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Abstract

Agricultural production systems, for example, conservation agriculture, climate
smart agriculture, organic agriculture, sustainable landuse management, and
others, summarized under the term “sustainable intensification,” have been intro-
duced in African countries to increase productivity and to adapt/mitigate CC
(CCAM). But the productivity of smallholder farming systems in Africa remains
low. High erosion, contaminated water, threatened human health, reduced soil
water, and natural resources functionality, that is, ecosystems services, and
decreased biodiversity dominate. Low support in the farm environment is also
responsible for this situation.

It is hypothesized, based on the huge body of literature on CCAM, that the
implementation of already existing arable and plant cultivation methods like crop
diversity, alley crops, forage legume-based crop rotations, mulching, organic
matter recycling, and reduced tillage intensity will increase CCAM performance
and also farm productivity and income. Based on a brief analysis of CCAM
relevant arable and plant cultivation methods and agricultural production systems
potentials and challenges, this chapter offers guidance for further transforming
climate robust African farming systems.

Keywords

Agricultural production systems · Arable and plant cultivation methods · Climate
change adaptation and mitigation · Institutional environment · Smallholder
farmers practices in Africa

Introduction

In this brief review, the discussion focuses on factors making smallholder farmers
vulnerable to CC induced drought and floods and how they are able to cope with CC.
The chapter refers to the farms internal management, the relevance of the diverse
arable, and plant cultivation methods that are differently organized and highlighted
in today’s agricultural production systems, which might contribute to adapt/mitigate
climate change (CCAM), and how the institutional environment impacts a farmer’s
capacity to apply CCAM.

This chapter summarizes contributions to CCAM with reference to the diverse
mixed farming systems in East Africa. This region is so far of interest as it entails a
broad range of African farming systems. Those farming systems with an annual
rainfall between approx. 800 mm and 2.000 mm, annual or bi-annual rainfall
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patterns, and farm sizes between approx. 0.5 and 2.0 ha have been selected. With that
the study excludes farming systems from mainly drought regions that however are
asking for partly different farming solutions, which would open an additional
chapter to discuss. So far, the review will offer a part of the whole picture on farm
internal management strategies and relevant environmental (institutional) conditions
specifically under East African conditions.

There is evidence that specifically Africans agricultural systems are challenged by
climate change (IPCC 2018). To reach the SDG2 targets in the next decade,
investment costs to reduce hunger in Africa for the next decade are tremendous
(Mason-D'Croz et al. 2019). Such future pictures are based on mainstream agricul-
tural practices, combined with all kinds of single agricultural practices, borrowed
from latest discussed agricultural production systems (Gonzalez-Sanchez et al. 2019;
Porter et al. 2019; Senyolo et al. 2018; Zougmoré et al. 2018).

The hypothesis, which is framing the analysis, argues that the systemic imple-
mentation of already existing arable and plant cultivation methods like crop diver-
sity, alley crops, forage legume-based crop rotations, mulching, organic matter
recycling, and reduced tillage intensity will increase CCAM performance and also
farm productivity, and as a consequence also the income. The majority of recom-
mendations to cope with CC on smallholder farms commonly involve single
methods, such as diversified crop rotations, intercropping, relay cropping, alley
cropping and silvo-pastoral systems, compost and manure management, pH regula-
tion, mulching, and low tillage intensity. These methods are summarized as arable
and plant cultivation methods, but are also discussed as “agroecological”methods. If
properly managed, these methods can increase biodiversity and biomass production;
close carbon and nutrient cycles, as well as optimize mineralization processes and
increase carbon sequestration; decrease soil erosion; and optimize regulation of the
micro- and mesoclimate and the water household. They can also be classified as the
backbone of sustainable production, and as such, operate as ecosystems services.
The single methods (crop rotation, mulching, . . .) arise in different combinations and
partly different “accentuations,” in specific agricultural production methods
described with the terms “climate smart agriculture, sustainable landuse manage-
ment, or organic agriculture” and summarized under the term sustainable
intensification.

Literature corpus on this topic is huge. Most of the methods are mentioned in the
latest report on CC (The IPCC’ Special Report on Climate Change and Land. What’s
in it for Africa? (Dupar 2019 #156). But what is missing in this report is a systemic
view and integration of the diverse practices that would make farming systems
robust against CC. In other words, to clearly indicate that adoption of farming
systems is no longer the adequate reaction on the dramatic situation driven by CC.
Instead, there is need for a huge transformation of farming systems as a whole.

For discussing the hypothesis, a selection of reviews and empirical studies seems
adequate, using the terminology of arable and plant cultivation, that is, agroecology
methods, and selected agricultural production systems (e.g., climate smart agricul-
ture, conservation agriculture and others) within the context of CCAM as key words.
Main literature was selected between the years 2010 and 2020 by Google scholar
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including reviewed papers and grey literature (Majumder 2015), to make visible how
far in the last decade, where conservation agriculture, climate smart agriculture,
agroecology, or sustainable intensification became prominent in the debate, CCAM
was discussed. There are some exceptions, where identified literature informed about
earlier relevant sources. Using cropping systems as an example, for all sections with
a specific topic, search was defined as follows: Smallholder farming AND cropping
systems AND Climate change AND Africa/Review AND Smallholder farming
AND cropping systems AND Climate change AND Africa. Following a stepwise
saturation in a certain field of knowledge, that is, explicit, reproducible, and leads to
minimum bias, further papers that indicate mainly same messages have been
excluded (Grant and Booth 2009).

A quantification of applied CCAM is critical due to the fact that there is huge
diversity of agroecological conditions and farming practices and that there is no
empirical basis available for making such an assessment. Instead, a qualitative
assessment of the impact of CCAM methods is applied to primarily understand
specific characteristics in their context (see the methodological approach chosen by
Dale 2010). For that a set of methods both single arable and plant cultivation
methods as well the agricultural production systems have been selected that are
well known to be relevant for CCAM.

