
Revisiting Underapproximate Reachability for
Multipushdown Systems?

S. Akshay1, Paul Gastin2, S Krishna1, and Sparsa Roychowdhury1

1 IIT Bombay, Mumbai, India
2 ENS Paris-Saclay, Paris, France

Abstract Boolean programs with multiple recursive threads can be cap-
tured as pushdown automata with multiple stacks. This model is Turing
complete, and hence, one is often interested in analyzing a restricted
class that still captures useful behaviors. In this paper, we propose a
new class of bounded underapproximations for multi-pushdown systems,
which subsumes most existing classes. We develop an efficient algorithm
for solving the under-approximate reachability problem, which is based
on efficient fix-point computations. We implement it in our tool BHIM
and illustrate its applicability by generating a set of relevant benchmarks
and examining its performance. As an additional takeaway BHIM solves
the binary reachability problem in pushdown automata. To show the
versatility of our approach, we then extend our algorithm to the timed
setting and provide the first implementation that can handle timed multi-
pushdown automata with closed guards.

Keywords: Multipushdown Systems · Underapproximate Reachability
· Timed pushdown automata.

1 Introduction

The reachability problem for pushdown systems with multiple stacks is known
to be undecidable. However, multi-stack pushdown automata (MPDA hereafter)
represent a theoretically concise and analytically useful model of multi-threaded
recursive programs with shared memory. As a result, several previous works
in the literature have proposed different under-approximate classes of behav-
iors of MPDA that can be analyzed effectively, such as Round Bounded, Scope
Bounded, Context Bounded and Phase Bounded [18,19,27,14,20,28]. From a prac-
tical point of view, these underapproximations have led to efficient tools includ-
ing, GetaFix [21], SPADE [23]. It has also been argued (e.g., see [24]) that such
bounded underapproximations suffice to find several bugs in practice. In many
such tools efficient fix-point techniques are used to speed-up computations.

We extend known fix-point based approaches by developing a new algo-
rithm that can handle a larger class of bounded underapproximations than
the well-known bounded context and bounded scope underapproximations for

? Partly supported by UMI ReLaX, DST/CEFIPRA/INRIA project EQuaVe & TCS.

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12078, pp. 387–404, 2020.
https://doi.org/10.1007/978-3-030-45190-5 21

TACAS
Evaluation
Artifact

2020
Accepted

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45190-5_21&domain=pdf
http://orcid.org/0000-0003-3583-7612
https://doi.org/10.1007/978-3-030-45190-5_21

388 S. Akshay et al.

multi-pushdown systems while remaining efficiently implementable. Our algo-
rithm works for a new class of underapproximate behaviors called hole bounded
behaviors, which subsumes context/scope bounded underapproximations, and
is orthogonal to phase bounded underapproximations. A “hole” is a maximal
sequence of push operations of a fixed stack, interspersed with well-nested se-
quences of any stack. Thus, in a sequence α = βγ where β = [push1(push2push3
pop3pop2)push1(push3pop3)]10 and γ = push2push1pop2pop1(pop1)20, β is a hole
with respect to stack 1. The suffix γ has 2 holes (the push2 and the push1).
Thus we say that α is 3-hole bounded. On the other hand, the number of con-
text switches (and scope bound) in α is > 50. A (k-)hole bounded sequence is one
such, where, at any point of the computation, the number of “open” holes are
bounded at this point (by k). We show that the class of hole bounded sequences
subsumes most of the previously defined classes of underapproximations and is,
in fact, contained in the very generic class of tree-width bounded sequences. This
immediately shows decidability of the reachability problem for our class.

Analyzing the more generic class of tree-width bounded sequences is often
much more difficult; for instance, building bottom-up tree automata for this
purpose does not scale very well as it explores a large (and often useless) state
space. Our technique is radically different from using tree automata. Under the
hole bounded assumption, we pre-compute information regarding well-nested
sequences and holes using fix-point computations and use them in our algorithm.
Using efficient data structures to implement this approach, we develop a tool
(BHIM) for Bounded Hole reachability in Multi-stack pushdown systems.

Highlights of BHIM.

• Two significant aspects of the fix-point approach in BHIM are: (i) we efficiently
solve the binary reachability problem for pushdown automata. i.e., BHIM com-
putes all pairs of states (s, t) such that t is reachable from s with empty stacks.
This allows us to go beyond reachability and handle some liveness questions; (ii)
we pre-compute the set of pairs of states that are endpoints of holes. This allows
us to greatly limit the search for an accepting run.

•While the fix-point approach solves (binary) reachability efficiently, it does not
a priori produce a witness of reachability. We remedy this situation by proposing
a backtracking algorithm, which cleverly uses the computations done in the fix-
point algorithm, to generate a witness efficiently.

• BHIM is parametrized with respect to the hole bound: if non-emptiness can
be checked or witnessed by a well-nested sequence (this is an easy witness and
BHIM looks for easy witnesses first, then gradually increases complexity, if no
easy witness is found), then it is sufficient to have the hole bound 0. Increasing
this complexity measure as required to certify non-emptiness gives an efficient
implementation, in the sense that we search for harder witnesses only when no
easier witnesses (w.r.t this complexity measure) exist. In examples described in
the experimental section, a small (less than 4) bound suffices and we expect this
to be the case for most practical examples.

• Finally, we extend our approach to handle timed multi-stack pushdown sys-
tems. This shows the versatility of our approach and also requires us to solve

Revisiting Underapproximate Reachability for Multipushdown Systems 389

several technical challenges which are specific to the timed setting. Implementing
this approach in BHIM makes it, to the best of our knowledge, the first tool that
can analyze timed multi-stack pushdown automata with closed guards.

We analyze the performance of BHIM in practice, by considering benchmarks
from the literature, and generating timed variants of some of them. One of our
benchmarks is a variant of the Bluetooth example [11,23], where BHIM was
able to catch a known race detection error. Another interesting benchmark is
a model of a parameterized multiple producer consumer example, having pa-
rameters M,N on the quantities of two items A,B produced. Here, BHIM could
detect bugs by finding witnesses having just 2 holes, while, it is unlikely that ex-
isting tools working on scope/context bounded underapproximations can handle
them as the number of scope/context switches is dependent on M,N (in fact,
it is twice the least common multiple of M and N). In the timed setting, one
of the main challenges has been the unavailability of timed benchmarks; even in
the untimed setting, many benchmarks were unavailable due to their proprietary
nature. Due to lack of space, proofs, technical details and parametric plots of
experiments are in [4].
Related Work. Among other under-approximations, scope bounded [27] sub-
sumes context and round bounded underapproximations, and it also paves path
for GetaFix [21], a tool to analyze recursive (and multi-threaded) boolean pro-
grams. As mentioned earlier hole boundedness strictly subsumes scope bounded-
ness. On the other hand, GetaFix uses symbolic approaches via BDDs, which is
orthogonal to the improvements made in this paper. Indeed, our next step would
be to build a symbolic version of BHIM which extends the hole-bounded approach
to work with symbolic methods. Given that BHIM can already handle synthetic
examples with 12-13 holes (see [4]), we expect this to lead to even more drastic
improvements and applicability. For sequential programs, a summary-based al-
gorithm is used in [21]; summaries are like our well-nested sequences, except that
well-nested sequences admit contexts from different stacks unlike summaries. As
a result, our class of bounded hole behaviors generalizes summaries. Many other
different theoretical results like phase bounded [18], order bounded [8] which
gives interesting underapproximations of MPDA, are subsumed in tree-width
bounded behaviors, but they do not seem to have practical implementations.
Adding real-time information to pushdown automata by using clocks or timed
stacks has been considered, both in the discrete and dense-timed settings. Re-
cently, there has been a flurry of theoretical results in the topic [10,1,2,5,6]. How-
ever, to the best of our knowledge none of these algorithms have been successfully
implemented (except [6] which implements a tree-automata based technique for
single-stack timed systems) for multi-stack systems. One reason is that these al-
gorithms do not employ scalable fix-point based techniques, but instead depend
on region automaton-based search or tree automata-based search techniques.

