ψ (fin) is a regular language since it is recognized by a finite automaton over
{0, 1, . . . , k|Q|}Q that may update the current bounded configuration only with
flows smaller than the current letter of w(fin).

We have

Φ(w) = sup
n

[
∃W , IsDecomp(W , w) ∧

(∧
s∈T

Ψ (s)(W (s)) ≥ n
)
∧W (fin) ∈ Ψ (fin)

]
.

Hence, it is sufficient to prove that for each s ∈ T , Ψ (s) is definable in cost MSO.

Controlling a random population 133

Let us fix s and a capacity word w ∈ {0, . . . , k, ω}Q×Q of length |w| = `.
Consider the finite graph G with vertex set Q×{0, 1, . . . , `} and for all i ≥ 1, an
edge from (q, i− 1) to (q′, i) labelled by wi(q, q

′). Then Ψ (s)(w) is the maximal
flow from (s, 0) to (t, `) in G. We recall that a cut in a graph with distinguished
source s and target t is a set of edges such that removing them disconnects s and
t. The cost of a cut is the sum of the weight of its edges. The max-flow min-cut
theorem states that the maximal flow in a graph is exactly the minimal cost of
a cut ([11]).

We now define a cost MSO formula Ψ̃ (s) which is equivalent (in terms of cost
functions) to the minimal cost of cut in the previous graph G and thus to Ψ (s). In
the following formula, X = (Xq,q′)q,q′∈Q represents a cut in the graph: i ∈ Xq,q′

means that edge ((q, i−1), (q′, i)) belongs to the cut. Likewise, P = (Pq,q′)q,q′∈Q
represents paths in the graph. Let Ψ̃ (s)(w) be defined by

inf
n

{
∃X
[∧
q,q′

n ≥ |Xq,q′ |
]
∧
(
∀i, i ∈ Xq,q′ =⇒ wi(q, q

′) < ω
)
∧ Discs,t(X, w)

}
,

where Discs,t(X, w) expresses that X disconnects (s, 0) and (t, `) in G. For
instance Discs,t(X, w) is defined by

∀P ,

[(
∀i,
∧
q,q′

i ∈ Pq,q′ =⇒ wi(q, q
′) > 0

)
∧
(∨

q′

0 ∈ Ps,q′

)
∧
(∨

q

` ∈ Pq,t

)
∧

∀i ≥ 1,
∧
q,q′

i ∈ Pq,q′ =⇒
(∨

q′′

i− 1 ∈ Pq′′,q

)]
=⇒ ∃i,

∨
q,q′

(
i ∈ Xq,q′ ∧ i ∈ Pq,q′

)
.

Now Ψ̃ (s)(w) does not exactly define the minimal total weight Φ(s)(w) of a cut,
but rather the minimal value over all cuts of the minimum over (q, q′) ∈ Q2 of
how many edges are of the form ((q, i − 1), (q′, i)). This is good enough for our
purposes since these two values are related by

Ψ̃ (s)(w) 6 Φ(s)(w) 6 k|Q|2Ψ̃ (s)(w),

implying that the functions Ψ̃ (s) and Φ(s) define the same cost function. In par-
ticular, Φ(s) is definable in cost MSO. �

6 Conclusions

We showed the decidability of the stochastic control problem. Our approach uses
well quasi orders and the sequential flow problem, which is then solved using the
theory of regular cost functions.

Together with the original result of [3,4] in the adversarial setting, our result
contributes to the theoretical foundations of parameterised control. We return to
the first application of this model, control of biological systems. As we discussed

134 T. Colcombet et al.

the stochastic setting is perhaps more satisfactory than the adversarial one,
although as we saw very complicated behaviours emerge in the stochastic setting
involving single agents, which are arguably not pertinent for modelling biological
systems.

We thus pose two open questions. The first is to settle the complexity status
of the stochastic control problem. Very recently [18] proved the EXPTIME-
hardness of the problem, which is interesting because the underlying phenomena
involved in this hardness result are specific to the stochastic setting (and do not
apply to the adversarial setting). Our algorithm does not even yield elementary
upper bounds, leaving a very large complexity gap. The second question is to-
wards more accurately modelling biological systems: can we refine the stochastic
control problem by taking into account the synchronising time of the controller,
and restrict it to reasonable bounds?

Acknowledgements

We thank Nathalie Bertrand and Blaise Genest for introducing us to this fasci-
nating problem, and the preliminary discussions at the Simons Institute for the
Theory of Computing in Fall 2015.

