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Abstract

Climate change and climate variability in Malawi have negatively affected the
production of maize, a staple food crop. This has adversely affected food security.
On the other hand, there have been increases in growing area, production, yield,
consumption, and commercialization of both cassava and sweet potato. Factors
behind these increases include the adaptive capacity of these crops in relation to
climate change and variability, structural adjustment programs, population
growth and urbanization, new farming technologies, and economic development.
Cassava and sweet potato are seen to have the potential to contribute to food
security and alleviate poverty among rural communities.

This chapter was previously published non-open access with exclusive rights reserved by the
Publisher. It has been changed retrospectively to open access under a CC BY 4.0 license and the
copyright holder is “The Author(s)”. For further details, please see the license information at the end
of the chapter.

F. P. Kawaye (*) · M. F. Hutchinson (*)
Fenner School of Environment and Society, Australian National University,
Canberra, ACT, Australia
e-mail: Floney.Kawaye@anu.edu.au; michael.hutchinson@anu.edu.au

© The Author(s) 2021
W. Leal Filho et al. (eds.), African Handbook of Climate Change Adaptation,
https://doi.org/10.1007/978-3-030-45106-6_120

617

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45106-6_120&domain=pdf
mailto:Floney.Kawaye@anu.edu.au
mailto:michael.hutchinson@anu.edu.au
https://doi.org/10.1007/978-3-030-45106-6_120#DOI


This study used a simple generic growth index model called GROWEST
to model observed yields of maize, cassava, and sweet potato across
Malawi between 2001 and 2012. The method can be viewed as a hybrid approach
between complex process-based crop models and typical statistical models.
For each food crop, the GROWEST model was able to provide a robust correla-
tion between observed yields and spatially interpolated monthly climate. The
model parameters, which included optimum growing temperatures and growing
seasons, were well determined and agreed with known values. This indicated that
these models could be used with reasonable confidence to project the impacts of
climate change on crop yield. These projections could help assess the future of
food security in Malawi under the changing climate and assist in planning for this
future.

Keywords

Climate change · Food security · Maize · Cassava · Sweet potato · Crop yield
modelling

Introduction

Process-based simulation models and statistical models are commonly used to assess
the impact of climate variability and climate change on food crop yields (Lobell and
Asseng 2017). The former typically have complex plant and environmental data
requirements, while the latter can have large uncertainties in fitted parameters that
make application to climate change assessment difficult (Schlenker and Lobell 2010;
Ray et al. 2019). This chapter examines a hybrid approach that statistically calibrates
a simple generic plant growth model, called GROWEST, using spatially distributed
yield and monthly climate data. The model parameters are robustly determined and
hence able to provide baseline models suitable for assessing the potential yields of
maize, cassava, and sweet potato in relation to projected climate change. The
GROWEST plant growth index model was originally developed by Fitzpatrick
and Nix (1970) and Nix (1981) and has been implemented by Hutchinson et al.
(2002). It has been used to develop a global agroclimatic classification that has
identified agroclimatic classes for Australia (Hutchinson et al. 2005) that have been
used to support a wide variety of ecosystem assessments.

The model is applied to annual yield data for the eight Agricultural Develop-
ment Divisions (ADDs) across Malawi and corresponding spatially distributed
monthly climate data. Spatial climate data were available from 1981 to 2012. The
maize analyses were restricted to the years 2006–2012 after the introduction of
the Farm Input Subsidy Program (FISP) in 2005/06 which had a significant
impact on maize yields. Reliable annual yield data were available for cassava
for the period 2001–2011 and for sweet potato for the period 2006–2012. The
yield model is based on regressing the logarithms of the observed crop yields on
average weekly growth indices of the GROWEST model, with the average taken
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over the respective growing season for each crop. Three key parameters of the
GROWEST model, the optimum growth temperature and the starting and
finishing weeks of the growth season, are tuned to the observed yield data for
each crop. The regressions take into account variations in site and management
conditions across different ADDs and are extended to take into account system-
atic increases in yields over time due to plant breeding programs, improvements
in growing practice, and carbon dioxide fertilization. Robustly calibrated models
are obtained for local, composite, and hybrid maize varieties and for cassava and
sweet potato.

