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The goal of this chapter is to raise awareness of the limitation of linear analysis, not to create
professional expertise in nonlinear acoustics. A fundamental assumption of linear acoustics is that
the presence of a wave does not have an effect on the properties of the medium through which it
propagates. Under that assumption, two sound waves can be superimposed when they occupy the same
space at the same time, but one wave will have no effect on the other wave and once they part company
there will be no evidence of their previous interaction. This is illustrated in Fig. 15.1. By extension, the
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assumption of linearity also means that a waveform is stable since any individual wave does not
interact with itself.1

We already know that this assumption of the wave having no influence on the properties of the
propagation medium cannot be strictly correct. The wave imparts a small particle velocity, v1, to the
fluid that adds to the sound speed when that velocity is in the direction of propagation and subtracts
from the sound speed when the particle velocity is opposite to the direction of propagation. The local
value of the sound speed, c(x, t), will vary in time and space due to the wave’s convective contribution
so that coþ v1(x, t)� c(x, t)� co� v1(x, t), where co is the equilibrium (thermodynamic) sound speed:
co ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂p=∂ρð Þs

p
.

The wave also modulates the medium’s thermodynamic sound speed. For the case of an ideal
gas undergoing adiabatic compressions and expansions, there is an accompanying temperature change
of amplitude, T1, given by Eq. (7.25), that is related to the amplitude of the pressure change, p1(x, t):
(∂T/∂p)s ¼ [(γ � 1)/γ](Tm/pm). Since the sound speed in an ideal gas is dependent upon the
temperature of the gas through Eq. (10.23), this implies that the change in sound speed, δc, due to a
temperature change is given by (δc/co) ¼ ½(T1/Tm). In an ideal gas, the local sound speed is slightly
faster than co when the acoustic pressure is positive since the gas is warmer and slightly slower than co
when the acoustic pressure is negative since the gas is cooler.

As will be demonstrated, these small modifications in the sound speed due to wave-induced fluid
convection and to the wave’s effect on sound speed through the equation of state can lead to interesting
effects that could not be predicted within the limitations imposed by the assumption of linearity.
Although their influence on the sound speed may be small, those effects are cumulative. These are
called nonlinear effects because the magnitude of the nonlinearity’s influence is related to the square of
an individual wave’s amplitude (self-interaction) or the product of the amplitudes of two interacting
waves (intermodulation distortion).

An additional consequence of the inclusion of nonlinearity is that the time-average of an acousti-
cally induced disturbance may not be zero. In the linear case, the measure of a wave’s amplitude will be
equally positive and negative around its undisturbed equilibrium value, so that the time-average of the
wave’s influence will be zero. When the hydrodynamic equations and the equation of state were
linearized, the terms in those equations that were discarded could lead to non-zero time-averaged
effects. For the linearized continuity equation, the ρ1v1 term was discarded since Eq. (8.19)
demonstrated that it was smaller than the ρmv1 term for small values of the acoustic Mach number,
Mac� 1. A similar choice was made for the linearization of the Euler equation. The convective portion

of the total derivative, v
!
1 �∇

� �
v
!
1, was discarded when compared to ∂ v

!
1=∂tin Eq. (8.38) under the

Fig. 15.1 Two wave packets pass through each other. (Left) The two wave packets are approaching each other. (Center)
When those wave packets overlap, the disturbances superimpose. (Right) After their superposition, they continue their
propagation with no evidence of their previous interaction

1Although instability requires nonlinearity, nonlinearity does not necessarily always result in instability. Solitons are
waveforms that remain stable due to the compensatory influences of nonlinearity and dispersion.

702 15 Nonlinear Acoustics

https://doi.org/10.1007/978-3-030-44787-8_7#Equ25
https://doi.org/10.1007/978-3-030-44787-8_10#Equ23
https://doi.org/10.1007/978-3-030-44787-8_8#Equ19
https://doi.org/10.1007/978-3-030-44787-8_8#Equ38


same assumption of small acoustic Mach number. To complete the overall linearization, the Taylor
series expansion of the equation of state in Eq. (10.3) was truncated after the first-derivative term.

In this chapter we will recover some of the interesting acoustical phenomena that were lost to the
linearization of the phenomenological equations that describe both the dynamics and the medium
itself.

15.1 Surf’s Up

When most people hear the term “wave,” it is likely that word will conjure mental images of surf
breaking along a beach. (It is a most pleasant image!) The breaking of waves in shallow water is a
dramatic nonlinear effect that is due to both the convective nonlinearity and the fact that the height of
the wave modulates the propagation speed of a shallow-water gravity wave. The speed of a shallow-
water gravity wave represents the competition between the water’s inertia and the restoring force of
gravity. Figure 15.2 is a schematic representation of one cycle of such a wave on a fluid of equilibrium
depth, ho, with a peak wave height of magnitude |h1| � ho.

The assumption that the fluid is “shallow” implies that the mean depth of the fluid, ho, is much
smaller than the wavelength of the disturbance, λ.

h1 x, tð Þ ¼ ℜe bhe j ω t�kxð Þ
h i

ð15:1Þ

Since there is a free surface, we will assume that the fluid is incompressible. It is much more
favorable (energetically) for the free surface to move up than it is for a pressure increase to increase the
fluid’s density. The continuity equation can be written by recognizing that the rate-of-change of the
fluid’s height, _h1 x, tð Þ, is determined by the difference in the amount of fluid that enters and leaves a
“slab” of infinitesimal thickness, dx, shown in Fig. 15.2.

∂h
∂t

þ ho
∂vx
∂x

¼ 0 ) _h1 ¼ jkhovx ) _h1
vx

���� ���� ¼ 2πho
λ

ð15:2Þ

For a shallow-water gravity wave, the fluid’s particle velocity in the direction of propagation, vx, is
greater than the rate-of-change of height of the free surface if ho � λ. This is an effect most of us have
experienced while frolicking in the surf near the ocean’s shore—it is usually the “surge” that knocks us
over, not _h1.

