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Abstract

The impacts of climate change are already being felt, not only in terms of increase
in temperature but also in respect of inadequate water availability. The Mkomazi
River Basins (MRB) of the KwaZulu-Natal region, South Africa serves as major
source of water and thus a mainstay of livelihood for millions of people living
downstream. It is in this context that the study investigates water flows abstrac-
tion from headwaters to floodplains and how the water resources are been
impacted by seasonal climate variability. Artificial Neural Network (ANN) pat-
tern classifier was utilized for the seasonal classification and subsequence hydro-
logical flow regime prediction between the upstream–downstream anomalies.
The ANN input hydroclimatic data analysis results covering the period
2008–2015 provides a likelihood forecast of high, near-median, or low
streamflow. The results show that monthly mean water yield range
is 28.6–36.0 m3/s over the Basin with a coefficient of correlation (CC) values
of 0.75 at the validation stage. The yearly flow regime exhibits considerable
changes with different magnitudes and patterns of increase and decrease in the
climatic variables. No doubt, added activities and processes such as land-use
change and managerial policies in upstream areas affect the spatial and temporal
distribution of available water resources to downstream regions. The study has
evolved an artificial neuron system thinking from conjunctive streamflow predic-
tion toward sustainable water allocation planning for medium- and long-term
purposes.

Keywords

Seasonal classifier · Climate variability · Sustainable water allocation · Artificial
neuron network · System thinking

Introduction

Background

The seasonal hydrological flow regime is of utmost importance in understanding
potential water allocation schemes and subsequent environmental standards flow
regulation. Streamflow is a fundamental component of the water cycle and a major
source of freshwater availability for humans, animals, plants, and natural ecosys-
tems. It is severely being impacted upon by human activities and climate change
variability (Makkeasorn et al. 2008; Null et al. 2010).

Climate change variability has a profound impact on water resources, biophysi-
cal, and socioeconomic systems as they are highly interconnected in complex ways
(Graham et al. 2011; Null and Prudencio 2016). A change in any one of these
induces a change in another. The effects of climate indices on streamflow predict-
ability are seasonal and region dependent (Katz et al. 2002). Although, there are
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different approaches to assess a basin response to climate variables change. Hydrol-
ogists have devised different approaches to investigate how water, the environment,
and human activities are mutually dependent and interactive under various climatic
conditions (Bayazit 2015). Most of the morphoclimatic challenge studies in any
region are usually customized and basin specific. Though many studies have inves-
tigated the effects of changing temperature, precipitation, and evaporation as climate
variables on water resources management (Katz 2013; Kundzewicz et al. 2008; Null
and Prudencio 2016; Taylor et al. 2013), only few have examined seasonal fluctu-
ations of water allocations in nonstationary climates and captured the hydrologic
variability trend characterization based on different temporal scales on the whole
catchment (Egüen et al. 2016; Gober 2018; Katz 2013; Poff 2018).

Topographic effects on rainfall vary seasonally due to the particular hydrologic
process in the region which makes seasonal water allocation and varying environ-
mental flow projection to be based on available meteorological past data for various
design purposes (Jakob 2013). Seasonal fluctuations are commonly observed in
quarterly or monthly hydrologic flow regime studies. As seasonality is a dominant
feature in time series (Sultan and Janicot 2000), hydrologists have developed
methodologies to routinely deseasonalized data for modelling and forecasting dif-
ferent annual conditions (Benkachcha et al. 2013). The common variation of inflow
from one season to another mainly reflects the climatic variability which includes
seasonality of rainfall and amount of evapotranspiration which is dependent on air
temperature as well as precipitation in the basin (Ufoegbune et al. 2011). The
understanding of these hydrological dynamics in a basin is crucial for sustainable
water allocation planning and management. Different literature work reviews across
the globe have found a nonlinear or linear relationship between station elevation and
rainfall pattern, e.g., the Kruger National Park, South Africa and Mount Kenya, East
Africa (Hawinkel et al. 2016; MacFadyen et al. 2018). Likewise, a linear pattern was
found in a Spatio-temporal Island study in a European City (Arnds et al. 2017;
Sohrabi et al. 2017) while a nonlinear relation exists in a central Asia Basin study
(Dixon and Wilby 2019).