CCAM Practices and Barriers for Their Implementation

This section reviews the most relevant single methods, their potential to contribute to
CCAM, and farm productivity, and the barriers that hinder farmers from
implementing them are discussed. Drought adapted varieties, irrigation, and water
management technologies are not mentioned specifically. It is assumed that they are
part of any CCAM approach.

Crop Diversity and Crop Rotations

In many farming systems, crop diversity in crop rotations is low. Currently, maize is
the dominant crop in most crop rotations in Africa. The other land is planted mainly
with cereals, grain legumes, and root crops and in some cases intercropped maize
and grain legumes (Table 1) (Rusinamhodzi et al. 2012). These one-sided systems,
with open soils with low root (< 1 t DM ha-1 a-1) and above ground biomass (< 2 t
DM ha-1 a-1), lead to highly vulnerable soils over the whole African continent,
continuously loosing fertile soils and the capacity to store water and nutrients. The
key crops for moving to higher CCAM relevant ecological functions of cropping
systems are forage legumes and forage-grain legumes with high root (> 2 t DM ha-1
a-1) and above ground biomass (> 4 t DM ha-1 a-1) that currently can only be found
in some selected regions in pure stands or in combination with maize, known as push
and pull system. The latter is a combination of Maize with undersown/intercropped
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desmodium and Napier grass as a trap crop to control stemborer and striga, a
chemical ecology-based integrated pest management technology (Khan et al. 2016).

The transformation of cropping systems towards forage legume-based systems
can increase the potential of CCAM (Forage legumes > Forage grain legumes >
Intercropping systems), through relatively high below (3–6 t DM ha-1 a-1) and
above ground biomass (5–15 t DM ha-1 a-1) and nitrogen fixation (50–300 kg N ha-
1 a-1) of forage legumes (Kumar et al. 2018), efficiently reducing soil erosion
(Sheaffer and Seguin 2003) and with positive impact on following cash crop yields
(Traill et al. 2018). Nutrient acquisition and nutrient utilization are species and
genotype specific and differ between crop families of grasses and legumes and
between legumes (Gómez-Carabalí et al. 2010). Of relevance is the % lignin, C:N
ratio, (lignin + polyphenol): N and C-to-N ratios (Thomas and Asakawa 1993).
Evidence is also given that this crop group increases animal performance, where
similarly the mentioned ratios are of relevance for the digestibility of forage legume
feed (Schultze-Kraft et al. 2018).

The implementation of this crop group however is challenging for several
reasons: the availability of seed material; the lack of knowledge about the potential
impact of plant based nitrogen on the following crop performance; the idea that
humans cannot eat forage legumes, and therefore cropping forage is a short-term
loss of land for assuring food security, but one that overlooks the contribution of
farm yard manure to increased crop yields as well as to the production of milk and
meat.

It appears that forage legumes are not offered by either seed breeders, seed
wholesalers, advisory services or researchers and policies, with some exceptions
of selected species and regions. In the same way, farmers multiplication of seed
material is an exception. The diversification of crop rotations with nonmainstream
crops is limited because there is no demand by the markets, but also because of
traditional food habits. Intercropping and relay cropping – two submethods of crop
rotations – likewise can increase yield and income and are rarely implemented.

Mulching Strategies and Green Manure Cover Crops

It is commonly argued that mulch material contributes significantly to the ecological
functions and CCAM (Table 2). Already small amounts of mulch material positively
impact soil parameters (Mchunu et al. 2011). However, most smallholder farms have
no left-over organic matter from their arable fields. All the straw and weeds are
consumed by animals after harvest, or burned. As a result, soils are open and this
contributes to a further loss of the first most fertile millimeter of humus via wind and
water erosion, and leads to a continuous reduction of soil functions. Collecting
mulch material outside the farm is for several reasons not a sustainable approach.
First, in many regions, biomass is limited, but also requires significant labor,
estimated to be 5 to 12 days per acre (Bunch 2017). Furthermore, it does not fit
for a community or catchment approach if all farmers would collect biomass,
competing also the feed demand of grazing animals, that are mainly far beyond
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the carrying capacity of the communities available pasture land (Wall 2017). Further
relevant source for mulch material is branches from alley crops with an annual
biomass productivity of 2 to 10 t DM ha-1, dependent on the tree species, variety, as
well as the planting density and well-managed ratooning (Wilson et al. 1986).

Green manure cover crops are mainly planted in the short rainy season and used
also for food and feed purposes. Green manure cover crops (GMCC) include any
species of plant, mainly leguminous crops, whether it is a tree, a bush, a climbing
vine, a crawler, a grain legume, forage-grain legumes, or close to water a water born
plant (Wall 2017). GMCC like Lablab beans (Dolichos lablab or Lablab
purpureum), runner beans (Phaseolus coccineus), mucuna (Mucuna spp.), ratooned
pigeon peas (Cajanus cajan), jack beans (Canavalia ensiformis), and many other
GMCC species like tephrosia (Tephrosia vogelii or T. candida) produce high

Table 2 CCAM relevant ecological functions of agroecological practices

Ecological
functions

Agroecological methods (arable and plant cultivation methods)

Mulching
systems

Green
manure
cover
crops

Farm
yard
manure
typesa

Low
tillage
systems

Agro-
forestry
systems

Silvo-
pastoral
systems

Soil erosion control +++ +++ + � +++ + � ++
+

+++ +++

Carbon
sequestration
(humus production)

+ � ++ +++ + � ++ / +++ +++

Reduction of soil
compaction

++ +++ ++ + +++ +++

Nitrogen fixation / /�+++ / / +++ +++

Local climate
regulation

+ � ++ + � ++ / + � ++ +++ +++

Water infiltration,
i.e., avoidance of
water run of

+++ +++ ++ +++ +++ +++

Water holding
capacity

++ +++ ++ +++ +++ +++

pH-regulation/
increase of nutrient
availability

+++ +++ +++ + +++ +++

Nutrient/carbon
recycling

+++ /

• Spatial (field) +++

• Temporal (years) +++ +++ +++

• Horizontal (soil
layer)

+++ +++ +++ +++

Source: Authors compilation
+ ¼ low; ++ ¼ medium; +++ ¼ high; /¼not applicable; � ¼ indicating intermediate position
a including a broad range of types from stable manure up to liquid forms
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amounts of biomass and increase C-sequestration (above and below ground bio-
mass) (Branca et al. 2013; Hobbs and Govaerts 2010). Nitrogen fixation of legumi-
nous crops varies in a broad range of approx. 80 and 250 kg N ha-1 a-1, according to
species, variety, soil and climatic conditions, and crop management (Monegat 1991).
Assuming a loss of 50% via volatilization and use of grains (Bunch 2017), there are
still more than 40 kg ha-1 a-1 N for the following crop with a reference value of
2 t ha-1 a-1 wheat.

