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Abstract. We provide graded extensions of algebraic theories and Law-
vere theories that correspond to graded monads. We prove that graded
algebraic theories, graded Lawvere theories, and finitary graded monads
are equivalent via equivalence of categories, which extends the equiv-
alence for monads. We also give sums and tensor products of graded
algebraic theories to combine computational effects as an example of
importing techniques based on algebraic theories to graded monads.

1 Introduction

In the field of denotational semantics of programming languages, monads have
been used to express computational effects since Moggi’s seminal work [18]. They
have many applications from both theoretical and practical points of view.

Monads correspond to algebraic theories [5]. This correspondence gives nat-
ural presentations of many kinds of computational effects by operations and
equations [21], which is the basis of algebraic effect [20]. The algebraic perspec-
tive of monads also provides ways of combining [9], reasoning about [22], and
handling computational effects [23].

Graded monads [27] are a refinement of monads and defined as a monad-
like structure indexed by a monoidal category (or a preordered monoid). The
unit and multiplication of graded monads are required to respect the monoidal
structure. This structure enables graded monads to express some kind of “ab-
straction” of effectful computations. For example, graded monads are used to
give denotational semantics of effect systems [12], which are type systems de-
signed to estimate scopes of computational effects caused by programs.

This paper provides a graded
extension of algebraic theories J € Znm  ti € T (X) for each i € {1,...,n}
that corresponds to monads [t tn) € g (X)
graded by small strict monoidal
categories. This generalizes N-
graded theories in [17]. The main ideas of this extension are the following. First,
we assign to each operation a grade, i.e., an object in a monoidal category that
represents effects. Second, our extension provides a mechanism (Fig 1) to keep
track of effects in the same way as graded monads. That is, if an operation f
with grade m is applied to terms with grade m/, then the grade of the whole
term is the product m ® m’.
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Fig. 1. A rule of term formation.
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For example, graded algebraic theories enable us to estimate (an overapprox-
imation of) the set of memory locations computations may access. The side-
effects theory [21] is given by operations lookup; and update, , for each location
l € L and value v € V together with several equations, and each term represents
a computation with side-effects. Since lookup; and update; , only read from or
write to the location [, we assign {I} € 2 as the grade of the operations in
the graded version of the side-effects theory where 27 is the join-semilattice of
subsets of locations L. The grade of a term is (an overapproximation of) the set
of memory locations the computations may access thanks to the rule in Fig 1.

We also provide graded Lawvere theories that correspond to graded algebraic
theories. The intuition of a Lawvere theory is a category whose arrows are terms
of an algebraic theory. We use this intuition to define graded Lawvere theories.
In graded algebraic theories, each term has a grade, and substitution of terms
must respect the monoidal structure of grades. To characterize this structure of
“graded” terms, we consider Lawvere theories enriched in a presheaf category.

Like algebraic theories brought many concepts and techniques to the se-
mantics of computational effects, we expect that the proposed graded algebraic
theories will do the same for effect systems. We look into one example out of
such possibilities: combining graded algebraic theories.

The main contributions of this paper are summarized as follows.

— We generalize (N-)graded algebraic theories of [17] to M-graded algebraic
theories and also provide M-graded Lawvere theories where M is a small
strict monoidal category. We show that there exist translations between these
notions and finitary graded monads, which yield equivalences of categories.

— We extend sums and tensor products of algebraic theories [9] to graded
algebraic theories. We define sums in the category of M-graded algebraic
theories, and tensor products as an M x M’-graded algebraic theory made
from an M-graded and an M’-graded algebraic theory. We also show a few
properties and examples of these constructions.

2 Preliminaries

2.1 Enriched Category Theory

We review enriched category theory and introduce notations. See [13] for details.
Let Vo = (V,®,I) be a (not necessarily symmetric) monoidal category.
Vo is right closed if (=) ® X : Vy — Vj has a right adjoint [X,—] for each
X € obVy. Similarly, Vg is left closed if X ® (—) has a right adjoint [X, —] for
each X € obVy. Vy is biclosed if V is left and right closed.
Let V' denote the monoidal category (Vo,®", I) where @' is defined by
X ®'Y =Y ® X. Note that V' is right closed if and only if Vy is left closed.
We define V-category, Vo-functor and Vg-natural transformation as in [13].
If V§ is right closed, then V| itself enriches to a Vy-category V with hom-
object given by V(X,Y) := [X,Y]. We use the subscript (—)¢ to distinguish the
enriched category V from its underlying category V.
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Assume that Vj is biclosed and let A be a Vy-category. The opposite cat-
egory A°P is the Vi'-category defined by A°P(X,Y) = A(Y,X). For any X €
obA, A(X,-) : A — Vg is a Vy-functor where A(X,—-)yz : A(Y,Z) —
[A(X,Y),A(X,Z)] is defined by transposing the composition law & of A. A
Vo'-functor A(—, X) is defined by A°P(X,—): A% — V"

Let A be a Vy-category. For each X € Vy and C € A, a tensor X ® C is
an object in A together with a counit morphism v : X — A(C, X ® C) such
that a Vg-natural transformation A(X ® C,—) — [X,A(C,—)] obtained by
transposing (%) o (A(X ® C, B) ® v) is isomorphic where 3 is the composition
in the Vg-category A. A cotensor X rh C is a tensor in A°P. For example, if
Vo = Set, then tensors X ® C are copowers X - C, and cotensors X h C are
powers CX.

A Vy-functor F': A — B is said to preserve a tensor X ® C'if Fo xgc o v :
X - B(FC,F(X ® ()) is again a counit morphism. F preserves cotensors if
F°P preserves tensors.

Let @ be a collection of objects in Vy. A Vy-functor F' : A — B is said to
preserve @-(co)tensors if F' preserves (co)tensors of the form X ® C (X i C)
for each X € ¢ and C € obA.

2.2 Graded Monads

We review the notion of graded monad in [12,7], and then define the category
GMndy of finitary M-graded monads. Throughout this section, we fix a small
strict monoidal category M = (M, ®, I).