Since gravity (not compressibility) provides the restoring force, Euler’s Eq. (7.34) relates the fluid’s
velocity in the direction of propagation, vx, to the gravitational pressure gradient.

Fig. 15.2 Schematic
representation of a
sinusoidal disturbance on
the free surface of a liquid
that has a mean depth, ho.
The wave on the surface has
an amplitude, |h1|� ho, but
with a wavelength λ � ho
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∂vx
∂t

¼ � 1
ρ
∂ ρgh1ð Þ

∂x
¼ �g

∂h1
∂x

ð15:3Þ

The combination of Eqs. (15.2) and (15.3), with the assumption of a rightward traveling wave in
Eq. (15.1), leads to a dispersion relation that generates the equilibrium values for propagation speed,
cgrav, of a shallow-water gravity wave.2

þjω �jhok

�jgk þjω

���� ���� ¼ 0 ) cgrav ¼ ω
k
¼

ffiffiffiffiffiffiffi
gho

p
for kho � 1 ð15:4Þ

Logarithmic differentiation of Eq. (15.4) provides the relationship between the local wave speed
and the instantaneous depth of the fluid.

δcgrav
cgrav

¼ 1
2
δh
ho

) ∂cgrav
∂h

¼ 1
2
cgrav
ho

ð15:5Þ

We would like to combine the effects of changing depth on the sound speed with the convective
contribution to the local sound speed produced by vx. The continuity Eq. (15.2) provides that necessary
conversion.

jωh1 ¼ jkhovx ) h1
ho

¼ vx
cgrav

� Mac ) ∂h
∂vx

¼ ho
cgrav

ð15:6Þ

The convective contribution to the local wave speed, c(vx), can be combined with the change in
local wave speed due to the changing fluid depth.

c vxð Þ ¼ cgrav þ vx þ ∂cgrav
∂h

� �
∂h
∂vx

� �
vx ¼ cgrav þ 3vx

2
ð15:7Þ

Both convection and the speed’s change with depth conspire to increase the local wave speed when
h1(x, t) > 0 and reduce the local wave speed when h1(x, t) < 0. The wave’s crests travel faster than the
zero-crossings (i.e., h1(x, t) ¼ 0) and its troughs travel slower than the zero-crossings. Figure 15.3
shows the cumulative consequences of the wave’s influence on its own local propagation speed. As the
wave progresses, the crests will start to overtake the troughs.

In Fig. 15.3, the coordinate system was chosen to move with the equilibrium wave speed, cgrav, so
that the distortion becomes evident. At the instant captured in Fig. 15.3, the slope of the zero-crossing
has become vertical. To reach that condition, the crest of a sinusoidal waveform must have advanced
by one radian length toward the zero-crossing, k�1 ¼ λ/2π (see Prob. 1), and the trough must have
lagged behind by the same amount. The time, TS, it takes for the crest to advance by k

�1 is given by the
speed excess, 3vx/2, calculated in Eq. (15.7). The distance traveled by the wave once the slope first
becomes infinite is known as the shock inception distance, DS.

2 The exact result for the propagation speed at all depths reduces to cgrav in Eq. (15.4) in the limit that kho ! 0. Since this
result depends upon k, it is dispersive, so the phase speed, cgrav, will not be equal to the group speed except in the
“shallow water” kho ! 0 limit.

cgrav ¼ ω
k
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
k
tanh kho

r
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DS ¼ cgravTS ¼ cgrav
λ=2π
3vx=2

¼ λ
3πMac

ð15:8Þ

For surf, the wave can continue beyond DS. Since surf has free surface, h1 can actually become
multivalued and will eventually “break,” sometimes with a spectacularly powerful display of sound
and foaminess. Stokes was the first to recognize in 1848 that viscosity is the physical mechanism that
prevents a sound wave from becoming multivalued. Stokes was also the first to draw a distorted
waveform, like the one in Fig. 15.3, which he did in that same paper where he talked about the essential
role of viscosity3 [1].

15.1.1 The Grüneisen Parameter

The principles introduced to describe waveform distortion and the creation of a shock front for
shallow-water gravity waves are common to all sound waves in fluids. A sound wave will influence
the propagation speed of the medium due to a combination of the convective contribution and the fact
that the wave’s amplitude also influences the propagation speed. Of course, the nature of that
contribution and the relative importance of the convective and equation of state contributions will be
differ depending upon the medium. The convenience of representing both contributions in terms of the
local fluid particle velocity was demonstrated in the analysis of surf that produced Eq. (15.7). The
strength of nonlinear distortion in any medium that supports a plane progressive wave will now be
generalized by the introduction of the Grüneisen parameter, Γ.

c vð Þ ¼ co þ 1þ ∂c
∂y

∂y
∂v

� 	
v � co þ Γv and DS ¼ λ

2πΓMac
ð15:9Þ

The Grüneisen parameter is a designation taken from solid-state physics where it represents the
nonlinearity of a solid’s elasticity that is responsible for the non-zero value of a solid’s thermal
expansion coefficient.4 The reader should be cautioned that calling this nonlinear distortion parameter

Fig. 15.3 The local propagation speed of a shallow-water gravity wave depends upon the amplitude, bh��� ��� � h1, of the

wave. As shown by arrows, an initially sinusoidal wave will change shape because the crests are moving faster than the
troughs. As shown, this distortion has made the slope at the zero-crossing infinite