Seriously managed, CMCC, combined with minimum soil tillage, can reduce soil
erosion by more than 90% (equivalent to a means of 850 kg ha-1organic matter,
approximately 50 kg nitrogen ha-1 and 8 kg phosphorus ha-1). GMCC provides
nitrogen and offers weed control (Elwell and Stocking 1988), as well as other
benefits, including the amelioration soil compacted (Scopel et al. 2004). But
GMCC for compost or mulch is only partly a solution because farmers argue that
all land should be used for food production, and this hinders them from investing in
these crops, which asks for an answer. With forage grain legumes, an alternative
exists that can fulfill both ecological functions, but also offer food and feed, and keep
relevant parts of the fixed nitrogen in the field. Barriers to their implementation are
costs (seeds) and lost harvest of a catch crop income. So, farmers often prefer
intercropping of, or rotation with, grain legume crops rather than GMCC (Nandwa
et al. 2011).

Farm Yard Manure

Farm yard manure (FYM), which is an un-normed mixture of dung, slurry, straw,
and feed residues, is an organic material with many relevant ecological functions
(Table 2) (Teenstra et al. 2015). FYM is potentially available on a farm for re-
distribution to the fields, if there is any form of zero grazing or animals fenced for
certain times in a kraal. Systematically applied, FYM manure can increase biomass
production by 100% (Ndambi et al. 2019). In many cases, its impact on yields is
comparable with that of medium mineral fertilizer inputs; or the combination of
5 t ha-1 FYM with 30 kg N ha-1 a-1 is able to produce equivalent maize yields in
comparison with 200 kg N ha-1 a-1 (Achieng et al. 2010).

Practically each smallholder farm should have some FYM. One ox, one or two
cows, and in some cases approx. Five sheep or goats and 10–20 chickens are a
classical set of animals for a 1 ha farm. A tropical livestock unit is calculated with
250 kg, which is 50% of the Western standard. Additional feed comes from com-
munal pastures, feed along pathways, and from shrubs. Milk productivity with this
feed is rather low (378.6 kg cow a-1 in 2018 in East Africa; http://www.fao.org/
faostat/en/#data/QL). As a result, the production of farm yard manure is low as well
as their nutrient content. Moreover, this limited manure production is often used for
house construction or for cooking purposes. In addition, most farmers do not apply
manure management practices, such as roofed animal housing, with water-proof
floor or covering manure during storage in order to prevent large nutrient losses
during manure storage, increasing greenhouse gas emissions, and reducing the
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quality of the manure as a fertilizer and its positive impacts on ecological factors, that
is, contributions to CCAM (Ndambi et al. 2019).

To conclude, farm yard manure contribution in current smallholder systems to
strengthen CCAM or productivity is seriously low or nonexistent. Hurdles for an
adequate collection and use of FYM are lack of knowledge in general about the value
of this organic matter, techniques for cut and carry feed, investment for zero grazing
units, that is, kraal fencing, and techniques for the adequate distribution of the
manure in the field. Furthermore, it seems neither in the focus of advisory services
nor of research or policy agendas (ibid).

Soil Tillage

Soil tillage functions include, among others, to loosen the soil, to provide technical
aid for in depth growth of roots, to homogeneously mix organic matter with the soil,
and to prepare seed beds.

Current partly excessive soil tillage systems often lead to soil compaction, soil
aggregate break down, soil dust, and rapidly decomposing organic matter. High rates
of topsoil loss contribute to downstream sedimentation and degradation of local and
regional water bodies (Tully et al. 2015). While soil compaction reduces the seedbed
quality and thus hinders the germination of seeds, soil dust gets irreversibly lost via
water and wind erosion. Thus, the current type of so-called plowing tillage systems
in combination with maize dominated cropping systems weakens several ecological
functions relevant for CCAM.

In general soil tillage systems follow a continuum from conventional inversion
moldboard plow up to disc opener no-till planter into dead residue (Reicosky 2015).
Alternative soil tillage systems have been developed over the years to reduce tillage
intensity, including stubble mulching, to reduce or eliminate tillage, and to retain
plant residue on the soil surface to alleviate wind and water erosion. These practices
led to what became known as conservation tillage, culminating in no-till systems that
avoid any soil disturbance. No-tillage, reduced-tillage, mulch-tillage, and strip-
tillage are some of the diverse CA tillage approaches.

The combination of green mulch cover crops (GMCC) is expected to significantly
increase ecological functions and contributions towards CCAM (Table 2). GMCCs
can also control weeds by covering, that is, suppressing upcoming weeds. Potential
yields through combining mulching and low soil tillage exceed 100%. But it must be
remembered that the quantity of additional organic carbon in the soil under no-till is
relatively small. The main effects are relevant for other ecological functions and
indirectly contribute to CCAM. Over the years it also has become evident, that after
a period of low tillage interventions, this system must be interrupted for 1 year with a
more intense tillage approach, in order to loosen natural soil compaction effects in
the below ground, as well as to regulate the weed pressure (Powlson et al. 2014).