2 Underapproximations in MPDA

A multi-stack pushdown automaton (MPDA) is a tuple M = (S, ∆, s0,Sf ,
n,Σ, Γ) where, S is a finite non-empty set of locations, ∆ is a finite set of

390 S. Akshay et al.

transitions, s0 ∈ S is the initial location, Sf ⊆ S is a set of final locations,
n ∈ N is the number of stacks, Σ is a finite input alphabet, and Γ is a finite
stack alphabet which contains ⊥. A transition t ∈ ∆ can be represented as a
tuple (s, op, a, s′), where, s, s′ ∈ S are respectively, the source and destination
locations of the transition t, a ∈ Σ is the label of the transition, and op is one of
the following operations (1) nop, or no stack operation, (2) (↓i α) which pushes
α ∈ Γ onto stack i ∈ {1, 2, . . . , n}, (3) (↑i α) which pops stack i if the top of
stack i is α ∈ Γ .

For a transition t = (s, op, a, s′) we write src(t) = s, tgt(t) = s′ and op(t) =
op. At the moment we ignore the action label a but this will be useful later when
we go beyond reachability to model checking. A configuration of the MPDA is
a tuple (s, λ1, λ2, . . . , λn) such that, s ∈ S is the current location and λi ∈
Γ ∗ represents the current content of ith stack. The semantics of the MPDA
is defined as follows: a run is accepting if it starts from the initial state and
reaches a final state with all stacks empty. The language accepted by a MPDA
is defined as the set of words generated by the accepting runs of the MPDA.
Since the reachability problem for MPDA is Turing complete, we consider under-
approximate reachability.

A sequence of transitions is called complete if each push in that sequence
has a matching pop and vice versa. A well-nested sequence denoted ws is
defined inductively as follows: a possibly empty sequence of nop-transitions is
ws, and so is the sequence t ws t′ where op(t) = (↓iα) and op(t′) = (↑iα) are a
matching pair of push and pop operations of stack i, ∀i ∈ {1 . . . n}. Finally the
concatenation of two well-nested sequences is a well-nested sequence, i.e., they
are closed under concatenation. The set of all well-nested sequences defined by
an MPDA is denoted WS. If we visualize this by drawing edges between pushes
and their corresponding pops, well-nested sequences have no crossing edges, as
in

Bounded underapproximations for multistack timed pushdown systems 13

The witness algorithm uses k stacks to correctly implement the backtracking
procedure, to deal with k kinds of holes. We refer to these as witness stacks,
not to confuse with the stacks of the multistack system.

• Assume that the current pop operation is closing a hole of kind i. Search-
ing among possible push transitions, we identify the matching push
transition associated with this pop. On backtracking, this leads us to
a parent node with an atomic hole (see figure 3, the green atomic hole),
having a left end point as the push point, and the right end point as
the target of a ws (if any). We push onto the witness stack i, a bar-
rier (a delimiter symbol #) followed by ws and then the matching push
transition. The barrier is useful in segregating the contents of the wit-
ness stack, especially when we obtain two pop transitions of the same
stack ("1 and "5) in the reverse run which close two di↵erent holes
(the first blue hole and the second blue hole) of the same stack as in

Title Suppressed Due to Excessive Length 13

(the second blue hole and the first blue hole) of the same stack as in

26

Algorithm 12: Timed Automata Witness Generation

1 Function Witness((s1, v1), t, (s2, v2)):
Result: A sequence of transitions for an accepting run

2 forall s 2 S do
3 path = UselessPath(s1, s, v1);
4 if path 6= ; then
5 forall t1 2 [T] do
6 midPath = Witness((s, v1), t� t1, (s2, v2));
7 if midPath 6= ; then
8 return path ·t1·midPath;

9 forall � 2 � do
10 if UsefulTransition(�, v1) and Firable(�,(s, v1)) then
11 s3 = �.destination();
12 v3 = �.reset[v1];
13 midPath2 = Witness((s3, v3), t, (s2, v2));
14 if midPath2 6= ; then
15 return path ·t1·midPath2 ;

16 return path;

10.1 An Illustrating Example for Witness Generation

(s0, v0)

ws1

#1 #2 #3
ws2 ws3 ws4 ws5

#1 #2 "3 "2 #4 #5 "2 "5 "1 "4 "1 (sf , vf)

Fig. 6. A run with 3 holes. The blue holes correspond to stack 1, and the pink hole to
stack 2. A final state is reached from "1 on a discrete transition.

We illustrate the multistack case on an example. Assume that the path we
obtain on back tracking is as in Figure 6. Holes arising from pending pushes of
stack 1 are blue holes, and those from stack 2 are red holes in the figure. We
have two blue holes : the first blue hole has a left end point #1, and right end
point ws3. The second blue hole has a left end point #4, and right end point #5.
The pink hole has left end point #1 and right end point ws4.

1. From the final configuration (sf , vf), on backtracking, we obtain the pop
operation ("1). By the fixed point algorithm, this operation closes the first
blue hole, matching the first pending push #1. In the computation tree, the
parent node has the atomic blue hole consisting of just the #1. Notice also
that, in the parent node, this is the only blue hole, since the second blue hole
in figure 6 is closed, and hence does not exist in the parent node. We use
two witness stacks, a blue stack and a pink stack to track the information
with respect to the blue and pink holes. On encountering a pop transition

• Assume that the current pop operation is shrinking a hole of kind i.
The list at the present node has this hole, and its parent will have a
larger hole, obtained by appending an atomic hole segment to the hole
in the child node. As in the case above, we first identify the matching
push transition, and check if it agrees with the last atomic hole segment
in the parent. If so, we populate the witness stack i with the rightmost
atomic hole segment of the parent node (see figure 3). Each time we find a
pop on going up the run tree, we find the rightmost atomic hole segment
of the parent node, and keep pushing it on the stack, until we reach the
node which is obtained as a result of a hole creation. At this point, we
have completely recovered the entire hole information by backtracking,
and filling the stack with the atomic hole segments which constituted
this hole.

Notice that when we finish processing a hole of kind i, then the witness stack
i has the hole reversed inside it, followed by a barrier. The next hole of the
same kind i will be treated in the same manner.

– If the current node is obtained by creating a hole of kind i in the fixed point
algorithm, then we pop the contents of witness stack i till we reach a barrier.
This spits out the atomic hole segments of the hole from the right to the left,
giving us a sequence of push transitions, and the respective ws in between.
The transitions constituting the ws are retrieved using the witness algorithm
for the single stack case, and added. Notice that popping the witness stack i
till a barrier spits out the sequence of transitions in the correct reverse order
while backtracking.

Appendix 10 shows an illustrating example.

5 Experiments

We tested our implementation on di↵erent examples. Being first of its kind it
was di�cult for us to find proper benchmark examples to run and compare
our results. But we managed to get some well known examples from di↵erent
literatures. Most of them were untimed but we tried to add time in a relevant
way.

5.1 Bluetooth Driver [9]

Here we will first consider a Bluetooth device driver which uses two threads.
We will try to model this Bluetooth driver as shown in the Fig. 4. The driver
maintains a structure, and any thread can modify the values of the variables
in the structure. The variables in the structure can be listed as follows, a

See Appendix 9.1 for the full example.

• Assume that the current pop operation is shrinking a hole of kind i.
The list at the present node has this hole, and its parent will have a
larger hole, obtained by appending an atomic hole segment to the hole
in the child node (see Figure 3, the atomic green hole followed by the
atomic violet hole at the parent node of the atomic green hole). As in
the case above, we first identify the matching push transition, and check
if it agrees with the last atomic hole segment in the parent. If so, we
populate the witness stack i with the rightmost atomic hole segment of
the parent node (see Figure 3, the violet atomic segment is populated in
the stack). Each time we find a pop on going up the exploration graph,
we find the rightmost atomic hole segment of the parent node, and keep
pushing it on the stack, until we reach the node which is obtained as a
result of a hole creation. At this point, we have completely recovered the
entire hole information by backtracking, and filling the stack with the
atomic hole segments which constituted this hole.

Notice that when we finish processing a hole of kind i, then the witness stack
i has the hole reversed inside it, followed by a barrier. The next hole of the
same kind i will be treated in the same manner.

– If the current node is obtained by creating a hole of kind i in the fixed point
algorithm, then we pop the contents of witness stack i till we reach a barrier.
This spits out the atomic hole segments of the hole from the right to the left,
giving us a sequence of push transitions, and the respective ws in between.
The transitions constituting the ws are retrieved using the witness algorithm
for the single stack case, and added. Notice that popping the witness stack i
till a barrier spits out the sequence of transitions in the correct reverse order
while backtracking.