Maize, Cassava, and Sweet Potato Growth

As noted by Kawaye and Hutchinson (2018), maize is a staple food crop in Malawi
that is grown under both irrigation and rainfed farming systems. However, rainfed
farming dominates as it covers about 99% of Malawi’s agriculture, mainly on
smallholder farms. Kawaye and Hutchinson (2018) further noted that rainfed
maize is normally planted between November and December (the start of the rainy
season). It grows rapidly during the high rainfall months of January and February
and matures by early April. It is harvested in late April or early May. Maize yields in
Malawi range from less than 1000 kg to over 4000 kg per hectare, depending on
various factors including climate, location, seed variety, fertilizer use, labor, and
policy-related factors including access to credit, input and output markets and
extension services.

Cassava (Manihot esculenta Crantz) is a perennial woody shrub with an edible
starchy tuberous root (Mathieu-Colas et al. 2009). Cassava grows under diverse
ecological and agronomical conditions. It favors a warm moist climate with mean
temperature of 24–30 �C (Nassar 2004; Mkumbira 2002). It can tolerate tempera-
tures from 16 �C to 38 �C (Cock 1984). It does not favor excess soil moisture nor
high salt concentrations nor pH above 8 (Nassar 2004; Mkumbira 2002). Cassava is
normally planted early in the wet season, usually around mid-November. As a
perennial crop, cassava has no definite lifetime or maturation period. After full
development of the canopy, root growth slowly decreases and finally stops. This is
the maturation point of cassava when maximum or near maximum yield is obtained.
Cassava is harvested when the returns for production and utilization are maximized.
Thus harvesting can be delayed to well after when the tubers have matured. The
optimum time to harvest is 9–12 months (Mathias and Kabambe 2015) depending on
various ecological factors such as rainfall, temperature, and soil fertility (Mathieu-
Colas et al. 2009; Benesi 2005).

Sweet potato (Ipomoea batatas Lam) is an annual crop (Mathieu-Colas et al.
2009). It is widely grown in tropical, subtropical, and temperate areas between 40�N
and 32�S. It grows best with air temperatures between 20 �C and 25 �C, and growth
is restricted below 15 �C (Ramirez 1992). It can be cultivated across a wide variety
of soil types and prefers lightly acid or neutral soils with a pH between 5.5 and 6.5
(Ramirez 1992). Sweet potato is commonly grown as an intercrop with maize and
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planted early in the calendar year (FAO 2005). It can also be planted toward the end
of the wet season in late April and grown on residual soil moisture. Like cassava, the
growth period of sweet potato depends on various ecological factors, but it generally
takes 4–5 months to mature (Mathieu-Colas et al. 2009).

Methodology

This study modelled the dependence of observed maize, cassava, and sweet potato
yields on spatially distributed monthly climate to provide a basis for assessing the
impact of projected climate change. The models were constructed by performing
multilinear regressions of the logarithms of the observed yields on accumulated
outputs from the GROWEST growth index model. The GROWESTmodel generates
a generic, process-based, growth index that depends on weekly or monthly climate
with a minimal number of parameters. The growth index varies between 0 (climate
totally limiting for growth) and 1 (climate optimal for growth). It is normally
assumed to be proportional to the rate of relative increase in plant biomass over
time. The growth index is calculated as the product of three separate indices that
incorporate the impact of temperature, solar radiation, and modelled soil moisture.
The simplicity of the model, and its underlying process basis, makes it well suited to
deriving robust calibrations of yield response to climate using yield data limited in
quantity or quality. The modelling approach can be seen as a hybrid between
complex crop simulation models and statistical analysis of growing season weather
variables (Lobell et al. 2011). The critical parameters of the GROWEST model are
able to be determined by maximizing the alignment of the GROWEST outputs with
the observed crop yields using standard multilinear regression. These regression
analyses are extended to take account of observed systematic increases in crop yields
over time due to crop breeding programs, improvements in crop management, and
possible carbon dioxide fertilization.