Definition 1 (graded monads). An M-graded monad on C is a lax monoidal
functor M — [C, C] where [C, C] is a monoidal category with composition as
multiplication. That is, an M-graded monad is a tuple (x,7,u) of a functor
* : M x C — C and natural transformations nx : X — I * X and fm, m,,x :
my * (ma x X) = (m1 ® ma) * X such that the following diagrams commute.

mx X —= Ix(mxX) myx(mox(msxX)) 5 mys((ma®@ms)*X)

m*ﬂl \ \L,U, nl Iz

mx (I xX) —— mxX (m1@ma)*(ms*X) —— (Mm1@ma@mg)+X

A morphism of M-graded monad is a monoidal natural transformation « :
(x,m, 1) = (¥',n', '), i.e. a natural transformation « : * — %’ that is compatible
with 7 and pu.

An intuition of graded monads is a refinement of monads: m * X is a com-
putation whose scope of effect is indicated by m and whose result is in X. The
monoidal category M defines the granularity of the refinement, and a 1-graded
monad is just an ordinary monad. Note that we do not assume that M is sym-
metric because some of graded monads in [12] require M to be nonsymmetric.
We also deal with such a nonsymmetric case in Example 25.

A finitary functor is a functor that preserves filtered colimits. In this paper,
we focus on finitary graded monads on Set.
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Definition 2. A finitary M-graded monad on Set is a lax monoidal functor
M — [Set,Set]; where [Set,Set]; denotes the full subcategory of [Set, Set]
on finitary functors. Let GMndy; denote the category of finitary M-graded
monads and monoidal natural transformations between them.

A morphism in GMndy, is determined by the restriction to Xy C Set where
N is the full subcategory of Set on natural numbers.

Lemma 3. Let T = (x,n, 1) and T = (¥',n/, /') be finitary M-graded monads.
There exists one-to-one correspondence between the following.

1. Morphisms o : T — T'.

2. Natural transformations B :x o (M x i) = «’ o (M X i) (where i : Xg — Set
is the inclusion functor) such that the following diagrams commute for each
n,n’ € Vo, mi,me € M and f :n — moxn’.

8 /
mpxn ——— > M1 *x N
" myx f
n—— Ixn , dm ,
mixf my ¥ (mg xn/)
N Lﬁ Imix's
" T4 my * (ma *xn') my * (mg %' n')
*
n n I

(m1 ® ma) xn' LN (m1 @ mg) «' n'

Proof. By the equivalence [Set, Set]; ~ [N, Set| induced by restriction and the
left Kan extension along the inclusion 7 : Xy — Set. ]

2.3 Day Convolution

We describe a monoidal biclosed structure on the (covariant) presheaf category
[M, Set]p where M = (M, ®, I) is a small monoidal category [3]. Here, we use the
subscript (—)o to indicate that [M, Set]y is an ordinary (not enriched) category
since we also use the enriched version [M, Set]| later.

The external tensor product F X G : M x M — Set is defined by (F X
G)(my,m2) = Fmy x Gmy for any F,G : M — Set.

Definition 4. Let F,G : M — Set be functors. The Day tensor product F &
G : M — Set is the left Kan extension Lang(F X G) of the external tensor
product FX G : M x M — Set along the tensor product ® : M x M — M.

Note that a natural transformation 6 : F & G — H is equivalent to a natural
transformation 6,,, m, : Fmi X Gmg — H(m; ® mg) by the universal property.
The Day convolution induces a monoidal biclosed structure in [M, Set]y [3].

Proposition 5. The Day tensor product makes ([M, Set]o, ®,y(I)) a monoidal
biclosed category where y : M°P — [M, Set|q is the Yoneda embedding y(m) =
M(m, —). O

The left and the right closed structure are given by [F, G] m = [M, Set]o(F,
G(m®-)) and [F, G]m = [M, Set]o(F, G(—®@m)) for each m € M, respectively.

Note that since we do not assume M to be symmetric, neither is [M, Set].
Note also that the twisting and the above construction commute: there is an
isomorphism [M, Set]," 2 [M*, Set], of monoidal categories.
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2.4 Categories Enriched in a Presheaf Category

We rephrase the definitions of [M, Set]p-enriched category, functor and natural
transformation in elementary terms. An [M, Set]o-category is, so to say, an “M-
graded” category: each morphism has a grade m € obM and the grade of the
composite of two morphisms with grades m and m’ is the product m ® m’ of
the grades of each morphism. Likewise, [M, Set]o-functors and [M, Set]o-natural
transformations can be also understood as an “M-graded” version of ordinary
functors and natural transformations. Specifically, the following lemma holds [2].

Lemma 6. There is a one-to-one correspondence between (1) an [M, Set]y-
category C and (2) the following data satisfying the following conditions.

— A class of objects obC.

— For each X,Y € obC, a hom objects C(X,Y) € [M, Set]y.

— For each X € obC, an element 1x € C(X, X)I.

For each X,Y,Z € obC, a family of morphisms (om,m, : C(Y,Z)m; x
C(X,Y)ms — C(X,Z2)(m1 ® mg))m1 maens Which is natural in my and
my. The subscripts mi and msy are oﬁeﬁ omitted.

These data must satisfy the identity law 1y o f = f = f o 1x for each
f € C(X,Y)m and the associativity (h o g) o f = h o (g o f) for each
feC(X,Y)my, g€ C(Y,Z)mg and h € C(Z, W)ms.

Proof. The identity 1x : y(I) — C(X, X) in C corresponds to 1x € C(X, X)I
by the Yoneda lemma, and the composition 5 : C(Y,Z) ® C(X,Y) — C(X, Z)
in C corresponds to the natural transformation o, , : C(Y, Z)mi xC(X,Y)my
— C(X,Z)(m1 ® mg) by the universal property of the Day convolution. The
rest of the proof is easy. O

An [M, Set]o-functor F : C — D consists of a mapping X — FX and
a natural transformation Fxy : C(X,Y) — D(FX,FY) (for each X,Y) that
preserves identities and compositions of morphisms. An [M, Set|o-natural trans-
formation @ : F — G is a family of elements (ay € D(FX, GX)I)XEOb(C) that
satisfies ay o F'f = Gf o ax for each f € C(X,Y)m. Vertical and horizontal
compositions of [M, Set|o-natural transformations are defined as expected.

We introduce a useful construction of [M, Set],'-categories. Given an M-
graded monad (in other words, a lax left M-action) on C, we can define an
[M, Set]o"-enriched category as follows.