Appendix 9 shows an illustrating example.

and

Bounded underapproximations for multistack timed pushdown systems 13

The witness algorithm uses k stacks to correctly implement the backtracking
procedure, to deal with k kinds of holes. We refer to these as witness stacks,
not to confuse with the stacks of the multistack system.

• Assume that the current pop operation is closing a hole of kind i. Search-
ing among possible push transitions, we identify the matching push
transition associated with this pop. On backtracking, this leads us to
a parent node with an atomic hole (see figure 3, the green atomic hole),
having a left end point as the push point, and the right end point as
the target of a ws (if any). We push onto the witness stack i, a bar-
rier (a delimiter symbol #) followed by ws and then the matching push
transition. The barrier is useful in segregating the contents of the wit-
ness stack, especially when we obtain two pop transitions of the same
stack ("1 and "5) in the reverse run which close two di↵erent holes
(the first blue hole and the second blue hole) of the same stack as in

Title Suppressed Due to Excessive Length 13

(the second blue hole and the first blue hole) of the same stack as in

26

Algorithm 12: Timed Automata Witness Generation

1 Function Witness((s1, v1), t, (s2, v2)):
Result: A sequence of transitions for an accepting run

2 forall s 2 S do
3 path = UselessPath(s1, s, v1);
4 if path 6= ; then
5 forall t1 2 [T] do
6 midPath = Witness((s, v1), t� t1, (s2, v2));
7 if midPath 6= ; then
8 return path ·t1·midPath;

9 forall � 2 � do
10 if UsefulTransition(�, v1) and Firable(�,(s, v1)) then
11 s3 = �.destination();
12 v3 = �.reset[v1];
13 midPath2 = Witness((s3, v3), t, (s2, v2));
14 if midPath2 6= ; then
15 return path ·t1·midPath2 ;

16 return path;

10.1 An Illustrating Example for Witness Generation

(s0, v0)

ws1

#1 #2 #3
ws2 ws3 ws4 ws5

#1 #2 "3 "2 #4 #5 "2 "5 "1 "4 "1 (sf , vf)

Fig. 6. A run with 3 holes. The blue holes correspond to stack 1, and the pink hole to
stack 2. A final state is reached from "1 on a discrete transition.

We illustrate the multistack case on an example. Assume that the path we
obtain on back tracking is as in Figure 6. Holes arising from pending pushes of
stack 1 are blue holes, and those from stack 2 are red holes in the figure. We
have two blue holes : the first blue hole has a left end point #1, and right end
point ws3. The second blue hole has a left end point #4, and right end point #5.
The pink hole has left end point #1 and right end point ws4.

1. From the final configuration (sf , vf), on backtracking, we obtain the pop
operation ("1). By the fixed point algorithm, this operation closes the first
blue hole, matching the first pending push #1. In the computation tree, the
parent node has the atomic blue hole consisting of just the #1. Notice also
that, in the parent node, this is the only blue hole, since the second blue hole
in figure 6 is closed, and hence does not exist in the parent node. We use
two witness stacks, a blue stack and a pink stack to track the information
with respect to the blue and pink holes. On encountering a pop transition

• Assume that the current pop operation is shrinking a hole of kind i.
The list at the present node has this hole, and its parent will have a
larger hole, obtained by appending an atomic hole segment to the hole
in the child node. As in the case above, we first identify the matching
push transition, and check if it agrees with the last atomic hole segment
in the parent. If so, we populate the witness stack i with the rightmost
atomic hole segment of the parent node (see figure 3). Each time we find a
pop on going up the run tree, we find the rightmost atomic hole segment
of the parent node, and keep pushing it on the stack, until we reach the
node which is obtained as a result of a hole creation. At this point, we
have completely recovered the entire hole information by backtracking,
and filling the stack with the atomic hole segments which constituted
this hole.

Notice that when we finish processing a hole of kind i, then the witness stack
i has the hole reversed inside it, followed by a barrier. The next hole of the
same kind i will be treated in the same manner.

– If the current node is obtained by creating a hole of kind i in the fixed point
algorithm, then we pop the contents of witness stack i till we reach a barrier.
This spits out the atomic hole segments of the hole from the right to the left,
giving us a sequence of push transitions, and the respective ws in between.
The transitions constituting the ws are retrieved using the witness algorithm
for the single stack case, and added. Notice that popping the witness stack i
till a barrier spits out the sequence of transitions in the correct reverse order
while backtracking.

Appendix 10 shows an illustrating example.

5 Experiments

We tested our implementation on di↵erent examples. Being first of its kind it
was di�cult for us to find proper benchmark examples to run and compare
our results. But we managed to get some well known examples from di↵erent
literatures. Most of them were untimed but we tried to add time in a relevant
way.

5.1 Bluetooth Driver [9]

Here we will first consider a Bluetooth device driver which uses two threads.
We will try to model this Bluetooth driver as shown in the Fig. 4. The driver
maintains a structure, and any thread can modify the values of the variables
in the structure. The variables in the structure can be listed as follows, a

See Appendix 10.1 for the full example.

• Assume that the current pop operation is shrinking a hole of kind i.
The list at the present node has this hole, and its parent will have a
larger hole, obtained by appending an atomic hole segment to the hole
in the child node (see Figure 3, the atomic green hole followed by the
atomic violet hole at the parent node of the atomic green hole). As in
the case above, we first identify the matching push transition, and check
if it agrees with the last atomic hole segment in the parent. If so, we
populate the witness stack i with the rightmost atomic hole segment of
the parent node (see Figure 3, the violet atomic segment is populated in
the stack). Each time we find a pop on going up the exploration graph,
we find the rightmost atomic hole segment of the parent node, and keep
pushing it on the stack, until we reach the node which is obtained as a
result of a hole creation. At this point, we have completely recovered the
entire hole information by backtracking, and filling the stack with the
atomic hole segments which constituted this hole.

Notice that when we finish processing a hole of kind i, then the witness stack
i has the hole reversed inside it, followed by a barrier. The next hole of the
same kind i will be treated in the same manner.

– If the current node is obtained by creating a hole of kind i in the fixed point
algorithm, then we pop the contents of witness stack i till we reach a barrier.
This spits out the atomic hole segments of the hole from the right to the left,
giving us a sequence of push transitions, and the respective ws in between.
The transitions constituting the ws are retrieved using the witness algorithm
for the single stack case, and added. Notice that popping the witness stack i
till a barrier spits out the sequence of transitions in the correct reverse order
while backtracking.

Appendix 10 shows an illustrating example.

, where we have two stacks, depicted with red and violet
edges. We emphasize that a well-nested sequence can have well-nested edges
from any stack. In a sequence σ, a push (pop) is called a pending push (pop)
if its matching pop (push) is not in the same sequence σ.

Bounded Underapproximations. As mentioned in the introduction, differ-
ent bounded under-approximations have been considered in the literature to get
around the Turing completeness of MPDA. During a computation, a context is
a sequence of transitions where only one stack or no stack is used. In context
bounded computations the number of contexts are bounded [25]. A round is a se-
quence of (possibly empty) contexts for stacks 1, 2, . . . , n. Round bounded compu-
tations restrict the total number of rounds allowed [19,5,6]. Scope bounded com-
putations generalize bounded context computations. Here, the context changes
within any push and its corresponding pop is bounded [19,20,28]. A phase is a
contiguous sequence of transitions in a computation, where we restrict pop to
only one stack, but there are no restrictions on the pushes [18]. A phase bounded
computation is one where the number of phase changes is bounded.

Tree-width. A generic way of looking at them is to consider classes which
have a bound on the tree-width [22]. In fact, the notions of split-width/clique-

Revisiting Underapproximate Reachability for Multipushdown Systems 391

width/tree-width of communicating finite state machines/timed push down sys-
tems has been explored in [3], [13]. The behaviors of the underlying system are
then represented as graphs. It has been shown in these references that if the fam-
ily of graphs arising from the behaviours of the underlying system (say S) have
a bounded tree-width, then the reachability problem is decidable for S via, tree-
automata. However, this does not immediately give rise to an efficient implemen-
tation. The tree-automata approach usually gives non-deterministic or bottom-
up tree automata, which when implemented in practice (see [6]) tend to blow up
in size and explore a large and useless space. Hence there is a need for efficient
algorithms, which exist for more specific underapproximations such as context-
bounded (leading to fix-point algorithms and their implementations [21]).