Rainfall heterogeneity obviously needs to be considered in a number of hydro-
logical process studies in larger catchments area since it influences: infiltration
dynamics, hydrograph regime, runoff volume, and peak flow (Bonaccorso et al.
2017; Fanelli et al. 2017; Gao et al. 2019; Tarasova et al. 2018). However, some
hydrology studies still rely on small numbers of synoptic-scale rainfall measure-
ments, and the problem of limited rainfall gauges is common in many watershed
investigations, especially in developing countries (Birhanu et al. 2019; Liu et al.
2017; Moges et al. 2018). Therefore, prior to investigating the watershed functions
and their contributions to the Mkomazi River flow, we examined the spatial attri-
butes of rainfall in the area based on existing data. The past works conducted on the
Basin includes Flügel et al.’s (2003) that had used a geographical information system
(GIS) to regressed the local rainfall to the elevation, while Oyebode et al. (2014) has
used genetic algorithm and ANN for the streamflow modelling at the upstream.
Taylor et al. (2003) and Wotling et al. (2000) used rainfall intensity distribution and
principal component analysis (PCA) to assess the complexity of the terrain in
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addition to the elevation. In general, differences in rainfall patterns may have
involved a combination of two statistical outcomes: a shift in the mean and a change
in the scale of the distribution functions. The gamma distribution is a popular choice
for fitting probability distributions to rainfall totals because its shape is similar to that
of the histogram of rainfall data (Kim et al. 2019; Svensson et al. 2017).

Similarly, Najafi and Kermani (2017) observed that in recent years, many
researchers have used various empirical rainfall-runoff models to study the impacts
of climatic change on basin hydrology. However, a good understanding of the future
rainfall distribution across these zones is of vital importance if any meaningful
development is to take place in the water resource management and agricultural
sector which has been of utmost priority in recent times (Arnds et al. 2017).
However, in order to address the foregoing issues, there is a need for the study of
this nature. It will help in developing long-term strategic plans for climate change
adaptation and mitigation measures and implementing effective policies for sustain-
able water resources and management of irrigation projects and reservoir operations
for the overall sustenance of human well-being in the region (Al-Kalbani et al.
2014). This chapter utilizes regression analysis to investigate the upstream–down-
stream linkages under seasonal climate variability. Hydrological trend characteriza-
tion was based on available morphoclimatic past data. Sen’s slope (Pettitt’s) abrupt
change detection and the Mann-Kendall parametric trend analysis were used in
detecting long-term variability in precipitation while ANN was used for seasonal
classifiers and potential future streamflow quantification. Quintile regression was
used to establish the relationship between climate indicators (historical rainfall and
streamflow) and past catchment conditions to forecast future hydrological dynamics
in the MRB. The main novelty in this study is that such a time-series representation
is useful for considering the influence of projected shifts in environmental factors on
the hydrologic budget, and subsequent coping strategies can be provided.

The Mkomazi catchment is located in the U Basin within the semiarid province of
KwaZulu- Natal in South Africa as shown in Fig. 1. It is the third largest catchment
in the province, draining an area of about 4400 km2 with several large tributaries like
Loteni, Nzinga, Mkomanzi, and Elands Rivers. The climatic condition of the study
area varies with the seasonality of dry winters and wet summers (Flügel et al. 2003).
Rainfall distribution is inconsistent along the catchment, ranging from nearly
1200 mm per annum at the headwaters to 1000 mm p.a. in the middle and
700 mm p.a. in the lower reaches of the catchment with highly intra- and
interseasonal streamflows (Flügel and Märker 2003; Oyebode et al. 2014; Taylor
et al. 2003). Prior water allocations were entirely based on “who got there first,”
which have become unstable and irrational with climate change. Thus, examining
how climate-driven spatial and temporal changes to streamflows may reallocate
water among the riparian users considering its seasonal variability is of immense
importance. The Mkomazi River can be subdivided into five physiographic zones as
shown in Fig. 2, namely:

(I) The coastal lowlands up to 620 m (mean annual sea level – m a.s.l.)
(II) The interior lowland area (“middle berg area”) from 620 to 1079 m (m.a.s.l.)
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Fig. 1 The study area: Mkomazi River basin

Fig. 2 Mkomazi Physiographic description with elevation zones
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(III) Lowland area up to 1494 m (m.a.s.l.)
(IV) The mountain area up to 2011 m (m.a.s.l.)
(V) The highlands, with elevations up to 3342 m (m.a.s.l.)