Definition 7. Let T = (%,7, ) be an M-graded monad on C. An [M, Set]"-
category Cr is defined by obCy = obC and a;(X Y)m :=C(X,m=*Y). The
1dent1ty morphisms are the unit morphisms nx € CT(X X)I, and the composite
of fe CT(Y Z)m and g € CT(X Y)m'is po (mx*g)o f.

The definition of CT is similar to the definition of the Kleisli categories for
ordinary monads. Actually, 6; can be constructed via the Kleisli category Cr
for the graded monad T presented in [7] (although Cr itself is not enriched).
This can be observed by Cr((I,X),(m,Y)) & E;(X, Y)m
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3 Graded Algebraic Theories

We explain a framework of universal algebra for graded monads, which is a
natural extension of [27,17]. The key idea of this framework is that each term
is associated with not only an arity but also a “grade”, which is represented by
an object in a monoidal category M. We also add coercion construct for terms
that changes the grade of terms along a morphism of the monoidal category M.
Then, a mapping that takes m € M and a set of variables X and returns the set
of terms with grade m (modulo the equational axioms) yields a graded monad.

We fix a small strict monoidal category M = (M, ®,I) throughout this
section. We sometimes identify n € N with {1,...,n}, or {x1,...,2,} if it is
used as a set of variables.

3.1 Equational Logic

A signature is a family of sets of symbols X' = (X, 1 )neN,mem. An element
f € Xy m is called an operation with arity n and grade m. We define a sufficient
structure to interpret operations in a category C as follows.

Definition 8. M-model condition is defined by the following conditions on a
tuple (C, (®,7%, u®)).

— C is a category with finite power.

— (®,n®, u®) is a strong Mt-action (i.e. an M*-graded monad whose unit and
multiplication are invertible).

— For each m € M, m ® (—) preserves finite powers: m ® ¢” = (m ® c)".

Example 9. If A is a category with finite powers, then the functor category
[M, A] has strong M‘-action defined by m ® F = F(m ® (—)) and satisfies
M-model condition. Especially, [M, Set], satisfies M-model condition.

A model A= (A,|-]*) of ¥ in a category C satisfying M-model condition
consists of an object A € C and an interpretation |f|4 : A" — m ® A for each
f € Xy m. A homomorphism o : A — B between two models A, B is a morphism
a: A — Bin C such that (m ® ) o [f|* = |f|B o a™ for each f € 5, .

Definition 10. Let X be a set of variables. The set of (M-graded) X-terms
T2 (X) for each m € M is defined inductively as follows.
reX teT(X) wim—=m  fE€Xum Vie{l,...,n}, t; € TZ (X)
z e Tr (X) cw(t) € T2 (X) Flty e ostn) € TZ g0 (X)

That is, we build X-terms from variables by applying operations in X and coer-
cions ¢,, while keeping track of the grade of terms. When applying operations,
we sometimes write f(Ai € n.t;) or f(Ai.t;) instead of f(t1,...,tn).

Definition 11. Let A be a model of a signature Y. For each m € M and
s € T (n), the interpretation |s|* : A" — m ® A is defined as follows.
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— For any variable 2, |2;]4 = n® o m; where 7; : A™ — A is the i-th projection.

— For each w:m’ — m and s € T, ({x1,...,2,}), |cw(s)|[* = (w ® A) o |s]4.

—If f € Ypo and t; € T, ({z1,...,2,}) for each i € {1,...,k}, then
|f(t1,...,t)|? is defined by the following composite.

An (Ita],ee[tel) (m”@A)k i m"®A* "@U m”@(m’@A) A (m’®m”)®A
When we interpret a term ¢ € T)> (X), we need to pick a finite set n such that
fv(t) € n C X where fv(t) is the set of free variables in ¢, but the choice of the
finite set does not matter when we consider only equality of interpretations by
the following fact. If ¢ : n — n’ is a renaming of variables and & : T.> (n) —
T (n') is a mapping induced by the renaming o, then for each t € T.>(n),
|7(t)|4 = |[t|* o A, which implies that equality of the interpretations of two
terms s,t is preserved by renaming: |s| = [t| implies [7(s)| = |7(s)|.

An equational axiom is a family of sets E = (Ey,)mem where E,, is a set of
pairs of terms in 773 (X). We sometimes identify E with its union (J,,cpg Em- A
presentation of an M-graded algebraic theory (or an M-graded algebraic theory)
isapair T = (X, F) of a signature and an equational axiom. A model A of (X, E)
is a model of X that satisfies |s|* = |¢t|* for each (s = t) € E. Let Mody(C)
denote the category of models of 7 in C and homomorphisms between them.

To obtain a graded monad on Set from 7T, we need a strict left action of
M on Mod7([M, Set]y) and an adjunction between Modr([M, Set]y) and Set.
The former is defined by the following, while the latter is described in §3.2.

Lemma 12. Let C be a category satisfying My X My-model condition. If T is an
M, -graded algebraic theory, then C satisfies My-model condition and Mody(C)
satisfies My-model condition.

Proof. An M¢-action on C is obtained by the composition of M{ x Mj-action
and the strong monoidal functor M% — M{ x M$ defined by m + (m, I). Finite
powers and an M$-action for Mod7(C) are induced by those for C. ad

Corollary 13. Mody([M, Set]o) has an M-action, which is given by the pre-
composition of m @ (—) like the M-action of Example 9.

Proof. [M, Set]y has M' x M-action defined by (my,mz) * F = F(m; @ (—) ®
msy). Thus, M-action for Modr([M, Set]y) is obtained by Lemma 12. O

Substitution s[ti/x1,...,tx/xk] for M-graded X-terms can be defined as
usual, but we have to take care of grades: given s € T (k) and ty,...,tx €
T (n), the substitution s[t1/x1,..., ¢ /2] is defined as a term in To ./ (n).

We obtain an equational logic for graded theories by adding some additional
rules to the usual equational logic.