2.1 A new class of under-approximations

Our goal is to bridge the gap between having practically efficient algorithms
and handling more expressive classes of under-approximations for reachability
of multi-stack pushdown systems. To do so, we define a bounded approximation
which is expressive enough to cover previously defined practically interesting
classes (such as context bounded etc), while at the same time allowing efficient
decidable reachability tests, as we will see in the next section.

Definition 1. (Holes). Let σ be complete sequence of transitions, of length n in
a MPDA, and let ws be a well-nested sequence.

– A hole of stack i is a maximal factor of σ of the form (↓i ws)+, where
ws ∈ WS. The maximality of the hole of stack i follows from the fact that
any possible extension ceases to be a hole of stack i; that is, the only possible
events following a maximal hole of stack i are a push ↓j of some stack j 6= i,
or a pop of some stack j 6= i. In general, whenever we speak about a hole,
the underlying stack is clear.

– A push ↓i in a hole (of stack i) is called a pending push at (i.e., just before)
a position x ≤ n, if its matching pop occurs in σ at a position z > x.

– A hole (of stack i) is said to be open at a position x ≤ n, if there is a
pending push ↓i of the hole at x. Let #x(hole) denote the number of open
holes at position x. The hole bound of σ is defined as max1≤x≤|σ|#x(hole).

– A hole segment of stack i is a prefix of a hole of stack i, ending in a ws, while
an atomic hole segment of stack i is just the segment of the form ↓i ws.

As an example, consider the sequence σ in Figure 1 of transitions of a MPDA
having stacks 1,2 (denoted respectively red and blue). We use superscripts for

s0

ws1

↓11 ↓21 ↓31
ws2 ws3 ws4

↓12 ↓22 ↑31 ↑21
ws5

↓41 ↓51 ↑22 ↑51 ↑12 ↑41 ↑11 sf

Figure 1. A run σ with 2 holes (2 red patches) of the red stack and 1 hole (one blue
patch) of the blue stack.

392 S. Akshay et al.

each push, pop of each stack to distinguish the ith push, jth pop and so on of
each stack. There are two holes of stack 1 (red stack) denoted by the red patches,
and one hole of stack 2 (blue stack) denoted by the blue patch. The subsequence
↓11↓21 ws2 of the first hole is not a maximal factor, since it can be extended by
↓31 ws3 in the run σ, extending the hole. Consider the position in σ marked with
↓12. At this position, there is an open hole of the red stack (the first red patch),
and there is an open hole of the blue stack (the blue patch). Likewise, at the
position ↑51, there are 2 open holes of the red stack (2 red patches) and one open
hole of the blue stack 2 (the blue patch). The hole bound of σ is 3. The green
patch consisting of ↑31, ↑21 and ws5 is a pop-hole of stack 1. Likewise, the pops
↑22, ↑51, ↑12 are all pop-holes (of length 1) of stacks 2,1,2 respectively.

Definition 2. (Hole Bounded Reachability Problem) Given a MPDA
and K ∈ N, the K-hole bounded reachability problem is the following: Does there
exist a K-hole bounded accepting run of the MPDA?

Proposition 1. The tree-width of K-hole bounded MPDA behaviors is at most
(2K + 3).

With this, from [22][5][6], decidability and complexity follow. Thus,

Corollary 1. The K-hole bounded reachability problem for MPDA is decidable
in O(|M|2K+3) where, M is the size of the underlying MPDA.

Next, we turn to the expressiveness of this class with respect to the classical
underapproximations of MPDA: first, the hole bounded class strictly subsumes
scope bounded which already subsumes context bounded and round bounded
classes. Also hole bounded MPDA and phase bounded MPDA are orthogonal.

Proposition 2. Consider a MPDA M . For any K, let LK denote a set of se-
quences accepted by M which have number of rounds or number of contexts or
scope bounded by K. Then there exists K ′ ≤ K such that LK is K ′ hole bounded.
Moreover, there exist languages which are K hole bounded for some constant K,
which are not K ′ round or context or scope bounded for any K ′. Finally, there
exists a language which is accepted by phase bounded MPDA but not accepted by
hole bounded MPDA and vice versa.

Proof. We first recall that if a language L is K-round, or K-context bounded,
then it is also K ′-scope bounded for some K ′ ≤ K [20,19]. Hence, we only show
that scope bounded systems are subsumed by hole bounded systems.

Let L be a K-scope bounded language, and let M be a MPDA accepting
L. Consider a run ρ of w ∈ L in M . Assume that at any point i in the run ρ,
#i(holes) = k′, and towards a contradiction, let, k′ > K. Consider the leftmost
open hole in ρ which has a pending push ↓p whose pop ↑p is to the right of
i. Since k′ > K is the number of open holes at i, there are at least k′ > K
context changes in between ↓p and ↑p. This contradicts the K-scope bounded
assumption, and hence k′ ≤ K.
To show the strict containment, consider the visibly pushdown language [7] given
by Lbh = {anbn(ap1cp1+1bp

′
1dp

′
1+1 · · · apncpn+1bp

′
ndp

′
n+1) | n, p1, p′1, . . . , pn, p′n ∈

Revisiting Underapproximate Reachability for Multipushdown Systems 393

N}. A possible word w ∈ Lbh is a3b3 a2c3b2d3 a2c3bd2 ac2bd2 with a, b repre-
senting push in stack 1,2 respectively and c, d representing the corresponding
matching pop from stack 1,2. A run ρ accepting the word w ∈ Lbh will start
with a sequence of pushes of stack 1 followed by another sequence of pushes of
stack 2. Note that, the number of the pushes n is same in both stacks. Then
there is a group G consisting of a well-nested sequence of stack 1 (equal a and
c) followed by a pop of the stack 1 (an extra c), another well-nested sequence
of stack 2 (equal b and d) and a pop of the stack 2 (an extra d), repeated n
times. From the definition of the hole, the total number of holes required in G
is 0. But, we need 1 hole for the sequence of a’s and another for the sequence
of b’s at the beginning of the run, which creates at most 2 holes during the run.
Thus, the hole bound for any accepting run ρ is 2, and the language Lbh is 2-hole
bounded.

However, Lbh is not k-scope bounded for any k. Indeed, for each m ≥ 1,
consider the word wm = ambm(ac2bd2)m ∈ Lbh. It is easy to see that wm is 2m-
scope bounded (the matching c, d of each a, b happens 2m context switches later)
but not k-scope bounded for k < 2m. It can be seen that Lbh is not k-phase
bounded either. Finally, L′ = {(ab)ncndn | n ∈ N} with a, b and c, d respectively
being push and pop of stack 1,2 is not hole-bounded but 2-phase bounded. ut

3 A Fix-point Algorithm for Hole Bounded Reachability

In the previous section, we showed that hole-bounded underapproximations are
a decidable subclass for reachability, by showing that this class has a bounded
tree-width. However, as explained in the introduction, this does not immediately
give a fix-point based algorithm, which has been shown to be much more effi-
cient for other more restricted sub-classes, e.g., context-bounded. In this section,
we provide such a fix-point based algorithm for the hole-bounded class and ex-
plain its advantages. Later we discuss its versatility by showing extensions and
evaluating its performance on a suite of benchmarks.

We describe the algorithm in two steps: first we give a simple fix-point based
algorithm for the problem of 0-hole or well-nested reachability, i.e, reachability by
a well-nested sequence without any holes. For the 0-hole case, our algorithm com-
putes the reachability relation, also called the binary reachability problem [15].
That is, we accept all pairs of states (s, s′) such that there is a well-nested run
from s with empty stack to s′ with empty stack. Subsequently, we combine this
binary reachability for well-nested sequences with an efficient graph search to
obtain an algorithm for K-hole bounded reachability.
Binary well-nested reachability for MPDA. Note that single stack PDA are
a special case, since all runs are indeed well-nested.

1. Transitive Closure: LetR be the set of tuples of the form (si, sj) represent-
ing that state sj is reachable from state si via a nop discrete transition. Such
a sequence from si to sj is trivially well-nested. We take the TransitiveClosure
of R using Floyd-Warshall algorithm [12]. The resulting set Rc of tuples an-
swers the binary reachability for finite state automata (no stacks).