Like other catchments in Southern Africa, the study area is characterized by high
varying seasonality of dry winters and wet summer (Schulze and Pike 2004a). Many
authors have suggested longer record lengths, approximately 20-year oscillations
interval, in measuring the seasonal hydrological fluctuation (Abhishek et al. 2012;
Schulze 1995; Tyson 1986). This variability was adjudged to be as a result of the
influence of the currents in the Atlantic and the Indian Ocean that surround the
country. The cold Benguela Current in the Atlantic Ocean (South West) brings not
only cold air but also influences the pressure system (Haigh et al. 2010; King et al.
2000), while the warmer currents of the Indian Ocean influence the milder warmer
sea temperatures and the humid air on the Northeastern Coastline in the country.
These seasons are opposite to the seasons in the northern hemisphere (King et al.
2000). There are no clear-cut seasonal calendar based on phenology for the country;
however, conventional seasonal variability run through summer (Dec–Feb), autumn
(March–May), winter (June–August), and spring usually between September and
November, to which the average temperature ranges from 20 to 30; 10 to 15, 7 to 10,
and 15 to 20 �C respectively (De Coning 2006; Schulze and Pike 2004a, b).

Procedural Summary

The various stations source data from South Africa Weather Information System
(SAWs), the Agricultural Research Council (ARC), and the Department of Water
Affairs (DWA), South Africa, were processed and subjected to a rigorous scientific
method to test their accuracy, reliability, homogeneity, consistency, and localization
gaps. The detection of trends in a series of extreme values needs highly reliable data.
Thus, only five stations met the above requirements and, as a result, corrected data
sets were available for the hydrological years from 2008 to 2015 (for U10L 30530,
U10J 30587, U10L 30813, U10 at Shelburn, and U10 at Giant Castle locations).
Table 1 gives the statistical summary of the selected stations variables for (1985-
2015) years.

Since the studied variables have different variances and units of measurements as
shown in Table 1, the data set was standardized. This step was done by subtracting
off the mean and dividing by the standard deviation (Ikudayisi and Adeyemo 2016).
At the end of the standardization process, each variable in the dataset is converted
into a new variable with zero mean and unit standard deviation. The original and
standardized variables are displayed in Figs. 3 and 4, respectively. The standardized
results are needed for minimization of bias and accumulation of predicted error from
the observed data. These data were further subjected to various test/processing
regarding homogeneity, consistency, and gaps closure before adaptation for model
inputs. This helps to improve their predictive abilities and reduce uncertainty in data
usage.
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Thus, the normalized data were used as input to the ANN classifier for seasonal
forecasting and classification. Microsoft Statistical software XLSTAT by
Addinsoft was used for Factor Analysis (FA) to explain the contribution of the
unobserved common features in a target event from observed ones. FA as a choice
of principal component analysis (PCA) was employed to reduce the variety of
hydroclimatic data matrix to form a few selected derived component variables,
which form a true representative of the original sets. The FA relates the trend,
pattern, and fluctuations into wet or dry season in order to identify hydroclimatic
variables responsible for streamflow characteristics as a basis for determining
available water. This explains seasonal variation in water availability in the down-
stream environments. FA shows their level of influence and degree of different
percentage contribution to the total streamflow volume (latent class). The regres-
sion relationships between the collected hydroclimatic data were developed as
scatter plots and correlated to know their significance parameter sensitivity. There-
after, the seasonal variability and trend detection were evaluated using Sen’s
method abrupt change detection and Mann-Kendall trend analysis in forecasting
the hydrologic flow regime.