Definition 14. The entailment relation 7 F s = ¢ (where s,t € T,,(X)) for
an M-graded theory T is defined by adding the following rules to the standard
rules i.e. reflexivity, symmetry, transitivity, congruence, substitution and axiom
in F (see e.g. [26] for the standard rules of equational logic).
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s,t €T (X) Ths=t w:im—m teTH(X
T F cuw(s) = cu(t) Thkey, ()=t
teTH(X) wim—m w' :m’ —m”

Tk Co! (Cw (t)) = cm’ow(t)
f€Xum t; € TZ,(X) for each i € {1,...,n} w:m —m’
TE flew(ts), .. cu(tn)) = cmew(f(t1, ..., tn))

Definition 15. Given a model A of T, we denote A |- s =t if 5,t € T~ (n) (for
some n) and |s|* = [t|4. If C is a category satisfying M-model condition, we
denote T,C I s =t if AlFs =1t for any model A of T in C.

It is easy to verify that the equational logic in Definition 14 is sound.

Theorem 1 (soundness). 7 F s =t implies T,C - s =t. O

3.2 Free Models

We describe a construction of a free model F7X € Mods([M,Set]y) of a
graded theory 7T generated by a set X, which induces an adjunction between
Mod7([M, Set]y) and Set. This adjunction, together with the M-action of
Corollary 13, gives a graded monad as described in [7].

Definition 16 (free model F7 X). Let 7 = (X, E) be an M-graded theory.
We define a functor F7 X : M — Set by F7 Xm = T.> (X)/~, for each m € M
and any X € Set where s ~,, t is the equivalence relation defined by T+ s =1t

and F7 Xw([t]m) = [cw(t)]m for any w : m — m/ where [t],, is the equivalence
class of t € T (X). For each f € X, let |f|FTX S(FTX) - m/ ® FTX
be a mapping defined by |f|5LTX([t1]m, coy [tnlm) = [f(t1, -+, tn)]mem for each

m € M. We define a model of T by F7 X = (FT X, |- |FTX)~

The model F7 X, together with the mapping nx : X — F7 XTI defined by
x + [z]r, has the following universal property as a free model generated by X.

Lemma 17. For any model A in [M, Set]o and any mapping v : X — Al, there
exists a unique homomorphism T : FT X — A satisfying Ty o nx = v. O

Corollary 18. Let U : Mody([M, Set]y) — Set be the forgetful functor defined
by the evaluation at I, that is, UA = Ay and Ua = ay. The free model functor
F7 : Set — Modt([M, Set]o) is a left adjoint of U. O

By considering the interpretation in the free model, we obtain the following
completeness theorem.

Theorem 19 (completeness). T, [M, Set]q IF s = ¢ implies T F s = t. O

Recall that Modr([M, Set]o) has a left action (Corollary 13). Therefore the
above adjunction induces an M-graded monad as described in [7].

The relationship between Mods([M, Set]y) and the Eilenberg-Moore con-
struction is as follows. In [7], the Eilenberg-Moore category CT for any graded
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monad T on C is introduced together with a left action ® : M x CT — CT. If
C = Set and T is the graded monad obtained from an M-graded theory 7T, then
the Eilenberg-Moore category Set™ is essentially the same as Mod 7 ([M, Set]o).

Theorem 20. The comparison functor K : Modr([M, Set]y) — Set™ (see [7]
for the definition) where T is an M-graded theory and T is the graded monad
induced from the graded theory T is isomorphic. Moreover, K preserves the M-
action: ® o (M x K) = K o ®. O

We define the category GSpn of graded algebraic theories as follows.

Definition 21. Let 7 = (X,E) and 7' = (X', E’). A morphism o : T — T’
between graded algebraic theories is a family of mappings o, : X m — F T nm
from operations in X to X’-terms such that the equations in E are preserved by
a, i.e. for each s,t € T=(X), (s,t) € E implies |5|(FT/X"‘) = |t|(FT/X’O‘) where
(FT'X,a) is a model of T induced by a.

Definition 22. Given a morphism a: 7 — 77, let F* : FT — FT’ be a natural
transformation defined by F<([t]) = |¢|/F” X+ for each ¢ € T¥(X).

Definition 23. We write GSj; for the category of graded algebraic theories
and morphisms between them. The identity morphisms are defined by 11(f) =
[f(x1,...,2,)] for each f € X, ,,,. The composition of a«: 7 — T  and 8 : T —
T" is defined by B o a(f) = F?(a(f)).

3.3 Examples

Example 24 (graded modules). Let M = (N, +,0) where N is regarded as a
discrete category. Given a graded ring A = @, . A, let X be a set of operations
which counsists of the binary addition operation + (arity: 2, grade: 0), the unary
inverse operation — (arity: 1, grade: 0), the identity element (nullary operation)
0 (arity: 0, grade: 0) and the unary scalar multiplication operation a-(—) (arity:
1, grade: n) for each a € A,,. Let F be the equational axiom for modules.

A model (F,|-]) of the M-graded theory (X, E) in [M, Set], consists of a set
F, for each n € N and functions |+|, : (F,)? = Fo, |—|n : Fn — Fu, |0], € F,
and |a - (=)|n : Fn = Fpin for each n € N and each a € A,,, and these
interpretations satisfy E. Therefore models of (X, E) in [M, Set]y correspond
one-to-one with graded modules.

Example 25 (graded exception monad [12, Example 3.4]). We give an
algebraic presentation of the graded exception monad.

Let M and (*,7, ) be a preordered monoid and the graded monad defined as
follows. Let P*(X) denote the set of nonempty subsets of X. Let Ex be a set of
exceptions and M = ((P*(Ex U {Ok}),C),I,®) be a preordered monoid where
I = {Ok} and the multiplication ® is defined by m @ m’ = (m \ {Ok}) Um’ if
Ok € m and m ® m’ = m otherwise (note that this is not commutative). The
graded exception monad (*,7, 1) is the M-graded monad given as follows.
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m* X = {Er(e) | e € m\ {Ok}} U{Ok(z) | z € X A Ok € m}
nx(x) = Ok(x)  pimymy x (Er(e)) = Er(e)  fim, m,, x (Ok(z)) =z

The M-graded theory 7* for the graded exception monad is defined by
(X°* () where X°* is the set that consists of an operation raise, (arity: 0, grade:
{e}) for each e € Ex.

The graded monad induced by 7°* coincides with the graded exception
monad. Indeed, the free model functor F7° for 7 is given by F7~ Xm =
m x X. Here, the operations raise, are interpreted by e € Ex.

|raisee|fZTexX =Er(e) € F7~ X({e} @ m)

Example 26 (extending an ordinary monad to an M-graded monad).
We consider the problem of extending an M’-graded theory to an M-graded
theory along a lax monoidal functor of type M’ — M, but here we restrict
ourselves to the case of M’ = 1 and the strict monoidal functor of type 1 — M.