394 S. Akshay et al.

Algorithm 1: Algorithm for Emptiness Checking of hole bounded
MPDA
1 Function IsEmpty(M = (S, ∆, s0,Sf , n,Σ, Γ), K):

Result: True or False
2 WR := WellNestedReach(M); \\Solves binary reachability for pushdown system
3 if some (s0, s1) ∈ WR with s1 ∈ Sf then
4 return False;
5 forall i ∈ [n] do
6 AHSi := ∅; Seti := ∅;
7 forall (s, ↓i(α), a, s1) ∈ ∆ and (s1, s

′) ∈ WR do
8 AHSi := AHSi ∪ {(i, s, α, s′)}; Seti := Seti ∪ {(s, s′)};
9 HSi := {(i, s, s′) | (s, s′) ∈ TransitiveClosure(Seti)};

10 µ := [s0]; µ.NumberOfHoles := 0;
11 SetOfListsnew := {µ}; SetOfLists := ∅;
12 do
13 SetOfLists := SetOfLists ∪ SetOfListsnew;
14 SetOfListstodo := SetOfListsnew; SetOfListsnew := ∅;
15 forall µ′ ∈ SetOfListstodo do
16 if µ′.NumberOfHoles < K then
17 forall i ∈ [n] do

\\ Add hole for stack i

18 SetOfListsh := AddHolei(µ
′, HSi) \ SetOfLists;

19 SetOfListsnew := SetOfListsnew ∪ SetOfListsh;

20 if µ′.NumberOfHoles > 0 then
21 forall i ∈ [n] do

\\ Add pop for stack i

22 SetOfListsp := AddPopi(µ
′,M,AHSi, HSi, WR) \ SetOfLists;

23 SetOfListsnew := SetOfListsnew ∪ SetOfListsp;
24 forall µ3 ∈ SetOfListsp do
25 if µ3.last ∈ Sf and µ3.NumberOfHoles = 0 then
26 return False; \\If reached destination state

27 while SetOfListsnew 6= ∅;
28 return True;

2. Push-Pop Closure: For stack operations, consider a push transition on
some stack (say stack i) of symbol γ, enabled from a state s1, reaching state
s2. If there is a matching pop transition from a state s3 to s4, which pops
the same stack symbol γ from the stack i and if we have (s2, s3) ∈ Rc, then
we can add the tuple (s1, s4) to Rc. The function WellNestedReach repeats
this process and the transitive closure described above until a fix-point is
reached. Let us denote the resulting set of tuples by WR. Thus,

Lemma 1. (s1, s2) ∈WR iff ∃ a well-nested run in the MPDA from s1 to s2.

Beyond well-nested reachability. A naive algorithm for K-hole bounded
reachability for K > 0 is to start from the initial state s0, and do a Breadth
First Search (BFS), nondeterministically choosing between extending with a
well-nested segment, creating hole segments (with a pending push) and closing
hole segments (using pops). We accept when there are no open hole segments
and reach a final state; this gives an exponential time algorithm. Given the expo-
nential dependence on the hole-bound K (Corollary 1), this exponential blowup
is unavoidable in the worst case, but we can do much better in practice. In par-
ticular, the naive algorithm makes arbitrary non-deterministic choices resulting
in a blind exploration of the BFS tree.

Revisiting Underapproximate Reachability for Multipushdown Systems 395

In this section, we use the binary well-nested reachability algorithm as an
efficient subroutine to limit the search in BFS to its reachable part (note that
this is quite different from DFS as well since we do not just go down one path).
The crux is that at any point, we create a new hole for stack i, only when (i)
we know that we cannot reach the final state without creating this hole and (ii)
we know that we can close all such holes which have been created. Checking (i)
is easy, since we just use the WR relation for this. Checking (ii) blindly would
correspond to doing a DFS; however, we precompute this information and simply
look it up, resulting in a constant time operation after the precomputation.

Precomputing hole information. Recall that a hole of stack i is a maximal
sequence of the form (↓i ws)+, where ws is a well-nested sequence and ↓i rep-
resents a push of stack i. A hole segment of stack i is a prefix of a hole of stack
i, ending in a ws, while an atomic hole segment of stack i is just the segment
of the form ↓i ws. A hole-segment of stack i which starts from state s in the
MPDA and ends in state s′, can be represented by the triple (i, s, s′), that we
call a hole triple. We compute the set HSi of all hole triples (i, s, s′) such that
starting at s, there is a hole segment of stack i which ends at state s′, as detailed
in lines (5-9) of Algorithm 1. In doing so, we also compute the set AHSi of all
atomic hole segments of stack i and store them as tuples of the form (i, sp, α, sq)
such that sp and sq are the MPDA states respectively at the left and right end
points of an atomic hole segment of stack i, and α is the symbol pushed on stack

i (sp
↓i(α)ws−−−−−→ sq).

A guided BFS exploration. We start with a list µ0 = [s0] consisting of
the initial state and construct a BFS exploration tree whose nodes are lists of
bounded length. A list is a sequence of states and hole triples representing a
K-hole bounded run in a concise form. If Hi represents a hole triple for stack i,
then a list is a sequence of the form [s,Hi, Hj , Hk, Hi, . . . ,H`, s

′]. The simplest
kind of list is a single state s. For example, a list with 3 holes of stacks i, j, k is
µ = [s0,(i, s, s′),(j, r, r′),(k, t, t′),t′′]. The hole triples (in red) denote open holes
in the list. The maximum number of open holes in a list is bounded, making the
length of the list also bounded. Let last(µ) represent the last element of the list
µ. This is always a state. For a node v storing list µ in the BFS tree, if v1, . . . vk
are its children, then the corresponding lists µ1, . . . µk are obtained by extending
the list µ by one of the following operations:

1. Extend µ with a hole. Assume there is a hole of some stack i, which starts
at last(µ) = s, and ends at s′. If the list at the parent node v is µ = [. . . , s],
then for all (i, s, s′) ∈ HSi, we obtain the list trunc(µ) ·append[(i, s, s′), s′] at
the child node (i.e., we remove the last element s of µ, then append to this
list the hole triple (i, s, s′), followed by s′).

2. Extend µ with a pop. Suppose there is a transition t = (sk, ↑i(α), a, s′k)
from last(µ) = sk, where µ is of the form [s0, . . . , (h, u, v), (i, s, s′), (j, t, t′) . . . , sk],
such that there is no hole triple of stack i after (i, s, s′), we extend the run
by matching this pop (with its push). However, to obtain the last pend-
ing push of stack i corresponding to this hole, just HSi information is not

396 S. Akshay et al.

enough since we also need to match the stack content. Instead, we check
if we can split the hole (i, s, s′) into (1) a hole triple (i, s, sa) ∈ HSi,
and (2) a tuple (i, sa, α, s

′) ∈ AHSi. If both (1) and (2) are possible,
then the pop transition t corresponds to the last pending push of the hole
(i, s, s′). t indeed matches the pending push recorded in the atomic hole
(i, sa, α, s

′) in µ, enabling the firing of transition t from the state sk, reach-
ing s′k. In this case, we add the child node with the list µ′ obtained from
µ as follows. We replace (i) sk with s′k, and (ii) (i, s, s′) with (i, s, sa), re-
spectively signifying firing of the transition t and the “shrinking” of the
hole, by shifting the end point of the hole segment to the left. When we
obtain the hole triple (i, s, s) (the start and end points of the hole seg-
ment coincide), we may have uncovered the last pending push and thereby
“closed” the hole segment completely. At this point, we may choose to remove
(i, s, s) from the list, obtaining [s0, . . . , (h, u, v), (j, t, t′) . . . , s′k]. For every
such µ′ = [s0, . . . , (h, u, v), (i, s, sa), (j, t, t′), . . . , s′k] and all (s′k, sm) ∈ WS
we also extend µ′ to µ′′ = [s0, . . . , (h, u, v), (i, s, sa), (j, t, t′), . . . , sm]. Notice
that the size of the list in the child node obtained on a pop, is either the
same as the list in the parent, or is smaller.

The number of lists is bounded since the number of states and the length of
the lists are bounded. The BFS exploration tree will thus terminate. Combining
the above steps gives us Algorithm 1, whose correctness gives us:

Theorem 1. Given a MPDA and a positive integer K, Algorithm 1 terminates
and answers “false” iff there exists a K-hole bounded accepting run of the MPDA.