Table 1 Statistical summary of the selected stations year (1985–2015) variables

Variables Unit Minimum Maximum Mean Std. Dev

MaxT �C 14.400 33.170 24.408 3.442

MinT �C �5.000 20.620 10.392 4.942

Solar MJ/m2 0.030 36.450 15.691 3.884

windsp [m/s] 0.650 3.367 1.794 0.561

MaxRH % 33.000 99.930 78.425 16.712

MinRH % 3.000 66.340 32.765 15.144

R Evap mm 9.000 194.550 97.307 30.259

Rain mm 0.000 353.200 64.394 61.918

Runoff m3/s 2.018 123.639 26.217 26.216

Fig. 3 Original data distribution of the climatic variables
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Key Findings

Seasonal Trend and Variability Changes among the Climatic
Variables

A cursory run of the nonparametric and parametric approaches of Mann–Kendall
and Sen’s methods across the months (Dec–Nov) for the study duration (1985–2015)
shows the discernible trend and variability changes among the climatic variables.
The value of Sen’s slope is given in Table 2 column 7. The closer it is to 0, the lesser
the trend, while the sign of the slope indicates if the trend is increasing or decreasing.
AMann–Kendall test with a very high positive value of S (column 4) is an indication
of an increasing trend while a very low negative value indicates a decreasing trend.

As shown in Table 2, decreasing trends are found generally among the variables
across the months except for maximum temperature and solar radiation. This is
understandable, as increased solar radiation brings about an increase in temperature.
Increases in temperature and radiation forcing variables also alter the hydrological
cycle. The resultant effect determines the amount of precipitation, its frequency,
intensity duration, and the type of rainfall. In all, the hydro-meteorological variable
shows a decreasing trend except for maximum temperature and evapotranspiration in
the seasonal distribution pattern. The results show how changes in temperature and
evapotranspiration could affect both the timing and total amounts of runoff, though
the patterns of possible changes are both spatially and temporally complex. Future
changes to allocation of water during seasonal water shortages is an important
decision, which not only needs to be better coordinated within any given legal
jurisdiction but needs to be better coordinated across any upstream and downstream
uses and users.

Fig. 4 Data standardization (normalization) of the climatic variables data
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Factor Analysis (FA) Findings

FA explores the dimensionality of a measurement instrument by finding the smallest
number of interpretable factors needed to explain the correlations among the set of
variables. This was particularly useful in the analysis of the meteorological param-
eters input for the ANN model. It places no structure on the linear relationships
between the observed variables and the factors but only specifies the number of
latent factors, determines the quality of the measurement instrument, identifies vari-
ables that are poor factor indicators, and are also poorly measured (Hu et al. 2014).
The FA loading is shown in Table 3 to reduce the data into a smaller number of
components which indicates what constructs underlies the data latent class. The bold
squared cosine values depict the most significant variables that affect discharge flow.

The diagrammatical representation of the Factor Analysis as shown in Fig. 5
indicates each variable’s level of significance on how they contribute to the total
streamflow volume latent class. The table shows their proportionate percentage
significance towards streamflow. All the meteorological data influence the
streamflow except the wind speed presented in the statistical factor analysis biplot
which stands alone thus depicting the least effect. This may suggest that air temper-
ature is a more important climatic factor for water mass balance than precipitation.

ANN Pattern Classifier and Flow Regime Variation

Insights into the ANN configuration for the four seasons’ classification are given in
Fig. 6. The ANN internal algorithm using the gradient descent method for the hidden
layer was able to classify them into the four prominent seasons based on collected
data which were sorted on monthly basis and labeled inclusively with 1 - Summer,
2- Autumn, 3-Winter, and 4- Spring, respectively. The developed ANN model in the
present study consisted of eight input layers that represent the input vectors of the
hydro-meteorological parameters considered and four output layers representing