GROWEST Analysis

The models were calibrated on yield data for each ADD over the periods for which
both climate and reliable yield data were available, namely, 2006–2012 for the three
main varieties of maize, 2001–2011 for cassava, and 2006–2012 for sweet potato.
The GROWEST model was applied to monthly climate across all eight ADDs using
interpolated monthly climate values at 74 points that approximately equi-sampled
the cropping areas across the eight ADDs of Malawi as shown in Fig. 1. The
interpolated climate values were obtained using thin plate smoothing splines as
provided by the ANUSPLIN Version 4.4 package (Hutchinson and Xu 2013). The
output growth indices (GIs) were averaged across each ADD to match the average
yields reported for each ADD. The GROWEST model runs on a weekly time step
but can be applied to monthly climate data by interpolating monthly data to weekly
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data “on the fly.” It can provide weekly or monthly outputs. Weekly GROWEST
outputs were used to obtain finer-scale demarcations of the fitted growing seasons.

A robust regression model was used to determine critical GROWEST parameters
for all five crop varieties. Since the GROWESTmodel describes a relative growth rate,
it is natural to formulate the regression model in terms of the natural logarithm of the
observed yields. The log formulation has been used in other yield studies (Lobell et al.
2011) and appears to offer a natural separation between site and climatic effects on
observed crop yields. A similar approach, but not applying the log transformation, was
described by Kawaye and Hutchinson (2018). The regression model for the observed
yields Zij for year Yi and ADDj (j ¼ 1,..,8) was defined by:

log Zij

� � ¼ aj þ b Gij þ cYi þ εij

where Gij denotes the accumulated growth index for year Yi and ADDj and εij
denotes a zero-mean random error. The model parameters aj and b were initially

Fig. 1 Seventy-four sites
sampling crop growing areas
across the eight Agricultural
Development Divisions
(ADDs) of Malawi
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fitted by least squares regression while setting c ¼ 0. Three additional critical
GROWEST parameters were optimized during this initial fitting of the model.
These parameters were the optimum temperature of the temperature index, used in
calculating the weekly growth index, and the first and last weeks of the fitted
growing season, used to define the growing season period. The soil water balance
parameters of the GROWEST model were set to default values with the soil water
holding capacity set to 150 mm and the soil drying rate set to that of a clay loam soil.
The soil water balance is an important component of the growth index, but it is not
very sensitive to departures from these default parameter values.

For the three maize varieties, parameter c was fitted by refitting all parameters
using least squares regression. For cassava and sweet potato, parameter c was fitted
by least squares regression on year of the residuals of the data from the initial model.
This removed instabilities when all parameters were fitted directly to the cassava and
sweet potato data.

The model is robust with just ten parameters. It has a constant dependence of log
(yield) on the climate-based accumulated growth index but has a site varying
intercept to allow for different site and management conditions across different
ADDs. The linear dependence on year via parameter c allows for underlying
improvements in yield due to crop breeding programs, improvements in crop
management, and possible carbon dioxide fertilization.

As in Kawaye and Hutchinson (2018), the GROWEST parameters were
optimized by automating GROWEST runs and initial regressions using FORTRAN
code and standard LINPACK numerical analysis software (Dongarra et al. 1979).
Comprehensive analyses of the fitted models were computed using the standard
regression package within Excel software. These analyses permitted the identifica-
tion and removal of a small number of yield data outliers with large standardized
residuals. These were associated with anomalies and accounting errors evident in the
supporting yield data.

Once outliers were removed and GROWEST optimizations were complete, final
comprehensive statistical analyses were computed, making due allowance for the
three degrees of freedom associated with estimating the three GROWEST parame-
ters. Standard errors of the fitted GROWEST parameters for the initial regressions
were calculated from the diagonal elements of the inverse of the associated Hessian
matrix. The Hessian matrix was estimated by calculating second-order finite differ-
ences of the residual sums of squares of the model with respect to the three fitted
GROWEST parameters.