Complexity of the Algorithm. The maximum number of states of the sys-
tem is |S|. The time complexity of transitive closure is O(|S|3), using a Floyd-
Warshall implementation. The time complexity of computing WellNestedReach
which uses the transitive closure, is O(|S|5) +O(|S|2× (|∆| × |S|)). To compute
AHS for n stacks the time complexity is O(n× |∆| × |S|2) and to compute HS
for n stacks the complexity is O(n×|S|2). For multistack systems, each list keeps
track of (i) the number of hole segments(≤ K), and (ii) information pertaining
to holes (start, end points of holes, and which stack the hole corresponds to). In
the worst case, this will be (2K + 2) possible states in a list, as we are keeping
the states at the start and end points of all the hole segments and a stack per
hole. So, there are ≤ |S|2K+3 × nK+1 lists. In the worst case, when there is no
K-hole bounded run, we may end up generating all possible lists for a given
bound K on the hole segments. The time complexity is thus bounded above by
O(|S|2K+3 × nK+1 + |S|5 + |S|3 × |∆|).
Beyond Reachability. We can solve the usual safety questions in the (bounded-
hole) underapproximate setting, by checking for underapproximate reachability
on the product of the given system with the complement of the safe set. Given
the way Algorithm 1 is designed, the fix-point algorithm allows us to go beyond
reachability. In particular, we can solve several (increasingly difficult) variants
of the repeated reachability problem, without much modification.

Consider the question : For a given state s and MPDA, does there exist a
run ρ starting from s0 which visits s infinitely often? This is decidable if we can

Revisiting Underapproximate Reachability for Multipushdown Systems 397

decompose ρ into a finite prefix ρ1 and an infinite suffix ρ2 s.t. (1) both ρ1, ρ2
are well-nested, or (2) ρ1 is K-hole bounded complete (all stacks empty), and ρ2
is well-nested, or (3) ρ1 is K-hole bounded, and ρ2 = (ρ3)ω, where ρ3 is K-hole
bounded. It is easy to see that (1) is solved by two calls to WellNestedReach
and choosing non-empty runs. (2) is solved by a call to Algorithm 1, modified
so that we reach s, and then calling WellNestedReach. Lastly, to solve (3), first
modify Algorithm 1 to check reachability to s with possibly non-empty stacks.
Then run the modified algorithm twice : first start from s0 and reach s; second
start from s and reach s again.

4 Generating a Witness

We next focus on the question of generating a witness for an accepting run when
our algorithm guarantees non-emptiness. This question is important to address
from the point of view of applicability: if our goal is to see if bad states are
reachable, i.e., non-emptiness corresponds to presence of a bug, the witness run
gives the trace of how the bug came about and hence points to what can be done
to fix it (e.g., designing a controller). We remark that this question is difficult in
general. While there are naive algorithms which can explore for the witness (thus
also solving reachability), these do not use fix-point techniques and hence are
not efficient. On the other hand, since we use fix-point computations to speed
up our reachability algorithm, finding a witness, i.e., an explicit run witnessing
reachability, becomes non-trivial. Generation of a witness in the case of well-
nested runs is simpler than the case when the run has holes, and requires us to
“unroll” pairs (s0, sf) ∈ WR recursively and generate the sequence of transitions
responsible for (s0, sf).
Getting Witnesses from Holes. Now we move on to the more complicated
case of behaviours having holes. Recall that in BFS exploration we start from
the states reachable from s0 by well-nested sequences, and explore subsequent
states obtained either from (i) a hole creation, or (ii) a pop operation on a stack.
Proceeding in this manner, if we reach a final configuration (say sf), with all
holes closed (which implies empty stacks), then we declare non-emptiness. To
generate a witness, we start from the final state sf reachable in the run (a leaf
node in the BFS exploration tree) and backtrack on the BFS exploration tree
till we reach the initial state s0. This results in generating a witness run in the
reverse, from the right to the left.
• Assume that the current node of the BFS tree was obtained using a pop
operation. There are two possibilities to consider here (see below) depending on
whether this pop operation closed or shrunk some hole. Recall that each hole
has a left end point and a right end point and is of a specific stack i, depending
on the pending pushes ↓i it has. So, if the MPDA has k stacks, then a list in the
exploration tree can have k kinds of holes. The witness algorithm uses k stacks
called witness stacks to correctly implement the backtracking procedure, to deal
with k kinds of holes. Witness stacks should not be confused with the stacks of
the MPDA.

398 S. Akshay et al.

• Assume that the current pop operation is closing a hole of kind
i as in Figure 2. This hole consists of the atomic holes , and . The
atomic hole consists of the push and the well-nested sequence (same
for the other two atomic holes). Searching among possible push transitions, we
identify the matching push associated with the current pop, resulting in closing
the hole. On backtracking, this leads to a parent node with the atomic hole
having as left end point, the push , and the right end point as the target of
the ws . We push onto the witness stack i, a barrier (a delimiter symbol #)
followed by the matching push transition and then the ws, . The barrier
segregates the contents of the witness stack when we have two pop transitions
of the same stack in the reverse run, closing/shrinking two different holes.

Figure 2. Backtracking to spit
out the hole in reverse.
The transitions of the atomic hole

are first written in the reverse
order, followed by those of in
reverse, and then of in reverse.

• Assume that the current pop operation is
shrinking a hole of kind i. The list at the
present node has this hole, and its parent will
have a larger hole (see Figure 2, where the par-
ent node of has). As in the
case above, we first identify the matching push
transition, and check if it agrees with the push
in the last atomic hole segment in the parent.
If so, we populate the witness stack i with the
rightmost atomic hole segment of the parent
node (see Figure 2, is populated in the
stack). Each time we find a pop on backtrack-
ing the exploration tree, we find the rightmost
atomic hole segment of the parent node, and
keep pushing it on the stack, until we reach the
node which is obtained as a result of a hole cre-
ation. Now we have completely recovered the
entire hole information by backtracking, and
fill the witness stack with the reversed atomic

hole segments which constituted this hole. Notice that when we finish processing
a hole of kind i, then the witness stack i has the hole reversed inside it, followed
by a barrier. The next hole of the same kind i will be treated in the same manner.
• If the current node of the BFS tree is obtained by creating a hole of kind i
in the fix-point algorithm, then we pop the contents of witness stack i till we
reach a barrier. This spits out the atomic hole segments of the hole from the
right to the left, giving us a sequence of push transitions, and the respective ws
in between. The transitions constituting the ws are retrieved and added. Notice
that popping the witness stack i till a barrier spits out the sequence of transitions
in the correct reverse order while backtracking.

5 Adding Time to Multi-pushdown systems

In this section, we briefly describe how the algorithms described in section 3
can be extended to work in the timed setting. Due to lack of space, we focus on

Revisiting Underapproximate Reachability for Multipushdown Systems 399

some of the significant challenges and advances, leaving the formal details and
algorithms to the supplement [4]. A TMPDA extends a MPDA S with a set X
of clock variables. Transitions check constraints which are conjunctions/disjunc-
tions of constraints (called closed guards in the literature) of the form x ≤ c or
x ≥ c for c ∈ N and x any clock from X . Symbols pushed on stacks “age” with
time elapse; that os, they store the time elapsed since they were pushed onto the
stack. A pop is successful only when the age of the symbol lies within a certain
interval. The acceptance condition is as in the case of MPDA.

The first main challenge in adapting the algorithms in section 3 to the timed
setting was to take care of all possible time elapses along with the operations
defined in Algorithm 1. The usage of closed guards in TMPDA means that it suf-
fices to explore all runs with integral time elapses (for a proof see e.g., Lemma 4.1
in [5]). Thus configurations are pairs of states with valuations that are vectors of
non-negative integers, each of which is bounded by the maximal constant in the
system. Now, to check reachability we need to extend all the precomputations
(transitive closure, well-nested reachability, as well as atomic and non-atomic
hole segments) with the time elapse information. To do this, we use a weighted
version of the Floyd-Warshall algorithm by storing time elapses during precom-
putations. This allows us to use this precomputed timed well-nested reachability
information while performing the BFS tree exploration, thus ensuring that any
explored state is indeed reachable by a timed run. In doing so, the most challeng-
ing part is extending the BFS tree wrt a pop. Here, we not only have to find a
split of a hole into an atomic hole-segment and a hole-segment as in Algorithm 1,
but also need to keep track of possible partitions of time, making the algorithm
quite challenging.