Table 3 Factor loadings of the variables

Variables

Factor Loadings

F1 F2 F3 F4 F5 F6 F7 F8 F9

MaxT 0.629 0.004 0.235 0.038 0.008 0.046 0.022 0.006 0.013

MinT 0.869 0.006 0.000 0.036 0.016 0.011 0.026 0.016 0.020

Solar 0.606 0.186 0.009 0.003 0.037 0.033 0.122 0.004 0.000

Windsp 0.027 0.372 0.369 0.142 0.061 0.019 0.000 0.010 0.000

MaxRH 0.419 0.441 0.013 0.036 0.018 0.003 0.011 0.057 0.002

MinRH 0.552 0.169 0.150 0.045 0.009 0.035 0.004 0.026 0.010

Revo 0.230 0.498 0.028 0.041 0.049 0.147 0.005 0.002 0.000

Rain 0.377 0.014 0.236 0.204 0.122 0.011 0.034 0.001 0.001

Runoff 0.440 0.027 0.000 0.247 0.257 0.020 0.003 0.006 0.000

Values in bold correspond to each variable to the factor for which the squared cosine is the largest
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the four seasons. The different monthly hydro-meteorological data of each of the six-
catchment location serves as the raw data which was preprocessed to obtain the input
vectors that was fed into the ANN. The MATLAB interface indicating the size of the
input vector, a number of hidden layers, and neurons applied at the layers (which
were experimentally determined) as well as the output layer is presented in Fig. 6,
while Fig. 7 shows the confusion matrix obtained for the seasonal classification.

The confusion matrix indicating a 93.7% classification accuracy was achieved by
the ANN classifier in cataloging the labeled data into the appropriate season. Given
any unknown data set for the test, the developed model was able to distinguish it and
classify it into the appropriate season. The corresponding number in the diagonal
elements of the matrix indicates the number of instances that could be correctly
classified for each of the seasons and how best the ANN classifier can recognize and
distinguish data mined for each seasonal (summer, autumn, winter, and spring)
classification respectively. The result of the optimal seasonal discharge forecast
model is as presented in Fig. 8.

Fig. 6 MATLAB interphase for seasonal classification using hydro-meteorological data