The final fitted models were applied to the associated growing areas for each
ADD and each year. These outputs were aggregated across all ADDs to obtain
modelled national yield and production for all crops analyzed. These values were
compared with the tabulated national yield and production values to assess the
performance of the models at the national scale.

With a view to assessing the potential impacts of climate change, the domains of
the fitted temperature indices for each crop were compared with the distributions of
the weekly temperatures that occurred across the ADDs over the fitted growing
seasons.
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Results

Trends in Production and Yield of Maize, Cassava, and Sweet Potato

Three main varieties of maize are cultivated in Malawi. These are (i) local
(traditional) varieties, (ii) composite varieties, and (iii) hybrid varieties. There are
major differences between the yield potentials of these varieties (Giertz et al. 2015;
Pauw et al. 2010; Denning et al. 2009; JICAF 2008; Heisey and Smale 1995; Ngwira
and Sibale 1986). Local varieties have the lowest yield. They are not subject to yield
improvement programs, and harvested seed is recycled from year to year. Composite
varieties have higher yields and are often more drought tolerant. They are subject to
yield improvement programs but seed can be recycled. Hybrid varieties are the
highest yielding and most expensive. They are subject to strictly controlled yield
improvement programs, and harvested seed cannot be recycled.

Figure 2 compares growing areas and yields of these three maize varieties from
1984 to 2015. There has only been significant composite maize production since
the late 1990s. There has been a steady increase in the area devoted to composite
and hybrid varieties and a simultaneous reduction in local maize growing area.
This shift has been encouraged by increasing climate stress, such as increasing
temperatures, and poor access to farm inputs for local maize production. There is
significant year-to-year variation in maize yields, with composite and hybrid
yields particularly low from 2001 to 2005. This could be attributed in part to
poor climate including low rainfall. The generally higher yields of composite and
hybrid maize after 2005 coincide with the introduction of the Farm Input Subsidy
Program (FISP). Kawaye and Hutchinson (2018) have presented evidence that
FISP has made a significant improvement in composite and hybrid yields since
2006. The analysis of maize yields presented below is therefore restricted to the
post FISP years.

Figure 3 shows that cassava and sweet potato production has been generally
increasing. There was an abrupt increase in cassava yield in the year 2000 followed
by a steady increase, while sweet potato yield has been steadily increasing since the
mid-1990s. The abrupt increases in yields in earlier years suggest there have been
major improvements in crop-growing practice, and perhaps recording practice,
during the 1990s. The steady increase in yields since 2000 reflects increased policy
and institutional support, such as the introduction of higher yielding varieties, and
improved management practices to diversify the food security basket. The general
increase in area under cultivation cassava and sweet potato since 2005 indicates that
more farmers have been planting these crops on new land or on land withdrawn from
or shared with maize. As noted above, this is due to an increasing reliance on cassava
and sweet potato for food security, especially in maize deficit (drought) years.

There was a sharp drop in both yield and production for all crops (maize, cassava,
and sweet potato) in the drought year of 2005. For the other years, major variations
in production are largely explained by major variations in growing areas as shown in
Figs. 2 and 3. On the other hand, minor year-to-year variations in yield are likely to
be attributable to year-to-year climatic variations. The differing year-to-year

33 Maize, Cassava, and Sweet Potato Yield on Monthly Climate in Malawi 623



Fi
g
.2

G
ro
w
in
g
ar
ea
s
an
d
to
ta
l
yi
el
d
fo
r
lo
ca
l,
co
m
po

si
te
,a
nd

hy
br
id

m
ai
ze

fr
om

19
84

to
20

15

624 F. P. Kawaye and M. F. Hutchinson



Fi
g
.3

G
ro
w
in
g
ar
ea
s
an
d
to
ta
l
yi
el
d
of

ca
ss
av
a
an
d
sw

ee
t
po

ta
to

fr
om

19
84

to
20

15

33 Maize, Cassava, and Sweet Potato Yield on Monthly Climate in Malawi 625



variations in yield and climate by ADD enable the calibration of the yield responses
to monthly climate using the models described here.