3 An excellent history of the early development of nonlinear acoustics is provided by D. T. Blackstock, “History of
Nonlinear Acoustics: 1750s–1930s,” as Chap. 1 in Nonlinear Acoustics, 2nd ed. (Acoust. Soc. Am., 2008), M. F.
Hamilton and D. T. Blackstock, editors; ISBN 0–9,744,067–5-9.
4 If the elastic potential of a solid depended on only the parabolic potential energy contribution (see Sect. 1.2.1), then as a
solid heated up, the amplitude of the motion of the point particles (molecules) would increase, but their equilibrium
position would remain unchanged. If there is a cubic contribution to the interparticle potential energy, then as the
amplitude of the molecular vibrations increased (with increasing temperature), the equilibrium position would shift
causing thermal expansion or contraction of the solid.
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the “Grüneisen parameter” and designating it as Γ is not a common choice in other treatments of
nonlinear acoustics. For example, in a recent paper by Hamilton [2], Γ represents the Gol’dberg
number that is abbreviated as G in this textbook (see Sect. 15.1.4). In Eq. (15.9), the general amplitude
variable is simply written as “y,” and the equilibrium sound speed is designated co to distinguish it from
the local amplitude-dependent sound speed, c(v) ¼ co +Γv.

If a medium’s sound speed depended upon the density of the medium, ρ, which obeyed the linear
continuity equation, the Grüneisen parameter would be expressed in terms of the sound speed’s
variation with density.

∂ρ
∂t

þ∇ • ρvð Þ ¼ 0 ) ρ1
ρm

¼ v1
co

) Γ ¼ 1þ ∂c
∂ρ

∂ρ
∂v

¼ 1þ ρm
co

∂c
∂ρ

ð15:10Þ

For an ideal gas, the sound speed depends upon the mean absolute temperature, Tm. As before, δc
represents the change in the sound speed due to the change in local temperature.

c2o ¼
γℜTm

M
) δc

co
¼ 1

2
T1

Tm
) ∂c

∂T

� �
s

¼ 1
2

co
Tm

ð15:11Þ

The Grüneisen parameter for an ideal gas can be expressed in terms of the change in the speed of
sound with temperature, the change in temperature with pressure, and the particle velocity amplitude,
v1, associated with the acoustic pressure amplitude, p1, as related by the Euler equation for progressive
plane wave propagation: p1 ¼ (ρmco)v1.

c vð Þ ¼ co þ v1 þ ∂c
∂T

� �
s

∂T
∂p

� �
s

∂p
∂v

� �
s

v1 ð15:12Þ

Using the relationship between temperature and pressure for an adiabatic sound wave in Eq. (7.25),
the Grüneisen parameter for an ideal gas can be calculated.

Γgas ¼ 1þ γ � 1
2

� �
¼ 1þ γ

2
ð15:13Þ

For noble gases, γ¼ 5/3 so Γ¼ 4/3. For diatomic gases and primarily diatomic gas mixtures like air,
γ¼ 7/5, so Γair¼ 6/5. In both cases, it is the convective contribution that is most significant contributor
for nonlinear distortion in a gas.

To start developing intuition regarding the formation of a shock wave, consider a sound wave in air
that has an amplitude at the “threshold of feeling,” 120 dBSPL, so p1 ¼ 28 Pa. If the frequency of the
sound wave is 1.0 kHz and the mean gas pressure is 100 kPa, then the acoustic Mach number for such a
loud sound can be evaluated using the Euler equation.

Mac ¼ v1
co

¼ p1
ρmc2o

¼ p1
γpm

¼ 2�10�4 ¼ 200 ppm ð15:14Þ

When such a wave propagates down a duct of constant cross-section, the shock inception distance,
DS, can be expressed in terms of the wavelength of sound using Eq. (15.9).

DS ¼ λ
2πΓairMac

¼ 5λ
12πMac

ffi 460 m ð15:15Þ

At ten times that amplitude (140 dBSPL, the “threshold of pain”) and for a frequency of 10 kHz, the
shock inception distance would be 4.6 m. In the throat of the horn, for a horn-loaded compression
driver [3] or in a brass musical instrument (e.g., trumpet or trombone), the amplitude can be still larger
by a factor of ten [4].
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15.1.2 The Virial Expansion and B/2A

For the characterization of nonlinear behavior of sound waves in liquids, it is common to expand the
equation of state in a Taylor series, known as a virial expansion, in powers of the relative deviation of
the density from its equilibrium value, (δρ/ρm) ¼ (ρ � ρm)/ρm.

p ¼ pm þ A
δρ
ρm

� �
þ B
2!

δρ
ρm

� �2

þ C
3!

δρ
ρm

� �3

þ � � � ð15:16Þ

The coefficients in that expansion, A, B, C, etc. are called the virial coefficients and have the units of
pressure. For an adiabatic process, they can be expressed in terms of progressively higher-order
thermodynamic derivatives of pressure with respect to density.

A ¼ ρm
∂p
∂ρ

� �
s,ρm

¼ ρmc
2
o ð15:17Þ

B ¼ ρ2m
∂2p
∂ρ2

� �
s,ρm

¼ ρ2m
∂c2

∂ρ

� �
s,ρm

¼ 2ρ2mc
3
o

∂c
∂p

� �
s,ρm

or
B
A
¼ 2ρmco

∂c
∂p

� �
s,ρm

¼ 2ρmco
∂c
∂p

� �
T ,ρm

þ 2βpTmco
ρmcP

∂c
∂T

� �
pm,ρm

ð15:18Þ

It is useful to notice that B can be expressed in terms of the derivative of the sound speed with
respect to density, which was related to the non-convective contribution to the Grüneisen parameter in
Eq. (15.10). The final form for B/A follows from the expansion of the sound speed derivative with
respect to pressure, (∂c/∂p)s ¼ (∂c/∂p)T þ (∂T/∂p)s(∂c/∂T)p, and temperature, (∂p/∂T)s ¼ (∂ρ�1/
∂s)p ¼ (∂ρ�1/∂T)p/(∂s/∂T)p, along with the introduction of the isobaric coefficient of thermal
expansion, βp ¼ (1/V )(∂V/∂T)p ¼ ρm(∂ρ

�1/∂T)p, and the introduction of the specific heat at constant
pressure, cP ¼ (1/Tm)(∂s/∂T)p [5].