Let M = (M, I,®) be an arbitrary small strict monoidal category. Let T =
(X,E) be a (1-graded) theory and (T,n”,u”) be the corresponding ordinary
monad. Let TM = (XM EM) be the M-graded theory obtained when we regard
each operation in 7 as an operation with grade I € M, that is, ETIXIm =X, if
m = I and E,l:f[m := () otherwise, and EM := E.

The free model functor for 7™ is FT" X = FT(M(I,-) x X) where F7 :
Set — Mod(Set) is the free model functor for 7 as a 1-graded theory, and the
interpretation of an operation f € X, in F T X is defined by the interpretation
in the free models of 7.

FIETX = | f|FTMEmXX) - (FT(M(T,m) x X))" = FT(M(I,m) x X)

Intuitively, this can be understood as follows. Since all the operations are of
grade I, coercions ¢, in a term can be moved to the innermost places where

variables occur by repeatedly applying ¢, (f(t1,...,tn)) = f(cw(t1), .-, cw(tn))
(see Definition 14). Therefore, we can consider terms of 7™ as terms of 7 whose
variables are of the form ¢, (z).

An M-graded monad (x,7, 1) obtained from 7™ is as follows.

mx X =T(M(I,m)x X) n=n"1;5,-) p=T(®xX)opu" oTst

Here, ® : M(I,mq) x M(I,m2) — M(I,m1 ® ms) is induced by @: M x M —
M and stxy : X xTY — T(X x Y) is the strength for T.

4 Graded Lawvere Theories

We present a categorical formulation of graded algebraic theories of §3 in a
similar fashion to ordinary Lawvere theories.

For ordinary (single-sorted) finitary algebraic theories, a Lawvere theory is
defined as a small category L with finite products together with a strict finite-
product preserving identity-on-objects functor J : Rj? — L where Xy is the full
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subcategory of Set on natural numbers. Intuitively, morphisms in the Lawvere
theory L are terms of the corresponding algebraic theory, and objects of L, which
are exactly the objects in ob¥g, are arities.

According to the above intuition, it is expected that a graded Lawvere theory
is also defined as a category whose objects are natural numbers and morphisms
are graded terms. However, since terms in a graded algebraic theory are stratified
by a monoidal category M, mere sets are insufficient to express hom-objects of
graded Lawvere theories. Instead, we take hom-objects from the functor category
[M, Set]y and define graded Lawvere theories using [M, Set]y-categories where
[M, Set]o is equipped with the Day convolution monoidal structure. Specifically,
Rg (in ordinary Lawvere theories) is replaced with an [M, Set]o-category Ny,
L with an [M, Set]p-category, and “finite products” with “Nyj-cotensors”.

So, we first provide an enriched category N that we use as arities. Since we
do not assume that M is symmetric, Ny is defined to be an [M, Set]ot—category
so that the opposite category N7y is an [M, Set]o-category. Let [M, Set]' be an
[M, Set]o'-category induced by the closed structure of [M, Set]o". That is, hom-
objects of [M, Set]" are given by [M, Set]' (G, H)m = [M, Set]o(G, H(— ® m)).

Definition 27. An [M, Set]ot—category N is defined by the full sub-[M, Set]ot—
category of [M, Set]" whose set of objects is given by obNy = {n - y(I) | n €

N} C ob[M, Set]" where N is the set of natural numbers and n - y(I) is the

n-fold coproduct of y(I). We sometimes identify obNps with N via the mapping

n—n=mn-y().

Lemma 28. The [M, Set|o-category N3y has NYj-cotensors, which are given
bynthn' =n-n' for eachn and n'. O

Proof. A cotensor (n-y(I)) M (n'-y(I)) is a tensor (n-y(I)) @' (n’ - y(I)) in
M, Set]t. Since ®* is biclosed, ®' preserves colimits in both arguments. There-
fore, (n-y(I)) ®" (n-y(I)) = (n-n') - y(I). 0

Ni-cotensors (i.e. n-y(I) M C) behave like an enriched counterpart of finite
powers (—)"™. We show that N}j-cotensors in a general [M, Set]o-category A
are characterized by projections satisfying a universal property. Given a unit
morphism v : n — A(n M C,C) of the cotensor n M C, an [M, Set]p-natural
transformation 7 : A(B,n M C) — [n, A(B,C)] is given by f — (z — v(z) o f).
The condition that 7 is isomorphic can be rephrased as follows.

Lemma 29. An [M, Set]o-category A has Nyy-cotensors if and only if for any
n € N and C € obA, there exist an object n h C' € obA and (m1,...,7,) €
(A(nh C,C)I)™ such that the following condition holds: for each m, the function
fe(mof,...;mnof) of type A(B,nth C)m — (A(B,C)m)" is bijective.

An [M, Set|o-functor F : A — B preserves NyYj-cotensors if and only if
(Fuhe.cr © Ty Fono,oqr © ™) € (B(F(n th C), FC)I)™ satisfies the same
condition for each n and C.

C,C) corresponds to elements 71,...,m, € A(n M C,C)I by [M,Set]o(n -

Proof. The essence of the proof is that the unit morphism v : n-y(I) - A(n
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y(I),A(n h C,C)) = [M, Setlo(y(I), A(n th C,C))™ = (A(n th C, C’)I)n. The
[M, Set]o-natural transformation 7 is isomorphic if and only if each component
Um : A(B,n M C)m — [n,A(B,C)]m of ¥ is isomorphic, which is moreover
equivalent to the condition that f — (m o f,...,m, o f) : A(B,nth C)m —
(A(B,C))™ is isomorphic since we have [n, A(B,C)|m = (A(B,C)m)".