Timed Witness: As in the untimed case, we generate a witness certifying non-
emptiness of TMPDA. But, producing a witness for the fix-point computation
as discussed earlier requires unrolling. The fix-point computation generates a
pre-computed set WRT of tuples ((s, ν), t, (s′, ν′)), where s, s′ are states t is time
elapsed in the well-nested sequence and ν, ν′ ∈ N|X | are integral valuations, i.e.,
integer values taken by clocks. This set of tuples does not have information
about the intermediate transitions and time-elapses. To handle this, using the
pre-computed information, we define a lexicographic progress measure which
ensures termination of this search. The main idea is as follows: the first progress
measure is to check if there a time-elapse t transition possible between (s, ν) and
(s′, ν′) and if so, we print this out. If not, ν′ 6= ν + t, and some set of clocks
have been reset in the transition(s) from (s, ν) to (s′, ν′). The second progress
measure looks at the sequence of transitions from (s, ν) to (s′, ν′), consisting of
reset transitions (at most the number of clocks) that result in ν′ from ν. If neither
the first nor the second progress measure apply, then ν = ν′, and we are left to
explore the last progress measure, by exploring at most |S| number of transitions
from (s, ν) to (s′, ν′). Using this progress measure, we can seamlessly extend the
witness generation to the timed setting. The challenges involved therein, can be
seen in the full version [4].

400 S. Akshay et al.

6 Implementation and Experiments

We implemented a tool BHIM (Bounded Holes In MPDA) in C++ based on
Algorithm 1, which takes an MPDA and a constant K as input and returns True
iff there exists a K-hole bounded run from the start state to an accepting state of
the MPDA. In case there is such an accepting run, BHIM generates one such, with
minimal number of holes. For a given hole bound K, BHIM first tries to produce
a witness with 0 holes, and iteratively tries to obtain a witness by increasing the
bound on holes till K. In most cases, BHIM found the witness before reaching
the bound K. Whenever BHIM’s witness had K holes, it is guaranteed that there
are no witnesses with a smaller number of holes.

To evaluate the performance of BHIM, we looked at some available bench-
marks and modeled them as MPDA. We also added timing constraints to some
examples such that they can be modeled as TMPDA. Our tests were run on a
GNU/Linux system with Intel R© CoreTM i7–4770K CPU @ 3.50GHz, and 16GB
of RAM. Details of all examples here, as well as an additional example of a linux
kernel bug can be found [4].
• Bluetooth Driver [25]. The Bluetooth device driver example [25], has an

arbitrary number of threads, working with a shared memory. We model this
using a 2-stack pushdown system, where a system state represents the current
valuation of the global variables, and the stacks are used to maintain the call-
return between different functions, as well as to keep track of context switches
between threads. A known error as pointed out in [25] is a race condition between
two threads where one thread tries to write to a global variable and the other
thread tries to read from it. BHIM found this error, with a well-nested witness.
A timed extension of this example was also considered, where, a witness was
obtained again with hole bound 0.
• Bluetooth Driver v2 [11,23]. A modified version of Bluetooth driver is con-
sidered [11,23], where a counter is maintained to count the number of threads
actively using the driver. We model this with a A two stack MPDA. With a well-
nested witness, BHIM found the error of interrupted I/O, where the stopping
thread kills the driver while the other thread is busy with I/O.
• A Multi-threaded Producer Consumer Problem. The producer con-
sumer problem (see e.g., [26]) is a classic example of concurrency and synchro-
nization. An interesting scenario is when there are multiple producers and con-
sumers. Assume that two ingredients called ’A’ and ’B’ are produced in a pro-
duction line in batches (of M and N respectively). These parameters M and
N are fixed for each day but may vary across days. There is another consumer
machine that (1) consumes one unit of ’A’ and one unit of ’B’ in that order; (2)
repeats this process until all ingredients are consumed. In between if one of the
ingredients runs out, then we non-deterministically produce more batches of the
ingredient and then continue. To avoid wastage the factory aims to consume all
ingredients produced in a day, hence the problem of interest is to check if all
A’s and B’s produced in a day are consumed. We can model this factory using
a two-stack pushdown system, one stack per product, A,B, where the sizes of
the batches, M > 0 and N > 0 respectively, are parameters. The production

Revisiting Underapproximate Reachability for Multipushdown Systems 401

Name Locations Transitions Stacks Holes Time Empty (mili sec) Time Witness (mili sec) Memory(KB)

Bluetooth 45 89 2 0 149.3 0.241 6934

Bluetooth v2 47 134 2 0 92.2 0.176 5632

MultiProdCons(3,2) 7 11 2 2 126.529 0.281 5632

MultiProdCons(24,7) 32 34 2 2 1879.33 10.63 21836

Binary Search Tree 29 78 2 2 60.8 5.1 5143

untimed-Lcrit 6 10 2 2 14.9 0.7 4692

untimed-Maze 9 12 2 0 8.25 0.07 5558

Lbh (from Sec. 2.1) 7 13 2 2 22.2 0.6 4404

Table 1. Experimental results: Time Empty and Time Witness column represents no.
of milliseconds needed for emptiness checking and to generate witness respectively.

and consumption of the ‘A’s and ‘B’s are modeled using push and pop in the
respective stack. For a given M and N , the language accepted by the system
is non-empty iff there is a run where all the produced ‘A’s and ‘B’s are con-
sumed. The language accepted by the two-stack pushdown system is given by
LM,N = ((aM + bN)+(āb̄)+)+, where a, b represent respectively, the push on
stack 1, 2 and ā, b̄ represent the pop on stack 1, 2 and hence must happen equal
number of times.

For any M,N > 0, any accepting run of the two stack pushdown system
cannot be well-nested. Further, in an accepting run, the minimum number of
items produced (and hence its length) must be a multiple of LCM(M,N). As
the consumption of ‘A’s and ‘B’s happen in an order one by one i.e., in a sequence
where consumption of ‘A’ and ‘B’ alternate, the minimum number of context
changes (and the scope bound) required in an accepting run depends on M and
N (in fact it is O(2× LCM(M,N)). On the other hand, the shortest accepting
run is 2-hole bounded: at any position of the word, the open holes come from
the unmatched sequences of a and b seen so far. Thus for any M,N>0, BHIM
was able to check for non-emptiness of LM,N with a witness of hole bound 2.

• Critical time constraints [9]. This is one of the timed examples, where
we consider the language Lcrit = {aybzcydz | y, z ≥ 1} with time constraints
between occurrences of symbols. The first c must appear after 1 time-unit of the
last a, the first d must appear within 3 time-units of the last b, and the last b
must appear within 2 time units from the start, and the last d must appear at
4 time units. Lcrit is accepted by a TMPDA with two timed stacks. Lcrit has no
well-nested word, is 4-context bounded, but only 2 hole-bounded.

• Concurrent Insertions in Binary Search Trees. Concurrent insertions
in binary search trees is a very important problem in database management
systems. [17,11] proposes an algorithm to solve this problem for concurrent
implementations. However, incorrect implementation of locks allows a thread
to overwrite others. We modified the algorithm [17] to capture this bug, and
modeled it as MPDA. BHIM found the bug with a witness of hole-bound 2.

•Maze Example. Finally we consider a robot navigating a maze, picking items;
an extended (from single to multiple stack) version of the example from [6]. In
the untimed setting, a witness for non-emptiness was obtained with hole-bound
0, while in the extension with time, the witness had a hole-bound 2.

402 S. Akshay et al.

Name Locations Transitions Stacks Clocks cmax Aged(Y/N) Holes Time Empty(mili sec) Time Witness (mili sec) Memory(KB)

Bluetooth 45 89 2 0 2 Y 0 152.8 0.119 5568

Lcrit 6 10 2 2 8 Y 2 9965.2 3.7 203396

Maze 9 12 2 2 5 Y 2 349.3 0.31 11604

Table 2. Experimental results of timed examples. The column cmax is defined as the
maximum constant in the automaton, and Aged denotes if the stack is timed or not

Results and Discussion. The performance of BHIM is presented in Table 1
for untimed examples and in Table 2 for timed examples.

Apart from the results in the tables, to check the robustness of BHIM wrt
parameters like the number of locations, transitions, stacks, holes and clocks (for
TMPDA), we looked at examples with an empty language, by making accepting
states non-accepting in the examples considered so far. This forces BHIM to
explore all possible paths in the BFS tree, generating the lists at all nodes. The
scalability of BHIM wrt all these parameters are in [4].
BHIM Vs. State of the art. What makes BHIM stand apart wrt the existing
state of the art tools is that (i) none of the existing tools handle underapprox-
imations captured by bounded holes, (ii) none of the existing tools work with
multiple stacks in the timed setting (even closed guards!). The state of the art
research in underapproximations wrt untimed multistack pushdown systems has
produced some robust tools like GetaFix which handles multi-threaded programs
with bounded context switches. While we have adapted some of the examples
from GetaFix, the latest available version of GetaFix has some issues in handling
those examples3. Likewise, SPADE, MAGIC and the counter implementation [16]
are currently not maintained, resulting in a non-comparison of BHIM and these
tools. Most examples handled by BHIM correspond to non-context bounded, or
non-scope bounded, or timed languages which are beyond GetaFix : the 2-hole
bounded witness found by BHIM for the language L9,5 for the multi producer
consumer case cannot be found by GetaFix/MAGIC/SPADE with less than 90
context switches. In the timed setting, the Maze example which has a 2 hole-
bounded witness where the robot visits certain locations equal number of times
is beyond [6], which can handle only single stack.