C ¼ ρ3m
∂3p
∂ρ2

� �
s,ρm

or
C
A
¼ 3

2
B
A

� �2

þ 2ρ2mc
3
o

∂2c
∂p2

� �
s,ρm

ð15:19Þ

The sound speed can also be expressed in terms of these virial coefficients [6].

c2

c2o
¼ 1

c2o

∂p
∂ρ

� �
s,ρm

¼ 1þ B
A

δρ
ρm

� �
þ C
2A

δρ
ρm

� �2

þ . . . ð15:20Þ

This result allows the Grüneisen parameter for liquids to be expressed in terms of B/A.

Γ ¼ 1þ B
2A

ð15:21Þ

Some representative values of B/A for different substances is provided in Table 15.1. The values of
B/A for liquids are generally greater than 2.0, which means that it is the equation of state’s nonlinearity
that dominates the convective nonlinearity. This is reasonable since Euler’s equation implies that the
particle velocity in a liquid is much less than that of a gas for equal pressure changes:
(ρmc)liquid � (ρmc)gas.
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15.1.3 Anomalous Distortion*

Before moving on, it is interesting to consider the role that a non-zero value of C implies for the
formation of shock waves. The behavior that is represented by the Grüneisen parameter causes the
sound speed to be increased when the amplitude of the wave is positive and decrease when the
amplitude is negative. The C coefficient makes a contribution that either always increases the sound
speed, irrespective of the sign of the wave’s amplitude, or always decreases the sound speed,
depending upon the sign of C.

Cormack and Hamilton have investigated shear waves with a cubic nonlinearity, C 6¼ 0, using
numerical simulations [8]. Figure 15.4 shows two plane waveforms that were initially sinusoidal
(dotted lines) that have produced both leading- and trailing-edge shocks (solid lines); two shock fronts
per wavelength, unlike Figs. 15.3 and 15.7, where only a quadratic nonlinearity was operative (e.g.,
1 þ B/2A 6¼ 0 but C/A ¼ 0).

A situation where both the quadratic and cubic nonlinearity play a role in superfluid helium sound
propagation near absolute zero was identified for shockwave formation of compressional plane waves
where the superfluid component velocity, vs, is non-zero, but the (viscous) normal fluid is immobilized,
vn ¼ 0. That sound wave mode in superfluids is known as 4th sound (see Fig. 15.5). This creates a
superfluid critical acoustic velocity amplitude, vd, which can be defined in terms of the virial

Table 15.1 Some representative values of B/A for different media [7]

Material T [


C] B/A

Monatomic gases (e.g., He, Ne, Ar, Kr, Xe, Rn) 0.667
Diatomic gases (e.g., O2, N2, HCl) 0.40
Distilled water 0 4.2

20 4.985 � 0.063
30 5.18 � 0.033
40 5.4
60 5.7

Sea water (3.5% NaCl) 20 5.25
Saturated marine sediment 20 12–19
Isotonic saline 20 5.540 � 0.032
Ethanol 20 10.52
Methanol 20 9.42
Acetone 20 9.23
Glycerol (4% in H2O) 25 8.58 � 0.34
Ethylene glycol 25 9.88 � 0.40
Carbon tetrachloride 25 7.85 � 0.31
Liquid argon –183.2 5.67
Liquid nitrogen –195.8 6.6
Liquid helium –271.4 4.5
Mercury 30 7.8
Sodium 110 2.7
Bovine serum albumin (20 g/100 mL H2O) 25 6.23 � 0.25
Bovine serum albumin (38.8 g/100 mL H2O) 30 6.68
Bovine whole blood 26 5.5
Bovine milk 26 5.1
Bovine liver 23 7.5–8.0
Bovine heart 30 5.5
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Fig. 15.4 Waveforms for an initially sinusoidal plane shear wave (dotted lines) in a medium that is dominated by a cubic
nonlinearity disturbance far from the sound source with C < 0. (From [8])
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Fig. 15.5 There are two
different sound speeds in
liquid 4He below the
superfluid transition
temperature, Tλffi 2.14 K, at
saturated vapor pressure.
The ordinary bulk
compressional wave speed,
known as “first sound,” is
fairly constant. The speed
of thermal waves, called
“second sound,” is
generally an order of
magnitude less than first
sound and is a strong
function of temperature,
vanishing above the
superfluid transition
temperature, Tλ. Fourth
sound is a compressional
sound wave in a porous
medium that immobilizes
the normal fluid so that only
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coefficients, to be the velocity amplitude where the contribution made by the wave distortion due to the
(B/2A) term is equal to the influence of C/A [9].

vd
co

¼ 4þ 2 B=Að Þ
C=Að Þ þ B=Að Þ 1� B=Að Þ½ � ð15:22Þ

For negative values of C, the wave is slowed whether the amplitude of the wave is positive or
negative.

This double-shock behavior, caused by C 6¼ 0, is rather rare for compressional waves. Using values
for (B/A) and (C/A) for water [10], vd ¼ 1.2co, corresponding to acoustic pressure swings of 26,000
atmospheres, well over 100 times greater than the highest cavitation threshold ever measured for pure
water [11]. This double-shock behavior has been observed for sound propagating through a liquid near
its critical point [12].