Obs1Obs2
Obs3

Obs4Obs5Obs6Obs7

Obs8Obs9
Obs10

Obs11
Obs12

Obs13

Obs14

Obs15

Obs16
Obs17Obs18Obs19

Obs20Obs21Obs22
Obs23

Obs24

Obs25
Obs26

Obs27
Obs28

Obs29
Obs30
Obs31
Obs32

Obs33
Obs34
Obs35
Obs36

Obs37Obs38Obs39

Obs40
Obs41Obs42

Obs43

Obs44

Obs45
Obs46Obs47Obs48

Obs49

Obs50

Obs51

Obs52
Obs53

Obs54
Obs55

Obs56
Obs57Obs58Obs59Obs60

Obs61

Obs62
Obs63Obs64

Obs65

Obs66

Obs67
Obs68Obs69

Obs70Obs71

Obs72

Obs73

Obs74Obs75
Obs76

Obs77Obs78Obs79
Obs80Obs81

Obs82
Obs83

Obs84Obs85Obs86

Obs87
Obs88Obs89Obs90

Obs91

Obs92
Obs93Obs94

Obs95
Obs96

Obs97Obs98Obs99
Obs100

Obs101
Obs102Obs103

Obs104

Obs105Obs106
Obs107

Obs108
Obs109

Obs110Obs111
Obs112Obs113

Obs114
Obs115

Obs116

Obs117Obs118
Obs119

Obs120

Obs121

Obs122Obs123
Obs124

Obs125Obs126

Obs127

Obs128

Obs129

Obs130
Obs131

Obs132

Obs133
Obs134

Obs135
Obs136

Obs137Obs138
Obs139

Obs140
Obs141

Obs142
Obs143
Obs144

Obs145Obs146

Obs147
Obs148Obs149Obs150Obs151

Obs152

Obs153Obs154
Obs155

Obs156

Obs157
Obs158

Obs159Obs160Obs161
Obs162

Obs163

Obs164Obs165
Obs166

Obs167

Obs168
Obs169Obs170Obs171

Obs172

Obs173Obs174
Obs175

Obs176

Obs177Obs178Obs179

Obs180
Obs181Obs182

Obs183
Obs184

Obs185

Obs186

Obs187

Obs188Obs189Obs190Obs191Obs192

Obs193
Obs194

Obs195
Obs196

Obs197Obs198
Obs199

Obs200

Obs201Obs202

Obs203

Obs204

Obs205

Obs206
Obs207Obs208Obs209Obs210Obs211

Obs212
Obs213

Obs214

Obs215Obs216

Obs217
Obs218

Obs219Obs220
Obs221

Obs222Obs223

Obs224Obs225

Obs226
Obs227

Obs228

Obs229Obs230
Obs231

Obs232

Obs233
Obs234Obs235

Obs236
Obs237

Obs238
Obs239

Obs240

Obs241
Obs242

Obs243

Obs244Obs245
Obs246Obs247

Obs248

Obs249

Obs250Obs251
Obs252Obs253Obs254

Obs255Obs256Obs257Obs258
Obs259

Obs260Obs261

Obs262
Obs263

Obs264

Obs265
Obs266Obs267

Obs268
Obs269

Obs270
Obs271Obs272Obs273

Obs274
Obs275Obs276

Obs277

Obs278

Obs279Obs280Obs281
Obs282Obs283

Obs284
Obs285

Obs286
Obs287

Obs288

Obs289

Obs290

Obs291
Obs292

Obs293Obs294Obs295

Obs296

Obs297Obs298

Obs299

MaxT

MinT

Solar

windsp

MaxRH

MinRH

Revo

Rain
Runoff

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

F2
 (1

9.
07

 %
)

F1 (46.10 %)

Biplot (axes F1 and F2: 65.17 %)Fig. 5 The factor analysis
based on their contributing
factor of importance

98 Hydrological Dynamics Assessment of Basin Upstream–Downstream Linkages. . . 2015



The ANN forecasted results provide the likelihood of high, near medium or low
streamflow. The changes in the discharge regime were identified with the 5th, 10th,
and 90th tercile streamflow magnitude curve as depicted in Fig. 9.

The streamflows in winter (wetter months) have increased slightly over the time
period, whereas streamflows in summer (drier months) have decreased slightly.
Figure 9 represents the estimated seasonal catchment yield of higher surface flow
in winter with decreasing lower base flow across the seasons. Streamflow is observed
to be at its lowest in the autumn period as the results further assert that climate
change is real and have significance effects on the river flow regime (Archer et al.
2010; Schulze and Pike 2004a; Taylor et al. 2003; Viviroli et al. 2010). The coping
strategy suggests sustainable use of any resource relies on the action of a number of
regulatory mechanisms that prevent the user from reducing the ability of the system
to provide services. “Polluter pays” principle was conceived as a way to proportion-
ally allocate the effects of such alterations to those users that are responsible for
them, thus producing a regulatory effect on the use of the resource. Also, the water
allocation criteria include economic criteria with the aim of optimizing the economic
value of the water resource.

Model Performance and Evaluation Measures

For improved accuracy, the root means square error (RMSE) and coefficient of
correlation (CC) was used for performance evaluation measures during ANN

Fig. 7 Seasonal classification
by ANN model
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training, testing, and validation procedures (Paswan and Begum 2014). They are
defined as shown in Eqs. (1) and (2), respectively.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

Qi � Pið Þ2
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Fig. 8 Training output values for the optimal seasonal discharge model
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where Qi is the observed value at time i, Pi is the simulated value at time i and �P is
the mean for the observed values. Observed runoff is used for model calibration
and validation. Correlations are useful because they can indicate a predictive
relationship that can be exploited in practice. The performance measures of
RMSE and CC values obtained are 29% and 61% respectively during the calibra-
tion period. During the verification period, the RMSE and CC values are slightly
improved as 18% and 75% were achieved respectively. Figure 10 shows the result
of the training test as well as the optimum prediction performance of the network
architecture.

Using FA as part of PCA has helped in screening the data and identifying the level
of importance based on their contributing factor. The observed MRB runoff at
(Mkomazi drift UIH009) station was used to compare with the ANN-model-simu-
lated output in Shrestha (2016) Calibration Helper v1.0 Microsoft Excel Worksheet.
The model performance was evaluated using statistical parameters and the result is
represented in Fig. 11. Comparing ANN simulated value and observed runoff vari-
ables show a satisfactory ANN forecasting model for the seasons run.

The resulting data from the four seasons were detrended and deseasonalized
(Wang et al. 2011) before forecasting the time series using neural networks. The
results show that the neural networks with the right configurations give almost the
same accuracy with or without decomposition of the time series. The streamflows in
wetter months have increased slightly over the time period from 1985 to 2015,
whereas streamflows in drier months have decreased slightly. These trends are also
evident for the minimum and maximum temperature and relative humidity multiday
events. The relationship between runoff and Mkomazi rainfall has been high and
stable over the recording period. Other data analysis not presented shows a decreas-
ing trend of precipitations. The summer rainfall variations are related more closely to
maximum than minimum temperatures, with higher temperatures associated with
lower rainfall. Lower rainfall in winter tends to be linked with higher maximum and
lower minimum temperatures. These relationships were relatively stable over time.
For this reason, there is a need to consider a range of possible future climate
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conditions in a region of increasing population, coupled with increasing demand for
water resources for domestic, agricultural, and industrial activities and how these
will affect water availability.