7 Future Work

As immediate future work, we are working on BHIM v2 to be symbolic, in-
spired from GetaFix. The current avatar of BHIM showcases the efficiency of
fix-point techniques extended to larger bounded underapproximations; indeed
going symbolic will make BHIM much more robust and scalable. This version
will also include a parser to handle boolean programs, allowing us to evaluate
larger repositories of available benchmarks.
Acknowledgements. We would like to thank Gennaro Parlato for the discussions
on GetaFix and for providing us benchmarks and anonymous reviewers for more
pointers.

3 we did get in touch with one of the authors, who confirmed this.

Revisiting Underapproximate Reachability for Multipushdown Systems 403

References

1. Abdulla, P.A., Atig, M.F., Stenman, J.: Dense-timed pushdown automata. In:
Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Sci-
ence, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012. p. 35–44 (2012), https:
//doi.org/10.1109/LICS.2012.15

2. Abdulla, P.A., Atig, M.F., Stenman, J.: The minimal cost reachability problem in
priced timed pushdown systems. In: Language and Automata Theory and Appli-
cations - 6th International Conference, LATA 2012, A Coruña, Spain, March 5-9,
2012. Proceedings. pp. 58–69 (2012), https://doi.org/10.1007/978-3-642-28332-1 6

3. Akshay, S., Gastin, P., Jugé, V., Krishna, S.N.: Timed systems through the lens
of logic. In: 34th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2019, Vancouver, BC, Canada, June 24-27, 2019. pp. 1–13 (2019)

4. Akshay, S., Gastin, P., Krishna, S., Roychowdhury, S.: Revisiting underapproxi-
mate reachability for multipushdown systems (2020), https://arxiv.org/abs/2002.
05950

5. Akshay, S., Gastin, P., Krishna, S.N.: Analyzing Timed Systems Using Tree Au-
tomata. Logical Methods in Computer Science Volume 14, Issue 2 (May 2018),
https://lmcs.episciences.org/4489

6. Akshay, S., Gastin, P., Krishna, S.N., Sarkar, I.: Towards an efficient tree au-
tomata based technique for timed systems. In: 28th International Conference on
Concurrency Theory, CONCUR 2017, September 5-8, 2017, Berlin, Germany. pp.
39:1–39:15 (2017), https://doi.org/10.4230/LIPIcs.CONCUR.2017.39

7. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the
thirty-sixth annual ACM symposium on Theory of computing. pp. 202–211. ACM
(2004)

8. Atig, M.F.: Model-Checking of Ordered Multi-Pushdown Automata. Log-
ical Methods in Computer Science Volume 8, Issue 3 (Sep 2012).
https://doi.org/10.2168/LMCS-8(3:20)2012

9. Bhave, D., Dave, V., Krishna, S.N., Phawade, R., Trivedi, A.: A perfect class of
context-sensitive timed languages. In: International Conference on Developments
in Language Theory. pp. 38–50. Springer, Berlin, Heidelberg (2016)

10. Bouajjani, A., Echahed, R., Robbana, R.: On the automatic verification of systems
with continuous variables and unbounded discrete data structures. In: International
Hybrid Systems Workshop. pp. 64–85. Springer (1994)

11. Chaki, S., Clarke, E., Kidd, N., Reps, T., Touili, T.: Verifying concurrent message-
passing C programs with recursive calls. In: International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. p. 334–349. Springer
(2006)

12. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms.
MIT press (2009)

13. Cyriac, A.: Verification of communicating recursive programs via split-width.
(Vérification de programmes récursifs et communicants via split-width). Ph.D.
thesis, École normale supérieure de Cachan, France (2014), https://tel.
archives-ouvertes.fr/tel-01015561

14. Cyriac, A., Gastin, P., Kumar, K.N.: MSO decidability of multi-pushdown systems
via split-width. In: International Conference on Concurrency Theory. pp. 547–561.
Springer, Berlin, Heidelberg (2012)

15. Dang, Z., Ibarra, O.H., Bultan, T., Kemmerer, R.A., Su, J.: Binary reachability
analysis of discrete pushdown timed automata. In: International Conference on
Computer Aided Verification. p. 69–84. Springer (2000)

https://doi.org/10.1109/LICS.2012.15
https://doi.org/10.1109/LICS.2012.15
https://doi.org/10.1007/978-3-642-28332-1_6
https://arxiv.org/abs/2002.05950
https://arxiv.org/abs/2002.05950
https://lmcs.episciences.org/4489
https://doi.org/10.4230/LIPIcs.CONCUR.2017.39
https://doi.org/10.2168/LMCS-8(3:20)2012
https://tel.archives-ouvertes.fr/tel-01015561
https://tel.archives-ouvertes.fr/tel-01015561

404 S. Akshay et al.

16. Hague, M., Lin, A.W.: Synchronisation- and reversal-bounded analysis of multi-
threaded programs with counters. In: Computer Aided Verification - 24th Interna-
tional Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings. p.
260–276 (2012), https://doi.org/10.1007/978-3-642-31424-7 22

17. Kung, H., Lehman, P.L.: Concurrent manipulation of binary search trees. ACM
Transactions on Database Systems (TODS) 5(3), 354–382 (1980)

18. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive
languages. In: Logic in Computer Science, 2007. LICS 2007. 22nd Annual IEEE
Symposium on. pp. 161–170. IEEE (2007)

19. La Torre, S., Madhusudan, P., Parlato, G.: The language theory of bounded
context-switching. In: Latin American Symposium on Theoretical Informatics. pp.
96–107. Springer (2010)

20. La Torre, S., Napoli, M.: Reachability of multistack pushdown systems with scope-
bounded matching relations. In: International Conference on Concurrency Theory.
p. 203–218. Springer (2011)

21. La Torre, S., Parthasarathy, M., Parlato, G.: Analyzing recursive programs using
a fixed-point calculus. ACM Sigplan Notices 44(6), 211–222 (2009)

22. Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In: ACM SIG-
PLAN Notices. vol. 46, pp. 283–294. ACM (2011)

23. Patin, G., Sighireanu, M., Touili, T.: Spade: Verification of multithreaded dynamic
and recursive programs. In: International Conference on Computer Aided Verifi-
cation. pp. 254–257. Springer (2007)

24. Qadeer, S.: The case for context-bounded verification of concurrent programs. In:
Model Checking Software, 15th International SPIN Workshop, Los Angeles, CA,
USA, August 10-12, 2008, Proceedings. pp. 3–6 (2008), https://doi.org/10.1007/
978-3-540-85114-1 2

25. Qadeer, S., Wu, D.: Kiss: keep it simple and sequential. ACM sigplan notices 39(6),
14–24 (2004)

26. Silberschatz, A., Gagne, G., Galvin, P.B.: Operating system concepts. Wiley (2018)
27. Torre, S.L., Napoli, M., Parlato, G.: Scope-bounded pushdown languages. Interna-

tional Journal of Foundations of Computer Science 27(02), 215–233 (2016)
28. Torre, S.L., Parlato, G.: Scope-bounded Multistack Pushdown Sys-

tems: Fixed-Point, Sequentialization, and Tree-Width 18, 173–184 (2012).
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.173

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-31424-7_22
https://doi.org/10.1007/978-3-540-85114-1_2
https://doi.org/10.1007/978-3-540-85114-1_2
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.173
http://creativecommons.org/licenses/by/4.0/

	Revisiting Underapproximate Reachability for Multipushdown Systems
	1 Introduction
	2 Underapproximations in MPDA
	2.1 A new class of under-approximations

	3 A Fix-point Algorithm for Hole Bounded Reachability
	4 Generating a Witness
	5 Adding Time to Multi-pushdown systems
	6 Implementation and Experiments
	7 Future Work
	Acknowledgements
	References