In an ideal gas, the virial expansion can be expressed in terms of the ratio of specific heats, γ ¼ cP /
cV, also known as the polytropic coefficient.

p
pm

¼ 1þ γ
δρ
ρm

� �
þ γ γ � 1ð Þ

2
δρ
ρm

� �2

þ γ γ � 1ð Þ γ � 2ð Þ
6

δρ
ρm

� �3

þ � � � ð15:23Þ

For an ideal gas, (B/A) ¼ (γ�1) and (C/A) ¼ (γ�1) (γ �2) so the denominator of Eq. (15.22)
vanishes making vd/co ¼ 1; double shocks are an impossibility in gases.

Two other unusual results for the Grüneisen parameter arise from the propagation of sound in
superfluid helium [13]. Superfluids are analogous to superconductors in that superfluids can flow
without viscosity, just like electrical currents flowing without electrical resistance in superconductors.
In addition, the superfluid component has both an elastic and a thermal “restoring force” [14]. In
superfluid helium, there is a thermal sound mode, known as second sound, that is propagating, not
diffusive, like the response governed by the Fourier heat diffusion Eq. (9.4) for classical liquids (see
Sect. 9.3.1).5 The temperature dependence of both second sound and the ordinary compressional wave
speed (called first sound) are plotted in Fig. 15.5.

It is clear from the speed of second sound vs. temperature that there is a region where the second
sound speed decreases with increasing temperature, behavior that is opposite to that of an ideal gas in
Eq. (15.11). In that case, the convective contribution to the nonlinearity is opposite to the equation of
state’s contribution. At T ¼ 1.884 K, the two contributions cancel each other, and a large amplitude
second sound wave can propagate without distortion [15].

A final anomalous example is provided by third sound in superfluid helium. Because the superfluid
can flow without resistance, sound waves can propagate in adsorbed films as thin as two atomic layers
of helium.6 In very thin films, the dominant restoring force is the van der Waals attraction which varies
inversely with the fourth power of the distance: f ¼ α/h4. Substituting the van der Waals force for the
gravitational force in Eq. (15.4) and providing a correction for the thickness-averaged mass density of
the superfluid component, hρsi, unlike the surf, the speed of third sound, c3, is inversely proportional to
the film thickness, ho.

5 In 1962, Lev Landau won the Nobel Prize in Physics for his prediction of the temperature dependence of second sound
using his two-fluid theory of superfluid hydrodynamics after the speed of second sound was first measured by Pyotr
Kapitza. Kapitza won the Nobel Prize in Physics in 1978 for his measurement of the speed of second sound in superfluid
helium.
6 Prof. I. Rudnick has pointed out that superfluids are interesting because they obey the laws of hydrodynamics on the
microscopic scale and obey the laws of quantum mechanics on the macroscopic scale.
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c3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρsh i
ρ

fho

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρsh i
ρ

3α
h3o

s
ð15:24Þ

For superfluid films that are less than 10 Å ¼ 10�9 m thick or about three atomic layers of helium,
the equation of state produces troughs that travel faster than the crests so the waves distort backward, as
shown in Fig. 15.6, compared to ordinary distortion shown in Fig. 15.3.

15.1.4 The Gol’dberg Number

A wave of arbitrary amplitude will not necessarily form a shock. If the sound is attenuated, then the
amplitude will decrease with distance, and the tendency to distort will be reduced, since the distortion
is amplitude dependent. A dimensionless metric, known as the Gol’dberg number, G, compares the
shock inception distance, DS, to the exponential attenuation length, ℓ ¼ α�1, where α is the amplitude
exponential attenuation constant that was examined in Chap. 14 [16].

G ¼ ℓ
DS

¼ αDSð Þ�1 ð15:25Þ

As an example, the Gol’dberg number can be evaluated for a 2 kHz sound wave with pressure
amplitude of bpj j ¼ 900 Pa (150 dB re: 20 μParms) in dry air that propagates down a cylindrical
waveguide with an inside diameter of 10.0 cm. For dry air at mean pressure, pm ¼ 100 kPa
and Tm ¼ 23 
C, co ¼ 345 m/s with δν ¼ 50 μm and δκ ¼ 59 μm. Using Eq. (15.15), with Mac ¼bpj j=γpm ¼ 0:64% and λ ¼ 17.3 cm, DS ¼ 3.6 m. Using Eq. (13.78), the attenuation length in that
waveguide is ℓ ¼ αtv

�1 ¼ 20.6 m. The Gol’dberg number, given in Eq. (15.25), is G ¼ 5.7 > 1. In this
example, the wave will shock before the wave of that initial amplitude suffers sufficient attenuation.

For an initially sinusoidal plane wave in free space, far from any solid boundaries (i.e., not confined
within a 10 cm diameter waveguide!), the attenuation length due to classical thermoviscous dissipa-
tion, including “bulk viscosity,” at 2 kHz in dry air at one atmosphere would be about 1.2 dB/
km ffi 1.4 � 10�4m (see Fig. 14.5), resulting in an exponential attenuation distance of about 7 km
making G ffi 200. For a plane wave in free space with G ¼ 5.7, there would be significant distortion,
but a fully developed sawtooth shock would not be created. This is because the classical attenuation
coefficient is proportional to frequency squared (see Sect. 14.3), so the attenuation of the second
harmonic is four times that of the fundamental, rather than just

ffiffiffi
2

p
larger for the waveguide, where the

attenuation depends upon the square root of the frequency. Mark Hamilton has provided numerical

Fig. 15.6 Very thin films
of superfluid helium can
support surface waves that
are restored by the van der
Waals attraction between
the fluid and the substrate
on which the fluid is
adsorbed. For films less
than 10 Å thick (about three
atomic layers), the troughs
travel faster than the crests,
and the wave bends
backward
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simulations of the waveforms of such a plane progressive wave in free space forG¼ 5.7 that are shown
in Fig. 15.7.

The Gol’dberg number is a dimensionless measure of the importance of nonlinearity relative to
dissipation. In some circumstance, dissipation can be entirely ignored. For deepwater gravity waves,
the primary source of dissipation is viscosity, and the Gol’dberg number is on the order of one
million [17].