GROWEST Analyses

For each crop the model was initially fitted to the available yield data values with the
optimum GROWEST temperature set to a commonly accepted value for each crop.
The automated model fitting code was used to adjust the growing season to minimize
the standard error of the fitted model. A small number of large standardized residuals
for each model were found to correspond to anomalous growing areas or yields for
particular RDPs making up the ADD yield data. These large outliers were removed
from the analysis, and the three key GROWEST parameters, the optimum growing
temperature and the beginning and end of the growing season, were finally opti-
mized by minimizing the residual sum of squares of the fitted model. There were two
outliers for each of the three maize analyses, none for the cassava analysis and four
for the sweet potato analysis. The values of the three key GROWEST parameters
were found to be quite critical to the overall performance of the model. This is in
keeping with the finding of Wang et al. (2017) who similarly found that the shape
and location of the temperature response function in process-based crop models are
critical to their performance. The fitted GROWEST parameters are listed in Table 1.

The fitted starting weeks for the three maize varieties were remarkably similar.
Allowing for a period of around 2 weeks from sowing to emergence when the maize
plants begin to interact with the atmosphere, the fitted starting weeks corresponded
to planting in early December when the wet season is underway. Composite and
hybrid maize had fitted growing seasons lasting 13 and 12 weeks, while local maize
had a somewhat longer fitted growing season of 15 weeks. These values are all in
reasonable agreement with standard management practice. There is systematic
variation in the fitted optimum growing temperatures. The fitted temperature for
local maize is consistent with documented optimum temperatures of around 26 �C

Table 1 Optimized GROWEST parameters and mean yield for each crop. Standard errors for each
parameter value are provided in parentheses. Weeks are numbered sequentially 1–52 for each year

Crop

Number
of data
points

Optimum
growing
temperature (�C)

First week of
growing
season

Last week of
growing
season

Mean crop
yield
(kg/ha)

Local
maize

54 24.5 (0.9) 52 (1.0) 15 (1.7) 928

Composite
maize

54 28.9 (0.4) 52 (0.8) 13 (1.3) 1,981

Hybrid
maize

54 30.2 (0.6) 51 (1.4) 12 (1.5) 2,883

Cassava 88 27.3 (0.6) 47 (2.0) 26 (2.9) 17,984

Sweet
potato

52 23.4 (0.7) 7 (2.9) 22 (2.0) 15,920
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for maize root growth and grain filling (Sánchez et al. 2014). The fitted temperature
for composite maize is consistent with documented optimum temperatures of around
28 �C to 30 �C for maize growth from sowing to anthesis. The slightly higher fitted
temperature for hybrid maize is consistent with documented optimum temperatures
of around 31 �C for whole plant maize growth. The fitted parameter values indicate
that hybrid and composite maize are better adapted to higher temperatures and have
shorter growing seasons than the traditional local maize varieties. These are both
accepted aims of maize breeding programs.

The fitted growing season for cassava corresponded to planting cassava in
mid-November and effective growth terminating by around the end of June. This
agrees with the usual growing practice for cassava reported above, with planting
time somewhat variable from year to year depending on the arrival of rain and
harvesting time variable according to a range of conditions. The latter is consistent
with the larger standard error for the finishing week. The fitted optimum growing
temperature for cassava is in good agreement with accepted values (Nassar 2004;
Mkumbira 2002; Cock 1984).

The fitted growing season for sweet potato corresponded to planting sweet potato
in early February and effective growth terminating by around the beginning of June.
This is consistent with sweet potato being mainly grown as an intercrop with maize
and planted after the maize crop is in place. The fitted optimum growing temperature
for sweet potato is also in good agreement with accepted values (Ramirez 1992).