Soil tillage systems technologies with reduced intensity are only available in
some regions and the optimal approach which depends on soil type, rainfall, share of
skeleton, precrop and the following crop, as well as above ground biomass is still not
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identified for many agroecological situations. If not managed properly, nonadequate
technique applied, and rotations without forage legumes, as well as limited or lack of
mulch material, there is high risk of weed pressure, reduced crop yields. If weeds
take over farmers then tend to misinterpret the approach increasing the application of
fertilizer inputs and herbicides with negative environmental impact (Giller et al.
2011). A certain number of weeds however can provide also positive ecological
functions, as discussed in OA (Hillocks 1998). Missing finances for the technical
equipment and knowledge gaps might be other reasons for low adaptation rates of
reduced tillage systems in Africa.

Agroforestry

The multifunctions of the diverse agroforestry systems are highly relevant for CCAM
(Lasco et al. 2014), but also serve as forage or for other diverse purposes (fuel,
construction, apiculture, food, forage), and provide positive contributions to reduce
concentration of carbon dioxide (CO2) and other greenhouse gases (GHGs) (Awazi
and Tchamba 2019) and to regulate microclimate (Mbow et al. 2014). Specifically,
alley-crop-systems contribute to multiple ecological functions (Table 2). They con-
tribute to a reduction of inorganic inputs (Wilkins 2008), to pest and disease control
(Murthy et al. 2013), biodiversity (Murthy et al. 2016), and regulation of microclimate
(Schroth et al. 1995). What makes them specifically attractive is their use of subsoil
layer nutrients and water resources and photosynthesis above the main crops, well
adapted to soil and climate conditions, simulating partly the original vegetation cover
before once turned the land from natural forest to arable land.

Alley branches can be used directly as mulch, or as a protein feed for animals,
filling the protein gap and leading to higher animal manure production. Trials of
alley crops with rows all 4–8 m document the high positive impact on cash crop
growth. A weakness in the majority of trials are monocropping alleys with an
increased risk of pest and diseases, while diverse alley crops provide more resis-
tance, multiple functions for arable pest and disease control, and a diversification of
forage qualities and adaptability towards CC (e.g., Faidherbia spp.).

On smallholder farms, their integration is challenged if the land is scattered. Other-
wise, already the limited area of the homestead would offer space for implementation.
Biomass productive hedges are often not in place and also the technique of ratooning, for
example, in case of pigeon pea, and other management practices are missing and are
limited in biomass production with all its positive impact on CCAM. Further hurdles for
smallholder farmers to integrate a diverse cropping scheme with alley crops are the
limited availability of seedlings, lack of knowledge how to prune shrubs and to integrate
into feed ratios, as well as investment costs and workload for their management.

(Silvo-) Pastoral Systems

Pastoral systems are usually the backbone of animal systems. By nature, grassland is
rich in root biomass and humus content is seriously higher than in arable systems
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with permanent soil tillage. However, in most African countries, pastures are
overused, sward management is low, erosion is high, and productivity is not high
enough to feed animals with energy and protein rich crops. Irreversible loss of land
via erosive processes/land-slides is point on the agenda explaining the critical
situation (Wynants et al. 2019). Land distribution and ownership patterns coupled
with continuous fragmentations are further drivers of the current system and are
challenging farmer towards sustainable grassland management (Tesfa and Mekuriaw
2014). Provision towards ecological functions, that is, contributions towards
CCAM, is low if not negative.

Limited availability of seeds, lack of labor for establishing pasture systems, the
cost of fencing and knowledge gaps, as well as missing management and knowledge
at community level, as well as missing management at the community level, hinder
and limit the production of pasture biomass and thus also their CCAM.

As an alternative silvopastoral system, a combination of pastures with legumi-
nous shrubs and trees provide relevant contributions to ecological functions towards
CCAM (Table 2) and an enormous increase of biomass production (Sarvade et al.
2019). The forage legume trees cover a high share of the protein gap limiting the
animal production. Forage production can be seriously increased with a strong
impact on the level of fattening and milk production and less GHG emissions per
animal unit (Broom et al. 2013). For that grassland management needs to reorganize,
including regulations for use, awareness on traditions, and fenced or otherwise
controlled areas (Ochieng and Waiswa 2019).

Impact of Arable and Plant Cultivation Methods on pH Regulation

The pH of soils with substantial ecological functions and specifically high impact on
biomass production is influenced by several of the arable and plant cultivation
methods and therefore is summarized in this subsection. The pH of many East
African soils is below 5.0, virtually no available phosphorus and toxic levels of
aluminum (Bunch 2017) and therefore out of the optimum for a productive crop
growth and biomass production, which is between 5.8 and 6.5, while crop specific in
a broader range. Mineralization processes, the optimal living conditions for micro-
organisms responsible for many soil functions, and growth conditions for crops are
limited with low pH, leading to lower crop yields, that is, less positive impact on
CCAM. Under acid soil conditions, phosphorous is tied up in a short time and does
not provide more than 0.5% soil phosphorous in forms that are available to plants.
The general low P content of African soils increases the dilemma.

Mulch and compost material mainly from grass provide a large C/N and therefore
will not feed the crops. A high share of legumes instead offers a C/N which boosts
the growth of microorganism that are functioning as storage but also deliver nutrients
towards crops through the decomposition of mulch material. Phosphorous becomes
available as a slow floating source. Farm yard manure (approx. pH 7), slurry
(approx. pH 8), and compost (approx.> 7 pH) with high pH values would positively
influence nutrient availability and thus crop productivity. Current systems are
lacking these effects due to the low availability of manure, slurry, and compost,

70 Resetting the African Smallholder Farming System: Potentials to Cope with. . . 1451



which at least causes the inefficient landuse and low productivity of crop and animal
production. Also, alley crops have the potential to increase the pH via litter fall,
through re-transporting leached Ca, however depends on tree species, and the
presence of a subsoil of suitable quality, that is, clay enriched and with high Ca
saturation (Vanlauwe et al. 2005).

Using lime is an option, so far locally available and transportable. But liming runs
the risk of increased mineralization, that is, humus decomposition beyond what is
needed, and there are cost factors.