15.1.5 Stable Sawtooth Waveform Attenuation

For large values of the Gol’dberg number, an initially sinusoidal sound wave propagating in one
dimension (i.e., ignoring spherical spreading) will steepen and ultimately become a repeated sawtooth
waveform. At sufficiently high Gol’dberg numbers, even spherically spreading waveforms that are
initially sinusoidal can form shocks [2]. In fact, any periodic waveform will steepen and ultimately
form a repeated sawtooth shape, shown in Fig. 15.8, when the Gol’dberg number is sufficiently large
and the wave has propagated well past the shock inception distance.

Once the sawtooth waveform has developed, the shock front produces a gradient in the temperature,
particle velocity, and pressure that is very large. Such gradients produce large dissipation due to
thermal conduction across the shock front and viscous shear. The amplitude of the sawtooth waveform
must decrease due to the resulting energy dissipation. Calculation of the shock wave’s attenuation can
be made by expressing the discontinuity of the entropy across the shock that is cubic in the pressure
discontinuity [18]. For an ideal gas, the difference in entropy across the shock is expressed in terms of
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Fig. 15.7 Numerical simulation of an initially sinusoidal plane wave in free space with Gol’dberg number, G ¼ 5.7, is
shown as the blue sinusoid. As the wave progresses, nonlinear effects cause it to distort, and classical attenuation
mechanisms reduce its amplitude. A sawtooth waveform, shown in Fig. 15.8, is not produced. (Figure courtesy of Mark
Hamilton)
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the universal gas constant, ℜ, and the mean molecular mass of the gas, M, by use of the Rankine-
Hugoniot shock relations [19].

sþ � s� ¼ ℜ
M

γ þ 1ð Þ
12γ2

pþ � p�
p�

���� ����3 ð15:26Þ

Inspection of Fig. 15.8 suggests a simpler geometric approach [20]. If the particle velocity
amplitude for the sawtooth waveform is u, then by Eq. (15.9), each portion of the waveform must
advance, relative to the zero-crossing, by (Γu dt) during a time interval, dt. The coordinate system, as
shown in Fig. 15.8, moves with co, by making the x axis be (x – cot). In that frame of reference, the fact
that the back of the shock is a straight line, representing a linear increase in u, requires that the
unshocked portion of the waveform undergo solid body rotation, as indicated by the curved arrow in
Fig. 15.8.

Since the wave must remain single-valued, the shock front must dissipate sufficient energy to keep
the waveform from becoming multiple-valued. The two hashed triangles shown in Fig. 15.8 are similar
triangles by Garrett’s First Law of Geometry, so the ratio of their heights to their bases must be equal.

du
Γu dtð Þ ¼

u
λ=2

ð15:27Þ

Setting dt ¼ dx/co, Eq. (15.27) can be integrated from a reference location, xo, at which the acoustic
Mach number is Mo, out to some arbitrary distance, x, from that reference location.

co

ðu
uo

du
u2

¼ 2Γ
λ

ðx
xo

dx ) 1
M

� 1
Mo

¼ 2Γ x� xo
λ

ð15:28Þ

This result is both interesting and distinctly different from previous expressions for attenuation.
First, the amplitude of the shock does not decay exponentially with distance. Second, although the
dissipation is due to thermoviscous losses produced by the steep gradients across the shock front, the
attenuation is independent of both the fluid’s shear viscosity, μ, and its thermal conductivity, κ, and
depends instead upon the Grüneisen parameter.

This sawtooth waveform does not persist. Eventually, it “unshocks,” as shown in Fig. 15.30, as its
amplitude decreases to the level where classical attenuation mechanisms are dominant [21].

Fig. 15.8 Any periodic
wave of sufficient
Gol’dberg number will
distort into the sawtooth
waveform shown in a
coordinate system that is
moving along with the
wave at the thermodynamic
sound speed, co. The
“excess velocity” produced
by the Grüneisen parameter
is proportional to the
velocity amplitude, u, of the
wave. The sloping “back”
of the sawtooth must then
experience solid body
rotation since the excess
velocity is proportional to
the amplitude above its
zero-crossing
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15.2 Weak Shock Theory and Harmonic Distortion

In most fluids, the nonlinearity in the equation of state and the nonlinearity introduced by the
acoustically induced convection conspire to cause waves to distort. That distortion increases with
the propagation distance, if the amplitude of the wave is sufficient for such nonlinear effects to
dominate thermoviscous attenuation (i.e., G � 1). For waves of sufficiently large amplitude, this
process will turn any periodic wave into a sawtooth wave. In this section, the focus will be on the initial
stages of this distortion process.

If a wave is initially a sinusoidal “pure tone,” it will only contain a single Fourier component. That
fundamental frequency can be designated f1. The distortion will change the wave shape, but the wave
will still be periodic with a period, T ¼ ( f1)

�1. The description of the distorted waveform will
necessarily require additional Fourier components at harmonic multiples of the fundamental fre-
quency, fn ¼ nf1, with n ¼ 2, 3, 4, etc. This section will focus on the growth of those harmonic
components with distance and their dependence on the initial amplitude of the wave.

15.2.1 The Order Expansion

When linear acoustics was first developed in Chap. 8, the parameters that described the acoustic fields
were expressed as the sum of an equilibrium value plus a first-order deviation from equilibrium.