Statistics and key model parameter estimates for each crop are provided in
Table 2. All of the model fits were highly statistically significant well beyond the
0.001% level. The performance of the model, with a single coefficient of the
accumulated growth index and a different model intercept for each ADD, is remark-
ably consistent across all crops. Allowing the coefficient of the accumulated growth
index to vary from ADD to ADD gave unstable behavior and did not improve the
standard error of any model. This confirmed that the relative dependence of crop
yield on climate via the accumulated growth index was effectively constant across all
sites, justifying the use of a single parameter b across all ADDs.

Table 2 Critical parameter estimates and the percent of yearly variance accounted for the fitted
models for all five crops. Standard errors of the fitted parameter values are provided in parentheses

Crop
Number of
data points

Model
standard
error

Parameter
b Parameter c

Percent yearly
variance accounted
for (%)

Local
maize

54 0.141 2.79 (0.55) 0.000 (0.009) 38

Composite
maize

54 0.141 3.33 (0.71) 0.013 (0.010) 36

Hybrid
maize

54 0.150 2.61 (0.69) 0.032 (0.011) 34

Cassava 88 0.132 2.16 (0.34) 0.025 (0.004) 54

Sweet
potato

52 0.070 0.85 (0.17) 0.016 (0.005) 47
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The standard errors of the fitted models are generally no more than 15%, and the
fitted values of parameter b are mostly between 2 and 3 with relatively small standard
errors of around 20%. The percent of yearly variation in crop yields explained by the
model, after removing variation between sites, ranged from 34% for hybrid maize to
54% for cassava. These values are consistent with the finding of Ray et al. (2015)
that climate variation explains around a third or more of crop yield variability.

The smaller value of parameter b for sweet potato suggests that the model has
been less successful in calibrating the full impact of climate on tuber growth. This
may have been contributed to by the relatively short data record available for
sweet potato and the larger number of apparent accounting errors in the yield data.
The variation in planting dates between the traditional early planting date in
February and the less common late planting date at the end of the wet season
may have also contributed to the less strong fitted dependence on climate via
parameter b. On the other hand, the small model standard error suggests that sweet
potato yields may be more stable in relation to climatic variability than cassava.
Analysis of yield data over a larger number of years would help to resolve this
question.

The underlying rates of increase in crop yields are well determined for all crops.
The fitted rate of zero for local maize is consistent with no breeding program in place
for local maize. The marginally statistically significant rate of increase for composite
maize of 1.3% per year is consistent with the modest breeding program in place for
composite maize, and the statistically significant rate for hybrid maize of 3.2% per
year is consistent with the strong breeding program in place for hybrid maize. The
fitted rates of increase of around 2% per year for sweet potato and cassava are
consistent with breeding programs being in place for both crops.

Plots of the log (yield) data values versus modelled values are shown in Fig. 4.
Individual plots (not shown) of the fitted model, as a function of accumulated GI for
each ADD, show considerable scatter of the observed yield data about the fitted
model, but the constant slope b of the fitted line across all ADDs is estimated with
reasonable precision, as described above. Likely contributors to the scatter about the
fitted model include changes in management practice from year to year,
including variations in planting dates, inaccuracies in recording crop yields, and
possible misalignments between the locations of the sites sampling climate across
the ADDs and the main locations of crop growth. The monthly time scale of the
supporting climate data is likely to have made only a small contribution to the scatter
about the fitted model given that the largest departures from the fitted model are in
every case attributable to clear accounting errors in particular resource development
districts (RDDs) within each ADD rather than systematic climate-related anomalies
across all RDDs in any ADD.