The latter part of the lemma follows from the former part. O

If (my,...,m) € (A(nh C,C)I)™ satisfies the condition in Lemma 29, we call
the element m; € A(n M C,C)I the i-th projection of n th C. Note that the
choice of projections is not necessarily unique. However, when we say that A is
an [M, Set]y-category with Nyj-cotensors, we implicitly assume that there are
a chosen cotensor n M C' and chosen projections (1,...,m,) € (A(nh C,C)I)™
for each n € obNy} and C' € obA. We also assume that 1 h X = X without loss
of generality. Given n-tuple (f1,..., f,) of elements in A(B, C)m, we denote by
(f1,--., fn) an element in A(B,n M C)m obtained by the inverse of f — (7 o
fy...,m o f) and call this a tupling. Tuplings and projections for N3y-cotensors
behave like those for finite products.

The following proposition claims that N3y is a free [M, Set]o-category with
chosen NYJ-cotensors generated by one object.

Proposition 30. Let A be an [M, Set|y-category with NY}-cotensors and C' be
an object in A. Then there exists a unique NYj-cotensor preserving [M, Set]o-
functor F : Ny — A such that Fn =n M C and Fr; = ;. O

We define M-graded Lawvere theories in a similar fashion to enriched Law-
vere theories.

Definition 31. An M-graded Lawvere theory is a tuple (L, J) where L is an
[M, Set]o-category with Ny}j-cotensors and J : N3§ — L is an identity-on-
objects Nyj-cotensor preserving [M, Set]o-functor. A morphism F : (L,J) —
(L', J) between two graded Lawvere theories is an [M, Set]o-functor F': L — L/
such that F.J = J'. We denote the category of graded Lawvere theories and
morphisms between them by GLaw;.

By Proposition 30, the existence of the above J : N3j — L is equivalent to
requiring that obLL = N and projections in L are chosen in some way. So, we
sometimes leave J implicit and just write L € GLawy for (L, J) € GLawy.

Definition 32. A model of graded Lawvere theory L in an [M, Set]y-category
A with Nyj-cotensor is an Nyj-cotensor preserving [M, Set]o-functor of type
L — A. A morphism « : F' — G between two models F,G of graded Lawvere
theory L is an [M, Set]o-natural transformation. Let Mod(L, A) be the category
of models of graded Lawvere theory L in the [M, Set]o-category A.

In §3, we use a category C satisfying M-model condition to define a model
of graded algebraic theory. Actually, M-model condition is sufficient to give an
[M, Set]o-category with IN}}-cotensors.

Lemma 33. If C satisfies M-model condition, then the [M, Set]q-category Cr "
defined in Definition 7 has Nyy-cotensors.
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Proof. For any X € GEOP and n, the cotensor n M X is given by finite power
——0

X™, and the i-th projection is given by n® o m; € Crp "I where e X" — X is

the i-th projection of the finite power X™. The rest of the proof is routine. O

If we apply Lemma 33 to [M, Set]y equipped with the Mt action in Exam-

—_— o

p
ple 9 (here denoted by T'), then ([M, Set]y), coincides with [M, Set] (i.e. the
[M, Set]o-category obtained by the closed structure of [M, Set]y).

5 Equivalence

We have shown three graded notions: graded algebraic theories, graded Law-
vere theories and finitary graded monads, which give rise to categories GSn1,
GLawy; and GMndy, respectively. This section is about the equivalence of
these three notions. We give only a sketch of the proof of the equivalence, and
the details are deferred to [14, Appendix A].

5.1 Graded Algebraic Theories and Graded Lawvere Theories

We prove that the category of graded algebraic theories GSpy and the category
of graded Lawvere theories GLawy; are equivalent by showing the existence of
an adjoint equivalence Th - U : GLawy — GSy.

Let M be a small strict monoidal category and 7 = (X, E') be an M-graded
algebraic theory. We define Th7 (the object part of Th) as an M-graded Law-
vere theory whose morphisms are terms of 7 modulo equational axioms.

Definition 34. An [M, SetJo-category ThT is defined by ob(Th7) := N and
(ThT)(n,n")m = (F7nm)™ with composition defined by substitution.

It is easy to show that Th7 has Nyj-cotensors (by Lemma 29). Therefore,
Th is a mapping from an object in GSpg to an object in GLawg.

We define a functor U : GLaw); — GS),; by taking all the morphism
f € L(n,1)m in L € GLaw); as operations and all the equations that hold in
L as equational axioms.

Definition 35. A functor U : GLaw,; — GS,; is defined as follows.

— For each L € obGLaw,;, UL = (X, E) where %, ,, = L(n,1)m, E =
{(s,t) | |s|¥ = [t|¥} and |- |¥ : T2 (n) — L(n,1)m is an interpretation of
terms defined in the same way as Definition 11.

— Given G : L — L/, let UG : UL — UL’ be a functor defined by UG(f) =
[G(f)(x1,...,2,)] for each f € L(n,1)m.

Then, Th7T has the following universal property as a left adjoint of U.

Lemma 36. For each T, let ny : T — UThT be a family of functions ny p m :
Snm — FUT™T nm defined by n7nm(f) = [f(@1,...,20)](21,...,2,)]. For
any o : T — UL, there exists a unique morphism @ : ThT — L such that
a=Uaonr. a
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Moreover, the unit and the counit of Th 4 U are isomorphic. Therefore:
Theorem 37. Two categories GSny and GLawy are equivalent. ]
We can also prove the equivalence of the categories of models.

Lemma 38. If C is a category satisfying M-model condition, then Mods(C) is
equivalent to Mod(ThT, Cr) where T is the M*-action on C. O

5.2 Graded Lawvere theories and Finitary Graded Monads

We prove that the category of graded Lawvere theories GLawy and the category
of finitary graded monads GMndys are equivalent. Given a graded Lawvere
theory, a finitary graded monad is obtained as a coend that represents the set
of terms. On the other hand, given a finitary graded monad, a graded Lawvere
theory is obtained from taking the full sub-[M, Set]y-category on arities ob(IN}Y)
of the opposite category of the Kleisli(-like) category in Definition 7. These
constructions give rise to an equivalence of categories.

An M-graded Lawvere theory yields a finitary graded monad by letting m+X
be the set of terms of grade m whose variables range over X.

Definition 39. Let L be an M-graded Lawvere theory. We define Ty, = (*, 7, i)
by a (finitary) M-graded monad whose functor part is given as follows.

neNg
m*X::/ L(n,1)m x X"

Note that L(—, 1) : Rg — [M, Set] is a Set-functor here.
Given a graded monad, a graded Lawvere theory is obtained as follows.