Cattle, Dairy, Sheep, and Goat Systems

Ruminants play an intermediate position between crops and manure. Current feeding
ratios are often of low quality. Overgrazed grassland, lack of any forage crops in the
crop rotation, alley crops, and hybrid grasses (Pennisetum spp.; Brachiaria spp.) are
the explaining factors. Specifically, protein deficits explain also the low performance
in dairy production. Intense use of straw and stubble after crop harvests – a main
forage source – reduces the humus level of soils, specifically if organic manure is not
recirculated to the fields, which is in manure farms the practice and is increasing soil
erosion. Without a forage management including access to water, positive outcomes
of breeding programs cannot be transferred into practice. To add cereals or grain
legumes in the feed ratios compete directly with human food and cannot be
recommended as a key strategy, except the use of leftovers.

Ruminant demand for forage legumes, hybrid grasses (Ghimire et al. 2015),
forage trees/alley crop branches (Franzel et al. 2014), and silvopastoral systems fit
with the CCAM strategies, due to the fact that they all contribute to an increase of
biomass production, farm internal nitrogen supply, and milk productivity per land
unit. As a result, the organic manure nutrient content and quantities increase, which
can serve as a valuable fertilizer for crops and for supporting soil functions.

Agricultural Production Systems Contributions to CCAM

This section first discusses diverse agricultural production methods and how they
relate to each other in order to identify communalities and differences. As seen in the
description of single CCAM relevant methods, they often refer to CA and OF.
Table 3 informs about differences and similarities within an African context.

Sustainable Intensification – Some Terminological Clarifications

Most prominent agricultural production methods in recent years can be summarized
as “Sustainable intensification (SI),” which is defined as meeting the growing
demand for agricultural production while conserving land and other resources,
“from the same area of land while reducing the negative environmental impacts
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and at the same time increasing contributions to natural capital and the flow of
environmental services” (Khan et al. 2017). This term also accounts for the human
condition, nutrition, and social equity. In their review, Smith et al. (2017) conclude,
using a broad range of socio-, cultural, and socio-economic measures, that most
current agricultural practices fall into this category. SI does not explicitly exclude
any farming practice or requires an obligatory production framework, as, for exam-
ple, the case for conservation agriculture with minimum tillage and mulching, or
organic farming that excludes some farming and processing inputs. Mahon et al.
(2017) conclude that SI is an oxymoron, underpinned by a productivist agenda, and
that it is lacking a clear rationale. In their review, Xie et al. (2019) identify the
reduction of yield gap as the main target of SI. But the intense use of mineral
fertilizers is also not excluded (Holden 2018). Yet others, like Mdee et al. (2019),
understand SI to be based on agroecological methods, or to classify integrated pest
management as a core activity (Pretty and Bharucha 2015).

Definitions of CA do not explicitly exclude mineral fertilizers, herbicide and
pesticide applications, but keep them at an option. Consequently, Vanlauwe et al.

Table 3 Assessment of CCAM relevant methods in CA and OA

Agricultural production methods

Conservation agriculture Organic agriculture

CCAM relevant methods

Crop rotation ++ +++

Crop rotation ++ +++

• Forage legumes ++ � +++ +++

• Relay cropping +++ +++

• Intercropping +++ +++

• Green manure +++ +++

Farmyard manure +++ +++

Compost +++ +++

Mulching +++ +++

Minimal tillage +++ + � ++

Hybrid grass ++ ++

Alleys/hedges +++ +++

Silvopast. Systems ++ +++

pH regulation +++ +++

Biodiversitya + +++

Other methods

Nitrogen fertilizer a e

P, K mineral fertilizer a a (accepted are low soluble fertilizers)

Herbicides a e

Pesticides a e

Source: Authors compilation
+ ¼ low; ++ ¼ medium; +++ ¼ high; /¼not applicable; � ¼ indicating intermediate position;
0 ¼ not explicitly mentioned; a ¼ accepted; e ¼ excluded
avia biotope diversity
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(2014b) summarize three conceptual pathways for intensification paradigms:
(i) integrating soil fertility management ending up in conservation agriculture,
(ii) push and pull systems (Khan et al. 2008b), and (iii) evergreen agriculture
(agroforestry-based systems) (Garrity 2017). All of these systems contribute to
high soil health status and productivity through somewhat different pathways. In
contrast to the overall definition of SI, which includes overlaps of sustainable and
ecological intensification (Wezel et al. 2015), these pathways are classified as being
only part of ecological intensification and thus only cover partially what is discussed
under the term SI.

Another concept, Climate Smart Agriculture (CSA), is defined by the FAO as
“agriculture that sustainably increases productivity, resilience (adaptation), reduces/
removes greenhouse gases (mitigation), and enhances achievement of national food
security and poverty reduction” (Nyasimi et al. 2014). CSA refers to food security
and rural livelihood improvement through agricultural concepts that facilitate cli-
mate change adaptation and provide mitigation benefits (Scherr et al. 2012). Arable
and plant cultivation methods applied refer to many of the field-based and farm-
based sustainable agricultural land management practices identified as part of SI. As
Zougmoré et al. (2016) suggest in their analysis of CCAM relevant approaches, CSA
is a farming method like CA.

“Sustainable land (use) management (SLM)” as the last approach, which should
be mentioned in this brief analysis, is a compilation of methods that summarizes
many of the activities already introduced above. Gurtner et al. (2011) define SLM as
“the adoption of land use systems that, through appropriate management practices,
enables land users to maximize the economic and social benefits from the land whilst
maintaining or enhancing the ecological support functions of the land resources.”
Arable and plant cultivation methods of SLM include soil fertility and crop man-
agement, soil erosion control measures, organic fertilization, minimum soil distur-
bance, and incorporation of residues, terraces, water harvesting and conservation,
and agroforestry, grazing and forest management (Branca et al. 2013; Cordingley et
al. 2015). But scholars highlight different specific methods. Dale (2010) defines
SLM mainly as a technology approach to cope with erosion via mainly technical
interventions and less one defined by crop-based systems.