The smallest observed and modelled values in the plot for cassava are for the
drought year 2005 in Shire Valley ADD. The drought was severe in the other
southern Machinga and Blantyre ADDs but particularly severe for the Shire Valley
ADD (FAO 2005). The plots in Fig. 4 show that the model is able to recognize most
drought conditions with reasonable accuracy but somewhat overestimates cassava
yield during particularly severe droughts.
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The models were finally assessed by their ability to explain the total yield and
production across Malawi. The observed and modelled yield data were aggre-
gated across all ADDs and plotted in Figs. 5 and 6. The spatially aggregated
models provide accurate explanations of the observed values with average per-
centage differences from the actual annual values around 7% for the three maize
varieties and less than 5% for cassava and sweet potato. The larger departures in
these plots generally correspond with known accounting errors in the supporting
yield data.

The fitted temperature index curves and the corresponding relative histogram of
weekly temperatures observed over the fitted growing season for the 74 sites
representing the eight ADDs across Malawi are plotted for local maize, hybrid
maize, cassava, and sweet potato in Fig. 7. The plots show that the apparent
temperature constraints on local maize and sweet potato are well matched to the
observed weekly temperatures across Malawi, while the optimum temperatures of
hybrid maize and cassava are somewhat larger than the mode of the observed weekly
average temperatures. This suggests that projected future increases in temperature of

Fig. 5 Modelled and actual total yield and production for all three maize varieties
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around 2 �C would have minimal impact on local maize yield, perhaps slightly
reduce sweet potato yield and moderately enhance yields of higher temperature
adapted hybrid maize and cassava. Possible changes in soil moisture regimes also
need to be taken into account to obtain a more complete estimate of the likely impact
of projected future climate. Soil moisture status is particularly important in the grain
filling stage of maize (Li et al. 2018).

Discussion

The fitted regressions on accumulated GI have provided reasonably accurate models
of observed maize, cassava, and sweet potato yields for each ADD and are more
accurate when aggregated to the national level. The model formulation is robust and
able to fit well-determined trends on accumulated growth index, despite the uncer-
tainty associated with the supporting data, including some imprecision in the
location of actual crop growing areas and year-to-year variations in planting times
and growing practice. Schlenker and Lobell (2010) have noted the particular diffi-
culties in modelling cassava that this model has appeared to overcome.

The fitted growing seasons agree well with known practice. The fitted optimum
temperatures also agree with generally accepted values for all five crops, with hybrid
maize better adapted to higher temperatures than traditional local maize varieties.
This close agreement with known values provides strong support for the adequacy of
the fitted models in calibrating the climate dependencies of maize, cassava, and
sweet potato yields. The formulation of the regression model has permitted an
effective separation between site-specific effects (such as soil fertility and particular
crop management practices) and climatic effects on relative plant growth. The site-
specific effects are accounted for by a separate intercept for each ADD in the
regression model, while the relative climatic effects appear to operate independently
of different site conditions and can be effectively calibrated by a single factor across
all ADDs. Allowing this factor to vary across the ADDs did not improve the fit of the
model for any crop. The model formulation is similar to that employed by Lobell
et al. (2011) but uses a specifically tuned nonlinear plant growth index instead of
various growing season weather variables. The effectiveness of this modelling
approach reflects the finding of Wang et al. (2017) that the form of the temperature
response function is quite critical in the accuracy of crop simulation models. The
functional form of the temperature indexes plotted in Fig. 7 is similar to the preferred
functional forms described by Wang et al. (2017).

The single parameter for the climatic effects was an important factor in the
robustness of the regression growth models. On the other hand, allowing a separate
site-specific intercept for each ADD was an important factor in incorporating
different conditions modifying yields across the different ADDs. The resulting
robust statistical model could reliably detect data outliers, as confirmed by inspection
of the supporting data for the contributing RDPs. The robustness of the spatial
analyses of the supporting monthly climate data has also contributed to the robust-
ness of the fitted growth models. The net result has been well-determined
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coefficients calibrating the dependence of the three maize varieties and cassava and
sweet potato yields on monthly climate via appropriately accumulated GI.