Definition 40. Let T' = (*,7, n) be an M-graded monad on Set. Let Ly be
the full sub-[M, Set]y-category of (Setr)°? with ob(Ly) = N.

Since L7 has Nj;-cotensors n h 1 = n whose projections are given by m; =
(x = n(i)) € Set(1,I xn), Lr is a graded Lawvere theory.

Given a morphism « : T — T” in GMndy;, we define L, : Ly — Lp by
(La)nn,m = Set(n', o m) : Ly(n,n’)m — L/ (n,n')m. It is easy to prove that
L, is a morphism in GLawyp; and L(_) : GMndp; — GLawy is a functor.

Theorem 41. Two categories GLawn; and GMndyng are equivalent.

Proof. L_y is an essentially surjective fully faithful functor. ad

6 Combining Effects

Under the correspondence to algebraic theories, combinations of computational
effects can be understood as combinations of algebraic theories. In particular,
sums and tensor products are well-known constructions [9]. In this section, we
show that these constructions can be adapted to graded algebraic theories. By
the equivalence GMndy; ~ GLawy; ~ GSy in §5, constructions like sums
and tensor products in one of these categories induce those in the other two
categories. So, we choose GSpy; and describe sums as colimits in GSyg and
tensor products as a mapping GSn, X GSn, = GSm; x M, -
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6.1 Sums
We prove that GSpg has small colimits.
Lemma 42. The category GSy; has small coproducts.

Proof. Given a family {(X®, E@)},c; of objects in GSy, the coproduct is
obtained by the disjoint union of operations and equations: [[;., (X", E®) =

(Uie] 33O Uier E(i))- g
Lemma 43. The category GSy; has coequalizers.

Proof. Let T = (X,E) and T’ = (X', E’) be graded algebraic theories and
a,B: T — T’ be a morphism. The coequalizer T" of o and § is given by adding
the set of equations induced by a and 8 to T, that is, 7" := (X', '’ UE") where

E" ={(s,t) [ 3f € ¥, a(f) = [s] A B(S) = [t]}- o

Since a category has all small colimits if and only if it has all small coproducts
and coequalizers, we obtain the following corollary.

Corollary 44. Three equivalent categories GSni, GMndy and GLawyny are
cocomplete. 0O

Example 45. It is known that the sum of an ordinary monad 7" and the excep-
tion monad (—) + Ex (where Ex is a set of exceptions) is given by T'((—) + Ex)
[9, Corollary 3]. We show that a similar result holds for the graded exception
monad.

Let 7° be the theory in Example 25 and M be the preordered monoid used
there. We denote (x**,n®*, u®*) for the graded exception monad. Let T = (X, E)
be a (1-graded) theory and (T, n*, u*) be the corresponding ordinary monad. Let
TM = (XM EM) be the M-graded theory obtained from 7 as in Example 26.
We consider a graded monad obtained as the sum of 7 and 7M.

A free model functor F' for 7 + TM is given by FXm = T(m *** X). For
each n-ary operation f in T, |f|EX : (T(m*** X))" — T(m *** X) is induced by
free models of T, and for each e € Ex, |raise.|5X : 1 — T({e} ™ X) is defined by
n{Te}*exX(e) € T({e} ™ X). It is easy to see that FX defined above is indeed a

model of 7 4+ 7M. Therefore, we obtain a graded monad m * X = T'(m x°* X).

6.2 Tensor Products

The tensor product of two ordinary algebraic theories (X, F) and (X', E’) is
constructed as (¥ U X', E U E' U Eg) where Eg consists of f(Ai.g(Aj.zi;)) =
g(Aj.f(Mi.z;;)) for each f € X and g € X’. However, when we extend tensor
products to graded algebraic theories, the grades of the both sides are not nec-
essarily equal. If the grade of f is m and the grade of g is m/, then the grades of
f(Ni.g(Nj.zi;)) and g(Aj.f(Ni.z;)) are m @ m’ and m’ @ m, respectively. There-
fore, we have to somehow guarantee that the grade of f € X and the grade of
g € X' commute. We solve this problem by taking the product of monoidal cat-
egories. That is, we define the tensor product of an M;j-graded algebraic theory
and an My-graded algebraic theory as an M; x Ms-graded algebraic theory.
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Before defining tensor products, we consider extending an M-graded theory
to M’-graded theory along a lax monoidal functor G = (G,n%, u%) : M — M’.
Given an M-graded theory T = (X, E), we define the M’-graded theory G, T =
(G X,G.E) by (GeX)pm ={f € Zpm | Gm = m'} and GLE = {G.(s) =
G.(t) | (s =t) € E} where for each term t of T (with grade m), G (t) is the term
of G.T (with grade Gm) defined inductively as follows: if x is a variable, then
G.(z) = cye(x); for each w : m — m/ and term ¢, G, (cw(t)) = cauw(G«(t));
for each f € X, ,, and terms ¢1,...,t, with grade m’, G.(f(t1,...,tn)) =
us, (F(G(02), 2 Gulta))

The tensor product of 71 € GSnm, and T2 € GSyy, is defined by first extending
T1 and T3 to M1 xMjy-graded theories and then adding commutation equations.

Definition 46 (tensor product). Let 71 = (X, E) € GSypp, and T3 = (X7, E')
€ GSm,- The tensor product Ty @ Tz is defined by (K, X UK. Y K., EUK,E'U
E7'1®7’2) € GSM1><M2 where K : M1 — M1 X M2 and K’ : M2 — M1 X M2 are
lax monoidal functors defined by Kmy := (my,I5) and K'msy == (I, m3), and

Erer = {f(Xig\jwi)) = 9N f Niwij) [ [ € (KeX)nm,g € (KX }-

That is, if f is an operation in 7; with grade my € My, then 7; ® 7> has the
operation f with grade (mi,Iz) € My x My and similarly for operations in 7s.
The tensor products satisfy the following fundamental property.

Proposition 47. Let C be a category satisfying My x Ms-model condition. Let
T; be an M;-graded algebraic theory for i = 1,2. Then we have an isomorphism

Mod; (Modr, (C)) = Mod7, 7, (C).