Conservation Agriculture

Conservation agriculture (CA) integrates three principles (FAO) (www.fao.org/ag/ca):
(i) avoiding or minimizingmechanical soil disturbance; (ii) enhancing andmaintaining
a permanent mulch cover with organic matter on the soil surface; and (iii) diversifying
species (Kassam et al. 2017). Today CA is associated with three other agricultural
production systems.

Push and pull system discussed as a core subsystem of CA, but also described as a
climate smart technology that combines maize with undersown forage legumes and
Napier grass, and with a minimum tillage approach (Midega et al. 2015), fulfills
many of the ecological functions that contribute importantly to CCAM (Table 3) and
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enables sustainable cereal crop and livestock production intensification through
ecosystem or agroecological approaches based on natural biological processes
(Khan et al. 2014). In the face of CC, new drought-tolerant trap (e.g., Brachiaria
cv.Mulato) and intercrop (drought-tolerant species of desmodium, e.g., D. intortum)
plants have been studied to further develop the push and pull system (Khan et al.
2017). Another approach is Evergreen Conservation Agriculture, a subtype of CA,
which focuses specifically on the integration of trees into crop and livestock pro-
duction systems (Garrity 2017). Close to this system are agroforestry systems that
include inter-planting of a broad range of leguminous shrubs (Pratt et al. 2002). For
erosion control in combination with other conservation measures, for example,
dense hedges of vetiver grass on contours are recommended (Bunderson et al. 2015).

The positive impacts of CA on yields are well documented (Mkonda and He
2017), with yield increases compared to traditional methods, for example, from
1 t ha-1 to 3.5 t ha-1 per cropping season (Khan et al. 2006) as well as increased milk
production (Khan et al. 2008a; Khan et al. 2008b; Midega et al. 2014). As a result,
CA is shown to contribute significantly to higher economic returns for the farmer
(higher returns to both land and labor than conventional farmers’ practices), thereby
allowing reduced, and sometimes none, use of nitrogen fertilizers, herbicides, and
pesticides. CA contributions towards carbon sequestration further underline their
high contribution to CCAM (Gonzalez-Sanchez et al. 2019; Sommer et al. 2014).

Organic Farming

Organic farming (OF), as described by internationally accepted guidelines, is designed
to be followed for farmers who are approved by certification processes and want to
market their products as organic. OF also embodies a set of ethical principles that serve
to orient all the subsystems of this agricultural production system. OF relies on (agro-)
ecological processes, biodiversity at all levels (species, genotype, habitat,
landscape. . .), and nutrient and carbon cycles, and high contributions to reduce
agricultural GHG emissions (Scialabba and Müller-Lindenlauf 2010). All CCAM
methods are recommended (see also FAO 2011), while other methods with often
critical impact on the environment, but also for CC are limited (Table 3).

A key characteristic of organic farming is the focus on soil fertility, as a result of
diversified crop rotations with forage legumes, catch crop and intercropping, and
organic manure, which is the basis of a healthy and sustainable production (Meyer
2010). These diversified crop rotations largely replace the functions of excluded
inputs like soluble mineral fertilizers, herbicides, and pesticides (Freyer 2019).
Forage legume-based crop rotations, agroforestry, and nutrient and carbon
recirculation are of high relevance. From a systems perspective, all of these methods
must be implemented to enable a productive system. Tillage systems follow the idea
to avoid the mix of fertile above ground soil layers with less fertile in lower layers.
How far tillage intensity can be reduced depends on precrop – following crop
relations, produced above and below ground biomass, organic manure type and
amount, and the demand for weed control or to initiate mineralization processes,
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therefore cannot be generalized (Koepke 2003). At this point the difference between
OA and CA becomes relevant which is the exclusion of many external inputs in the
OA system. Functions of these excluded inputs must be partly taken over by the
tillage system.

Other characteristics of OA are the inclusion of traditional knowledge, material,
and methods (Müller and Davis 2009). Also, local seed collection and use is an
intrinsic part of organic agriculture (Forster et al. 2012). Such seeds might be an
advantage to adapt under certain climatic conditions and contribute to maintaining
agro-biodiversity.

Africa hosts the majority of organic farms worldwide, with almost 2.1 million
hectares of certified organic agricultural land (2017), and at least 815,000 producers
(Willer and Lernoud 2019). But what is currently missing is an evaluation of the
practices in these organic farming systems. Annual farm certification only partially
informs the extent and quality of CCAM applications.

Moreover, research lacks a convincing organic systems approach. If trials include
amounts of organic fertilizers that are going beyond the production capacity or what
is currently known on that in practice, crop rotation principles are ignored, and alley
cropping is not integrated (Adamtey et al. 2016; Musyoka et al. 2017). Such trials are
of low relevance for identifying the real potential of OA to CCAM. This limited
availability of research trials hinders a more in-depth assessment of the organic
approach. Specifically, in comparison to CA, the gap is huge.

In African countries, OA is often equated with traditional practices – whatever
they are – less mechanized, and minimum use of chemical fertilizers and pesticides.
The low input systems neither fulfill the organic principles of health, ecology,
fairness, and care, are not in line organic guidelines, nor would survive any organic
farming certification process (Nalubwama et al. 2011).

Discussion

This section summarizes and provides an orientation to the interdependence of
CCAM relevant methods. It informs the challenges of farmers to adopt and refers
to farmers’ perspectives, agroecological, social, livelihoods, and the surrounding
conditions for implementing CCAM, as well as how to interpret communalities and
differences between CA and OA.

The Logic of CCAM Practices

The interdependence of CCAM relevant methods is a key to understand their
efficiency, success, or failure, not only for CC, but also their impact on productivity.
Methods can be classified into two levels:

• First level: Methods that provide biomass and nitrogen: Legume based Agrofor-
estry systems, silvopastoral systems, forage legume-based/green manure cover
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crop, relay crop and intercrop-based crop rotation systems, and perennial produc-
tive high breed grasses.