Limitations of the Study

Like all modeling studies, this research has assumptions and uncertainties which
limit the findings. Many of the previous studies indicate that stationary climatic and
streamflow data were used while we applied the historical probability that each water
year type is based on the 2008 water year. This method assumes stationary climatic
water year types. Future water year type frequencies varied somewhat with climate
change (nonstationarity in data), although those changes are statistically insignifi-
cant. Also, decadal to multidecadal variability which includes the probability of
extreme floods and droughts (Herrfahrdt-Pähle 2010) were not considered. Our
findings likely underestimate water allocation impacts from extreme floods and
droughts anticipated with climate change. In addition, for environmental flow
allocations and streamflow, there is still substantial room for model misspecification
through overfitting, thus the selection of optimal internal neural algorithms choice
again raises the issue of robust neural network modeling.

Fig. 10 Performance evaluation measures
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Seasonal Coping and Adaption Strategies to Climate Variability

Practical field investigation of views of stakeholders and their involvement should be
simulated with model computer software in evolving solutions to water availability.
Government political will and strategical alignment of various duplicating agencies
in providing data for Sub-seasonal to Seasonal (S2S) Prediction should be harmo-
nized toward a unified goal. Historically disadvantaged communities must be
strongly supported and be encouraged to apply for water use licenses and the region
must be in readiness to fast-track the processing of these water use license applica-
tions. Other available strategies to cope with climate variability include integrated
water resources management by improving public water supply, regulating final
users by facilitating the emergence of mediating agencies, the use of energy pricing
and supply to manage agricultural water use overdraft, and better sensitization
campaigns on rain water capture and recharge. The formalization of the water sector
through the transfer of water rights and the more efficient use of water resources are
among evolving strategies to achieve a sustainable water supply for the Mkomazi

Validation

Output statistics                             Calibration Validation
NSE 0.62 0.77

NSErel 0.47 -0.32

R
2

0.77 0.83

wR
2

0.62 0.69

RSR 0.53 0.48

PBIAS 3.10% 13.90%

0
20
40
60
80

100
120
140
160
180

F-08

)se
muc(

sedutinga
M

Months

HYDROGRAPH   (DISCHARGE CHECK)
OBS SIM

Fig. 11 Comparison of ANN simulated value and observed runoff

2020 O. T. Amoo et al.



River Basin. Turning all these adaption strategies into opportunity requires a need
for both water technology innovation and water behavioral change to manage the
scarcity of water resources in a sustainable manner. This chapter offers intuitive
suggestions on how human being policies and cautious approaches can be used to
manage and sustain the already depleted environment. Such intuitive agendum
should be catalyzed through the institutionalization of proactive and capacity devel-
opmental platforms where climate change experts transfer knowledge, skills and
expertise to upcoming researchers.

Conclusion

Understanding of climate change is continually improving, but the future climate
remains uncertain (Yuan et al. 2016). For this purpose, a regression nonparametric
approach consisting of the Mann–Kendall test and Sen’s method and a parametric
approach (ANN) based on factor analysis of extremes statistical theory have been
applied. Owing to the seasonal character of the upstream–downstream variables
linkages, the result concludes that all the variables considered the temperature as the
most important factor in the estimation of streamflow. The results suggest a signif-
icant impact of input vector length, a few hidden nodes neurons, and the choice of
activation function as ANN potentiality in characterizing the individual season and
project maximum likelihood trend for the surface water patterns. Thus, careful
assessment of the available water resources and reasonable needs of the basin/region
in foreseeable future for various purposes must be based on reliable information
concerning the meteorological variable trend which in turn impacts the peak flow to
be expected after a rainstorm of a given probability of occurrence. The methods
applied further confirms our assertion that these patterns are indeed unique across
each month in the season. The water resources manager and agricultural water
management sector would find optimal use in the developed ANN classifier model
that links hydrologic variability on different temporal trend scales based on available
past data and rainfall anomaly.
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