References

1. Abdulla, P.A., Henda, N.B., Mayr, R.: Decisive Markov chains. Logical Methods
in Computer Science 3(4) (2007). https://doi.org/10.2168/LMCS-3(4:7)2007

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distributed Computing 18(4),
235–253 (2006). https://doi.org/10.1007/s00446-005-0138-3

3. Bertrand, N., Dewaskar, M., Genest, B., Gimbert, H.: Con-
trolling a population. In: CONCUR. pp. 12:1–12:16 (2017).
https://doi.org/10.4230/LIPIcs.CONCUR.2017.12

4. Bertrand, N., Dewaskar, M., Genest, B., Gimbert, H., Godbole, A.A.: Controlling
a population. Logical Methods in Computer Science 15(3) (2019), https://lmcs.
episciences.org/5647

5. Colcombet, T.: Regular cost functions, part I: logic and algebra over words. Log-
ical Methods in Computer Science 9(3) (2013). https://doi.org/10.2168/LMCS-
9(3:3)2013

6. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with
n distinct prime factors. American Journal of Mathematics 35(4), 413–422 (1913),
http://www.jstor.org/stable/2370405

7. Esparza, J.: Parameterized verification of crowds of anonymous processes.
In: Dependable Software Systems Engineering, pp. 59–71. IOS Press (2016).
https://doi.org/10.3233/978-1-61499-627-9-59

8. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In:
LICS. pp. 352–359 (1999). https://doi.org/10.1109/LICS.1999.782630

9. Fijalkow, N.: Undecidability results for probabilistic automata. SIGLOG News
4(4), 10–17 (2017), https://dl.acm.org/citation.cfm?id=3157833

https://lmcs.episciences.org/5647
https://lmcs.episciences.org/5647
http://www.jstor.org/stable/2370405
https://dl.acm.org/citation.cfm?id=3157833

Controlling a random population 135

10. Fijalkow, N., Gimbert, H., Horn, F., Oualhadj, Y.: Two recursively insep-
arable problems for probabilistic automata. In: MFCS. pp. 267–278 (2014).
https://doi.org/10.1007/978-3-662-44522-8 23

11. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian Journal
of Mathematics 8, 399–404 (1956). https://doi.org/10.4153/CJM-1956-045-5

12. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. Journal
of the ACM 39(3), 675–735 (1992)

13. Gimbert, H., Oualhadj, Y.: Probabilistic automata on finite words: De-
cidable and undecidable problems. In: ICALP. pp. 527–538 (2010).
https://doi.org/10.1007/978-3-642-14162-1 44

14. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games,
LNCS, vol. 2500. Springer (2002)

15. Higman, G.: Ordering by divisibility in abstract algebras. Proceed-
ings of the London Mathematical Society s3-2(1), 326–336 (1952).
https://doi.org/10.1112/plms/s3-2.1.326

16. Kruskal, J.B.: The theory of well-quasi-ordering: A frequently discovered concept.
J. Comb. Theory, Ser. A 13(3), 297–305 (1972). https://doi.org/10.1016/0097-
3165(72)90063-5

17. Kuc̆era, A.: Turn-Based Stochastic Games. Lectures in Game Theory for Computer
Scientists, Cambridge University Press (2011)

18. Mascle, C., Shirmohammadi, M., Totzke, P.: Controlling a random population is
EXPTIME-hard. CoRR (2019), http://arxiv.org/abs/1909.06420

19. Schmitz, S.: Algorithmic Complexity of Well-Quasi-Orders. Habilitation à diriger
des recherches, École normale supérieure Paris-Saclay (Nov 2017), https://tel.
archives-ouvertes.fr/tel-01663266

20. Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Language
Theory, vol. III, pp. 389–455. Springer (1997)

21. Uhlendorf, J., Miermont, A., Delaveau, T., Charvin, G., Fages, F., Bottani, S.,
Hersen, P., Batt, G.: In silico control of biomolecular processes. Computational
Methods in Synthetic Biology 13, 277–285 (2015)

22. Valk, R., Jantzen, M.: The residue of vector sets with applications to de-
cidability problems in Petri nets. Acta Informatica 21, 643–674 (03 1985).
https://doi.org/10.1007/BF00289715

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://arxiv.org/abs/1909.06420
https://tel.archives-ouvertes.fr/tel-01663266
https://tel.archives-ouvertes.fr/tel-01663266
http://creativecommons.org/licenses/by/4.0/

	Controlling a random population
	1 Introduction
	2 The stochastic control problem
	3 The sequential ow problem
	4 Reduction of the stochastic control problem to the sequential flow problem
	5 Computability of the sequential ow problem
	6 Conclusions
	Acknowledgements
	References