The models have simultaneously calibrated significant underlying increasing
trends in yield over time that can be ascribed to improvements in plant breeding,
crop management, and carbon dioxide fertilization. The fitted underlying trends of
around 2% increase in yield per year for cassava and sweet potato may have been
augmented by carbon dioxide fertilization. For such tubers there is around a 15%
increase in tuber yield per 100 parts per million increase in atmospheric carbon
dioxide concentration (Kimball 1983; Miglietta et al. 1998). In view of the pre-
vailing rate of an increase in carbon dioxide concentration of two parts per million
per year, this would give rise to an increase in tuber yield of around 0.3% per year
over the analysis period. This is similar to the standard error of the fitted annual
percentage increases in crop yield, making it difficult to discriminate from other
increases in crop yield. It is not clear whether the fitted underlying percentage
increases in crop yields will be maintained indefinitely. The impacts of improved
production and reporting methods are likely to plateau in the future. However,
ongoing improvements due to plant breeding and carbon dioxide fertilization are
likely to continue, and the fitted trends of around 2% per year are remarkably
consistent with the documented increase in world average cereal yields over the
50 years from 1961 to 2009 (Prohens 2011). It is unlikely that conventional crop
breeding methods are able to maintain this rate of progress into the future, but
Prohens (2011) argues that recent progress in molecular biology and genetic engi-
neering offers great promise to further increase crop yields. Thus the fitted models
should be able to be used, with appropriate qualifications, in assessing the impact of
projected climate change.

Conclusion

This study analyzed the impact of monthly climate on the observed yields of maize,
cassava, and sweet potato across the eight ADD crop production regions of Malawi
via a robust yield regression model that can be viewed as a hybrid approach between
complex process-based models and statistical modelling using selected weather
variables. It offers progress toward the eventual dissolution of the differences
between these approaches as suggested by Lobell and Asseng (2017). A particular
strength of the GROWEST model used here is its incorporation of a process-based
temperature response function that could be readily tuned to maximize model
performance. This reflects the finding of Wang et al. (2017) that appropriate param-
eterization of the temperature response function is critical to crop model perfor-
mance. The tuning of the period of the effective growing season was similarly
critical. An additional important contribution to the accuracy and robustness of the
regressed GROWEST models is their effective separation of site-specific and cli-
matic effects. This aspect is shared by the statistical modelling approach described
by Lobell et al. (2011). Finally, the calibration of the model in terms of monthly,
instead of daily, climate data offers robustness in delivering spatially distributed
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climate data from limited point sources and in generating projected future climate
data. Projecting daily precipitation data in particular is problematic with many
approaches simply adjusting positive daily rainfall amounts but leaving daily rainfall
occurrence structure unchanged. Such changes in daily precipitation structure can be
subsumed within simple changes in monthly precipitation totals, although at the
expense of losing some precision in the timing of precipitation within the month.

The main limitation of the modelling approach described here, and many others,
is an assumption that management practice does not change significantly from year
to year. This can be violated in periods of extreme drought or flooding when planting
dates can be significantly delayed or disrupted. This assumption could also be
violated in future scenarios when there could be a systematic shift in planting
times in response to systematic changes in seasonal climate. Changes in planting
density due to changes in intercropping practice are also possible. There is also an
assumption that a fixed temperature response function applies over the entire
growing season. The differing temperature optima over different stages of maize
growth cited by Sánchez et al. (2014) suggest that the model could be usefully
elaborated to reflect this, although at the expense of fitting additional model param-
eters. Despite these limitations, the GROWEST plant growth index model applied to
spatially distributed monthly climate data has provided robust correlations between
modelled and actual yields for all five crops examined. These correlations have
yielded process-based parameter values that agree with known values, and the
dependence on accumulated growth index has been fitted with enough precision
for the models to be able to be used with reasonable confidence in projecting the
impacts of climate change on future yields. The comparisons of the fitted tempera-
ture index curves with observed monthly average temperatures in Fig. 7 show that
projected increases in temperature are likely to have minimal impact on local maize
and sweet potato yield while yields of high temperature adapted hybrid maize and
cassava are likely to be enhanced. Such projections need to be coordinated with
projected changes in soil moisture levels.
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