Proof. Let ((A,]-]),]||) € Modr, (Modr;(C)) be a model. For each operation
fin T, |fl: (A ] )™ = m & (A,]-|) is a homomorphism. This condition is
equivalent to satisfying the equations in Er;¢7;. O

Example 48. We exemplify the tensor product by showing a graded version
of [9, Corollary 6], which claims that the L-fold tensor product of the side-effects
theory in [21] with one location is the side-effects theory with L locations.

First, we consider the situation where there is only one memory cell whose
value ranges over a finite set V. Let 2 the preordered monoid (join-semilattice)
({L, T}, <,V, 1) where < is the preorder defined by L < T. Intuitively, L rep-
resents pure computations, and T represents (possibly) stateful computations.
Let Tg be a 2-graded theory of two types of operations lookup (arity: V', grade:
T) and update,, (arity: 1, grade: T) for each v € V and the four equations in [21]
for the interaction of lookup and update. Note that we have to insert coercion to
arrange the grade of the equation lookup(Av € V.update,(z)) = c1<7(z).

The graded monad (x,7, 1) induced by Ty is as follows.

1+ X=X T*xX=VxX)"  (L<T)*X)(z)=\v.(v,2)
The middle equation can be explained as follows: any term with grade T can
be presented by a canonical form t; = lookup(Av.updatey, (,y(fx(v))) where

f={fv,fx):V = V x X is a function, and therefore, the mapping f — t;
gives a bijection between (V x X)V and T x X = T¥(X)/~.
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The L-fold tensor product of 75, which we denote by ’7;%“ ,is a 2F-graded the-
ory where 2F = (28 C U, 0) is the join-semilattice of subsets of L. Specifically,
T2F consists of operations lookup, and update; , with grade {/} for each I € L
and v € V with additional three commutation equations in [21]. The induced
graded monad is L' *®% X = {f : VI — (VL x X) | read(L’, f) A write(L’, f)}
where L' C L, and read(L’, f) and write(L’, f) assert that f depends only on
values at locations in L’ and does not change values at locations outside L’. That
is, L' +®L X represents computations that touch only memory locations in L'.

read(L', f) = Vo,0/ e V", M eL o(l)=0c'(l)) = f(o)=f(co)
write(L', f) = Vo,0' e V" xe X, (c/,x)=f(o) = Vi¢ L o(l)=7()

7 Related Work

Algebraic theories for graded monads. Graded monads are introduced in [27], and
notions of graded theory and graded Eilenberg—Moore algebra appear in [17,4]
for coalgebraic treatment of trace semantics. However, these work only deal
with N-graded monads where N is regarded as a discrete monoidal category,
while we deal with general monoidal categories. The Kleisli construction and
the Eilenberg—Moore construction for graded monads are presented in [7] by
adapting the 2-categorical argument on resolutions of monads [29].

Algebraic operations for graded monads are introduced in [12] and classified
into two types, which are different in how to integrate the grades of subterms.
One is operations that take terms with the same grade, and these are what
we treated in this paper. The other is operations that take terms with different
grades: the grade of f(t1,...,t,) is determined by an effect function ¢ : M™ — M
associated to f. Although the latter type of operations is also important to give
natural presentations of computational effects, we leave it for future work.

Enriched Lawvere theories. There are many variants of Lawvere theories
[25,11,24,10,19,15,1,16,28], and most of them share a common pattern: they are
defined as an identity-on-objects functor from a certain category (e.g., Ng") which
represents arities, and the functor must preserve a certain class of products (or
cotensors if enriched). Among the most relevant work to ours are enriched Law-
vere theories [24] and discrete Lawvere theories [10].

For a given monoidal category V, a Lawvere V-theory is defined as an
identity-on-objects finite cotensor (i.e. Vi,-cotensor) preserving V®-functor J :
V?If — L where Vg, is the full subcategory of V spanned by finitely presentable

objects. If V = [M,Set}ot, Lawvere [M,Set}ot—theories are analogous to our
graded Lawvere theories except that we used N3} instead of ([M, Set]o)s,. Since
n-y(I) € Ny} is finitely presentable, we can say that the notion of graded Law-
vere theory is obtained from enriched Lawvere theories by restricting arities to
N7 C ([M, Set]o)s,. However, the correspondence to finitary graded monads on
Set is an interesting point of our graded Lawvere theories compared to Lawvere
V-theories, which correspond to finitary V-monads on V.
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Discrete Lawvere theories restrict arities of Lawvere V-theories to Ng, that
is, a discrete Lawvere V-theory is defined as a (Set-enriched) finite-product
preserving functor J : Rg¥ — L where L is a V*-category. Actually, discrete
Lawvere [M, Set]y'-theories are equivalent to graded Lawvere theories because
there is a finite-product preserving functor ¢ : Xg” — N3 such that the com-
position with ¢ gives a bijection between graded Lawvere theories J : N3§ — L
and discrete Lawvere [M, Set]y‘-theories Jy o ¢ : P — Lg. However, we con-
sidered not only symmetric monoidal categories but also nonsymmetric ones,
which cause a nontrivial problem when we define tensor products of algebraic
theories. The problem is that adding commutation equations requires some kind
of commutativity of monoidal categories. We solved this problem by considering
product monoidal categories and defining the tensor product of an M;-graded
theory and an My-graded theory as an M; x Ms-graded theory, and the use of
two different monoidal categories is new to the best of our knowledge.

8 Conclusions and Future Work

To extend the correspondence between algebraic theories, Lawvere theories, and
(finitary) monads, we introduced notions of graded algebraic theory and graded
Lawvere theory and proved their correspondence with finitary graded monads.
We also provided sums and tensor products for graded algebraic theories, which
are natural extensions of those for ordinary algebraic theories. Since we do not
assume monoidal categories to be symmetric, our tensor products are a bit dif-
ferent from the ordinary ones in that this combines two theories graded by (or
enriched in) different monoidal categories. We hope that these results will lead
us to apply many kinds of techniques developed for monads to graded monads.
As future work, we are interested in “change-of-effects”, that is, changing
the monoidal category M in M-graded algebraic theory along a (lax) monoidal
functor F' : M — M’. The problem already appeared in §6.2 to define tensor
products, but we want to look for more properties of this operation. We are
also interested in integrating a more general framework for notions of algebraic
theory [6] and obtaining a graded version of the framework. Another direction
is exploiting models of graded algebraic theories as modalities in the study of
coalgebraic modal logic [17,4] or weakest precondition semantics [8].
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