• Second level: Methods that depend on the productivity and management of first
level methods: mulching, manure and compost production, minimum tillage, pH
regulation, biodiversity for pest and disease regulation.

Of course, isolating the yield effects of individual practices is complicated
(Branca et al. 2013), but without optimal management of first level methods, second
level methods cannot be activated or are weak in their performance. In other words,
if methods in the first level are not well established, second level methods cannot be
put in place. In organic farming, the application of CCAM relevant methods is
obligatory to enable productivity with limited input from outside. Exclusion of one
method would weaken the whole system. Of high relevance is the management
quality of applied methods which allow that, even with very low amounts of
residues, increases in the productivity with respect to conventional farming practices
(Sommer et al. 2012). This fact is often overlooked. OA is very clear on this point –
there are no half measures – if so, the system would fail both in CCAM and in
productivity.

Barriers for Adoption CCAM from a Production Perspective

In recent decades, extensive efforts to promote CA, CSA, or SLM have been
undertaken. Despite extensive past efforts by governmental, nongovernmental, and
research organizations to promote SLM to smallholder farmers in SSA, adoption
remains low (Cordingley et al. 2015). What are the barriers to establish these
methods from a production perspective?

• Crop specific: forage legume seeds, agroforestry seedlings and tree management,
hybrid grass seeds, pasture seeds, weed control.

• Technically specific: soil tillage and seed technology, technology for cut and carry
systems, stable construction, water management, storage, transportation and
distribution of organic manure and compost.

Challenges to implement CCAM approaches are obviously not essentially differ-
ent between CA and OA. The difference lies in the accessibility of nitrogen fertilizer,
herbicides (Wall 2017), and pesticides that all can be applied as “emergency”
methods in CA, while not in OA, These inputs provide CA farmers a set of methods
that can be used when the crops are in a critical stage (lack of nitrogen, high weed
pressure, expected outbreak of pest and diseases).

The differences between CA and OA can be identified largely in the so-called
“other methods” (Table 3). Neither soluble mineral fertilizers nor herbicides and
pesticides are allowed in either to bridge critical weather conditions, weed, or pest
and disease development. Nitrogen fertilizer is the most relevant input with high
impact on GHG emissions.
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The application of these inputs is also controversially discussed in CA. While
some argue that the three CA principles are sufficient to guide CA practices
(Sommer et al. 2014; Wall 2017), Vanlauwe et al. (2014) identified a fourth principle,
the application of mineral fertilizers. Many farmers believe that CA cannot be
undertaken without specific inputs and tools, a message commonly conveyed to
them by extension staff (e.g., hybrid seed, fertilizers, herbicides, knapsack sprayers,
jab planters,. . .) (Bunderson et al. 2015). For farmers, the exclusion of “other
methods” would limit the acceptance of CA and its scale on farms. Farmers also
fear an increased abundance of termites and earthworms as harmful, whereas in fact
they can have beneficial effects on the soil and crops (ibid). But there are also voices
from the organic side that agriculture in Africa without herbicides and synthetic
fertilizers is not possible and vote for their integration into the organic guidelines
(Lotter 2015). The result would be simply CA. Other surveys report that farmers’
perceptions indicate that CA without external inputs, such as fertilizers, herbicides,
pesticides, or compost, can improve yields relative to conventional agriculture. This
argument is supported by the observations of scientists that a large proportion of soils
in sub-Saharan Africa can be described as nonresponsive (Tittonell and Giller 2013),
in which mineral fertilizer applications do not result in higher crop yields, while
already the application of the three CA principles led to serious higher yields in
comparison to the conventional input driven approach (Ngwira et al. 2013; Thierfelder
and Wall 2010). Also, effective weed management is possible without the use of
herbicides, since all three CA practices contribute to integrated weed control, also
experienced in organic farming, if crop rotation and weed management are organized
following latest knowledge. These observations are a clear reference about the OA
system that also builds besides other methods on the three CA principles. These
experiences are also showing that subsidizing of inputs is not a necessary precondition
to CA use and uptake (Bunderson et al. 2015; Lalani et al. 2017).

According to FAO (2012), 80% of all farms in Africa have an agricultural area of
<2 ha. These fragmented small land holdings preclude the effectiveness of large
machinery in fieldwork, specifically for cut and carry systems, mulch-seeding
systems/zero-tillage direct seeders, or the distribution of farm yard manure or
mulch from outside the field, or from alleys (Sims et al. 2017; Sommer et al.
2014). In contrast, Lalani et al. (2017) observed that manual forms of CA can be
attractive for farmers, particularly those with very small plots of land (0.5 ha or less),
observing that mulching systems can reduce weed pressure.

Labor for biomass management is discussed as a barrier to the adoption of some
CA methods, while others like seed varieties that are drought tolerant and early
maturing are classified as the most suited technologies for smallholder farmers to
respond react to CC (Senyolo et al. 2018). To define the CA approach only with
drought resistant seed material, optimized irrigation and mineral fertilizers fail the
overall idea, which could be also titled with “CA by default” or a conventionalized
CA; of course it is less complex to apply a hand full of fertilizers and a herbicide
instead of developing diversified crop rotation, mulching, and agroforestry systems.

A further barrier of CA/OA systems with the CCAM approaches is that they
cannot be put in place in one season. Often the starting points for transforming the
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system are poor soil fertility, land degradation, pests, and erratic rainfall that are
challenging the adoption (Sietz and Van Dijk 2015). It is therefore not only about
implementing new farming methods, but also to “repair” the damaged natural
system. There is a conversion period of 2 to 3 years as it is also for OA, where
farmers primarily have to invest in the transformation of the system. This requires a
period of labor and financial investment, and patience by farmers until trade-offs of
the new system become visible in an increase of productivity (Lalani et al. 2017).

In addition to these relevant hurdles, it is to keep in mind that weed and pest and
disease control are a challenge for all farmers, irrespective of the CCAM methods,
and not specific for CA/OA, like diversified crop rotations, in comparison to maize
monocropping (Thierfelder et al. 2013; Thierfelder and Wall 2010); however, the
high increase of pest and diseases provoked by monocropping and biodiversity poor
landscapes underlines that farmers on the long run have no other choice than to
modify their system, independent from CC.