Equation (8.1) expressed the pressure as p x
!, t

� �
¼ pm x

!� �
þ p1 x

!, t
� �

. Similar expansions were

made for the mass density, ρ x
!, t

� �
, in Eq. (8.2), temperature, T x

!, t
� �

, in Eq. (8.3), and (specific)

entropy per unit mass, s x
!, t

� �
, in Eq. (8.4). In all cases, the first-order deviations from equilibrium

were assumed to be much smaller than the equilibrium values (e.g., p1 � pm).
This order expansion will now be extended to keep track of the effects of nonlinearity on

propagation. For example, the particle velocity will be represented as the sum of the fluid’s mean
equilibrium velocity, vm, and the deviations from equilibrium that are proportional to successively
higher powers of such deviations. These deviations will be subscripted to indicate their dependence on
the amplitude of the disturbance. A subscript of “1” will indicate a first-order contribution that is linear
in the amplitude of the disturbance. A subscript of “2” will indicate a second-order contribution that is
quadratic in the amplitude of the disturbance or is the product of two first-order contributions, possibly
produced by the interaction of two different waves.

v x, tð Þ ¼ vm xð Þ þ v1 x, tð Þ þ v2 x, tð Þ þ v3 x, tð Þ þ � � � ð15:29Þ
Since our attention will be focused on one-dimensional propagation, x does not need to be a vector

and because the fluids will not be subjected to any externally imposed mean flow, vm(x) ¼ 0. As was
the case for linear acoustics, the first-order contribution to the acoustical deviation from equilibrium,
v1(x, t), will be proportional to the amplitude of the disturbance from equilibrium. The second-order
contribution, v2(x, t), will be proportional to the square of the amplitude of the disturbance from
equilibrium or to the product of two first-order disturbances, etc.

It will also be assumed that these individual contributions are “well ordered,” in that each successive
higher-order contribution will be smaller than its lower-ordered neighbor. In the case of particle
velocity, all contributions will also be significantly smaller than the thermodynamic sound speed, co,
in the weak shock limit.

co � v1j j > v2j j > v3j j > � � � ð15:30Þ
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15.2.2 Trigonometric Expansion of the Earnshaw Solution

The analysis of the distortion of an initially sinusoidal sound wave can generate a second-order
correction by allowing the speed of sound to be dependent upon the amplitude of the disturbance.
This result was first exploited by Earnshaw (1805–1888) and was published in 1860 [22].

ϕ ¼ t � x� X ϕð Þ
Γu ϕð Þ � co

ð15:31Þ

Here, Earnshaw solved the for a wave launched by a piston located at x¼ 0 that has a displacement,
X(t), and velocity u(t) ¼ dX/dt. The parameter, ϕ, represents the time a given point on a waveform left
the piston’s face. Earnshaw was also the first to show that Γgas ¼ (γ þ 1)/2, for a sound wave in an gas
obeying the Adiabatic Gas Law, as we did in Eq. (15.13).

We can exploit Earnshaw’s insight to calculate the growth of the second harmonic by successive
approximation [23] if the initial disturbance is assumed to be a single-frequency, rightward traveling
wave with an initial particle velocity amplitude, v0.

v1 x, tð Þ ¼ v0 cos ωt � kxð Þ ¼ v0 cosω t � x
co

� �
ð15:32Þ

A second-order contribution will be generated by substitution of the “local” sound speed, as
expressed in Eq. (15.9), for the thermodynamic sound speed that appears in Eq. (15.32), as was
expressed by Earnshaw in Eq. (15.31).

v1 x, tð Þ þ v2 x, tð Þ ¼ v0 cosω t � x
co þ Γv1

� �
ð15:33Þ

In the weak shock limit,Mac¼ v1/co� 1, so the denominator of the argument of the cosine function
can be approximated by its binominal expansion.

v1 x, tð Þ þ v2 x, tð Þ ffi v0 cosω t � x
co

1� Γ v1
co

� �� 	
ð15:34Þ

The trigonometric identity for the cosine of the sum of two angles, a and b, is cosω
(a þ b) ¼ cos (ωa) cos (ωb) � sin (ωa) sin (ωb). That identity can be used to separate Eq. (15.34)
into two terms.

v1 x, tð Þ þ v2 x, tð Þ ffi v0 cosω t � x
co

� �
� Γxωv1

c2o
v0 sinω t � x

co

� �
ð15:35Þ

Since v1 (x, t) was defined in Eq. (15.32), the first-order terms on both sides of Eq. (15.35) can be
eliminated so that only the second-order contribution remains. The first-order contribution can also be
substituted into the second-order expression.

v2 x, tð Þ ¼ �Γxω
c2o

v0ð Þ2 sinω t � x
co

� �
cosω t � x

co

� �
ð15:36Þ

Using the double-angle sine identity, sin(2a) ¼ 2 sin (a) cos (a), it becomes clear that the
trigonometric product introduces a second harmonic component that grows linearly with distance, x,
scaled by the wavelength, λ, and is proportional to the square of the initial amplitude, (v’)2.
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v2 x, tð Þ ¼ �Γxω
2c2o

v0ð Þ2 sin 2ω t � x
co

� �
¼ �πΓMac

x
λ
v0 sin 2ω t � x

co

� �
ð15:37Þ

The assumption regarding the relative amplitude of the terms in the order expansion, as asserted in
Eq. (15.30), will be violated before |v2| ¼ |v1|. To determine the limit of this solution’s applicability,
those amplitudes can be equated to determine a distance, x1¼2, before which this assumption would be
violated.

x1¼2 ¼ λ
πΓMac

ð15:38Þ

It is not surprising that this approximation would fail at a distance that is less than twice the shock
inception distance, DS. It is also true that this solution assumes that energy is transferred to the second
harmonic with no reduction in the amplitude of the fundamental. That is clearly not possible, since the
energy that appears as the second harmonic contribution was provided by the energy in the fundamen-
tal. The subsequent analysis will correct that difficulty.

15.2.3 Higher Harmonic Generation

It would be possible to continue the successive approximation procedure to calculate successively
higher harmonics, but that procedure would quickly become algebraically messy. A simple and more
intuitive approach is to use Eq. (15.9) to incorporate the local sound speed to deform the wave, as was
done initially for shallow-water gravity waves in Fig. 15.3, and then simply use Fourier analysis to
extract the amplitudes of the harmonics [24].