Markets, Policies, and Education for a Diversified Production

The implementation process of CCAM methods still lacks a clear conceptual
understanding (Partey et al. 2018). The poor understanding of CA/OA, its CCAM
methods, and suspected contradictions over what it means reflect the absence of an
overall educational training program for teachers, extension officers, and students
(Bunderson et al. 2015). Field trials should not lack of first level CCAM approaches
(see the example of (Thierfelder et al. 2013, 2016); without training programs for
farmers, chances for successful adoption of CCAM will continue slim (Erenstein et
al. 2012).

Diversified production is also not possible without a policy and market enabling
crop diversity and rewarding the contributions toward biodiversity and CCAM.
Sustainable out-scaling of CCAM and to achieve large-scale landscape adoption
depends on linkage to functional markets for inputs and outputs (Sommer et al.
2014). There is need for more attention via policy and extension on value chains, and
more focused development resources from donors, governments, nongovernmental
organizations (NGOs), and national and international research and development
organizations to support participatory dissemination and upscaling of CCAM
approaches (Friedrich et al. 2012). Investment policies should focus along value
chains from technology at farm level, up to processing, and the availability of
specifically forage legume seeds and tree seedlings.

Certification, that is, labeling of CCAM based agriculture, might be an option to
support their implementation if linked with subsidies. In case of OA certification,
schemes protecting the production status is currently only a half solution to increase
the share of CCAM approaches in practice, due to the fact that only farmers with
products for export are able to partly cover the relatively high certification costs. For
local markets, certified products with a premium price are not adapted to the
economic conditions of local population. Apart from specific investment costs, the
successful implementation of CCAM methods would increase production and thus
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farmers income, making additional price premiums less important. An ecosystem
services-based payment scheme might be an option; however, the administrative
costs can be currently higher than the money reaching the farmers pocket.

To make an impact, integrated participatory catchment strategies are expected to
be most efficient in terms of adoption of CCAM methods, via technology, advisory
and financial support, and the implementation of an impact monitoring (Scherr et al.
2012).

Sensitivity must be given of the vulnerable and marginalized (women and poorer
households, for instance) to avoid the exclusion and a social gradient (Feder et al.
2010). Multiple communication tools are discussed as a precondition for successful
implementation of CCAM (Leeuwis and Aarts 2011). To bring together broad
experience for learning and encouraging innovation, communication platforms
should be established including farmers’ organizations, advisory services, and
universities. Social acceptance by referents, and shared learning processes, plays a
key role in this regard (Lalani et al. 2017).

National policies have to frame this process, for example, to strengthen the
establishment of a seed and seedling sector specifically for forage legumes and
legume trees, while regional land locally sensitive policy instruments serve for
finetuning of product specific value chains (Zougmoré et al. 2016).

Conclusions

This chapter summarizes the status and potential of smallholder farmers’ application
of CCAM practices and some observations on the institutional environment, with
reference mainly to the subtropical/tropical environments of East African small-
holder farming.

Lessons learned are that many CCAM relevant arable and plant cultivation
methods are available, but most of these are still not in place. It is obvious that all
CCAM methods contribute to an increase of productivity, with minor exceptions,
where systems need further development.

With respect to agricultural production systems where the integration of CCAM
methods is far advanced, conservation agriculture (CA) builds on the use of farm
inputs including nitrogen fertilizer, soluble mineral fertilizers, herbicides, and chem-
ical pesticides, while organic agriculture (OA) excludes these inputs. To what extent
these inputs are a precondition for successful CA management is a matter of
controversy. CCAM methods are practically similar in both approaches – CA and
OA – while the degree of their implementation and favored methods might be
different.

The amount of biomass production and nitrogen by nitrogen fixing crops is a key
driver of CCAM and an increase of farm productivity. Both can serve as general
indicators to assess farms, that is, catchments in their progress to cope with CC and
to boost productivity, while it is less the share of mineral fertilizer. Most relevant
crop groups with highest impact are forages legumes, forage grain legumes, and
leguminous alley crops, but also biomass rich hybrid grasses, that profit indirectly
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from the forage legume nitrogen, for example, via slurry. These crop groups are the
ones that increase soil fertility, reduce soil erosion and increase water holding
capacity, biological pest and disease control, provide the feed biomass for animal
husbandry systems, and guarantee an increase of cash crop yield and quality. Critical
is the low supply of specifically forage legumes in seed markets.

There are still open questions, specifically concerning the GHG of mulching
systems, pest and disease management and weed control, adapted technology for
small scale farming and catchment strategies for a synergetic and efficient manage-
ment. But those aspects are more part of a site and farm specific fine tuning than of
fundamental lack of knowledge, which currently characterizes one of the main
innovation barriers.

The dramatic negative trends of soil quality, biodiversity, and CC speak a clear
language that the agricultural systems must bid farewell to one-sided systems. There
is a need for a fundamental change, that is, resetting of the current farming practices,
in other words, adaptation is no longer the appropriate term but the comprehensive
transformation of the farming system as a whole. This is only possible if there is an
enabling institutional and policy environment that supports agricultural research,
advisory services, and education oriented to farmers’ needs to adapt their farming
system, making it more robust against drought and floods through the establishment
of biomass and nitrogen producing cropping systems, and is reducing the farm
specific negative impact on CC. This transformation process depends on assuring
that best practices, adapted to local conditions, can demonstrate a reduction of labor,
and a serious increase of farm income. It is recommended to apply a more systemic
view in developing farming systems and related value chains, instead of focusing on
single methods, that is, products. Transformation towards biodiverse crop rotations
and biomass management also asks for the respective markets, consumer demands,
and processing units, for example, for an increased milk production as a result of
increased forage production, a dairy structure, and adaptions, that is, transformations
of human diets. These final remarks clearly inform about the need for systemic
transformation of food systems for successful CCAM management.
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