An undistorted wave can be parameterized by making its amplitude, y, be a function of a parameter,
θ: y ¼ sin (θ). To distort the wave, the plotted position can be advanced by an amount related to the
propagation distance, d, scaled by the shock inception distance, DS.

σ ¼ d
DS

¼ 2πΓMac
d
λ
; 0  σ < 1 ð15:39Þ

In Fig. 15.9, one-half of a sine function has been plotted on the x axis at two different advanced
locations in Eq. (15.40).

x ¼ θ þ σ sin θ ð15:40Þ

There is no additional information provided by the negative half-cycle, so the harmonic content of
the distorted waveform can be Fourier analyzed between 0  θ < π.

The Fourier coefficients can be projected to obtain the amplitudes of the harmonics using the same
procedure as applied to vibrating strings in Sect. 3.5.

Cn ¼ 2
π

ðπ
o
y sin nxð Þdx ¼ 2

π

ðπ
0
sin θ sin n θ þ σ sin θð Þ½ � 1þ σ cos θð Þdθ ð15:41Þ

Using the integral definition of Bessel functions of the 1st kind in Eq. (C.26), Eq. (15.41) can be
expressed as the sum of four Bessel functions.
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Cn ¼ �1ð Þnþ1 Jn�1 nσð Þ � Jnþ1 nσð Þ � σ=2ð Þ Jn�2 nσð Þ � Jnþ2 nσð Þ½ �f g ð15:42Þ
Two successive applications of the recurrence relations in Eqs. (C.27) and (C.28) reduce the

expression for the harmonic amplitude coefficients, Cn, to the compact form in Eq. (15.43), which is
plotted in Fig. 15.10.

Fig. 15.9 One-half-cycle of nonlinear distortion. The solid line is the undistorted (sinusoidal) waveform. The dashed
line represents the waveform that has propagated to the shock inception distance, σ ¼ x/DS < 1. The dotted line represents
the waveform that has propagated to one-half the shock inception distance

Fig. 15.10 Fourier
coefficients for a
nonlinearly distorted
sinusoidal wave as a
function of the scaled
propagation distance, σ ¼ x/
DS. The solid line is the
amplitude of the
fundamental at f1 that
should be read from the left-
hand axis. The long-dashed
line is the second harmonic
amplitude, C2, at f2 ¼ 2f1,
the narrow-dashed line is
the third harmonic
amplitude, C3, at f3 ¼ 3f1,
and the dotted line is the
fourth harmonic amplitude,
C4, at f4 ¼ 4f1. All Cn for
n > 1 should be read from
the right-hand axis
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Cnj j ¼ 2
nσ

Jn nσð Þ for σ < 1 and n ¼ 1, 2, 3, . . . ð15:43Þ

This result was originally obtained using algebraic methods by Fubini-Ghiron in 1935 [25].
The initial growth rate of the harmonics with propagation distance can be appreciated by expansion

of the Bessel functions for small values of their arguments, nσ, as expressed in Eq. (C.12). As shown in
Eq. (C.14), the J1(x) Bessel function increases linearly with x¼ nσ. By Eq. (15.43), C1/ J1(σ)/(σ) so it
is initially independent of distance. One nice feature of this solution is that as the higher harmonic
amplitudes grow, the amplitude of the fundamental decreases. At d ¼ DS, the amplitude of the
fundamental is only 88% of its original value.

The first terms in the expansion of the higher-order Bessel functions, Jn (x), all are proportional to
xn. As per Eq. (15.43), each Bessel function is divided by x ¼ (nσ), so that each amplitude coefficient
increases in proportion to the (n�1) power of the scaled distance, σ ¼ x/DS. This behavior is evident in
Fig. 15.10. The second harmonic amplitude, C2, initially grows linearly with distance, just as predicted
by Airy [23] in the solution by successive approximation that led to Eq. (15.37). The third harmonic
amplitude, C3, has an initially quadratic dependence on distance, and the fourth harmonic amplitude,
C4, has an initially cubic dependence on the propagation distance.

A calculation by Fay [26] that included dissipation also produced an expression for the harmonic
amplitudes, Bn, that describe a stabilized waveform where the Gol’dberg number includes
thermoviscous attenuation, αT-V, in Eq. (14.29).

Bn ¼ 2
G sinh n 1þ σð Þ=G½ � for σ ¼ x

Ds
> 3 ð15:44Þ

Note that the Fay solution produces the (stable) sawtooth waveform of Fig. 15.8 for distances that
satisfy G � n(1 þ σ), where the hyperbolic sine function can be replaced by its argument to produce
the Fourier amplitude coefficients of a sawtooth waveform (see Fig. 1.22 and Chap. 1, Prob. 12),
Bsawtooth
n ¼ 2=n 1þ σð Þ. As shown by Blackstock [27], the Fay result for the harmonic amplitudes does

not reduce to those of Fubini in Eq. (15.43), in the limit of vanishing viscosity since the Fubini
coefficients are valid near the source, σ  1, and the Fay coefficients in Eq. (15.44) are valid in the
sawtooth region, σ � 3. Blackstock provides a solution that connects those two regimes in his paper
that has become known as the “Blackstock bridging function.”

15.3 The Phenomenological Model

Hydrodynamics provides a complete description of the propagation of sound in fluids. All of the
nonlinear behavior that has been introduced in this chapter thus far should be derivable from that
hydrodynamic description. As will be demonstrated now, the hydrodynamic approach will also
provide additional insights and motivate the description of additional nonlinear phenomena.

As discussed in Sect. 7.3, the dynamics of a single-component homogeneous fluid can be described
by two thermodynamic variables (e.g., ρ and s or p and T ) and the three components of the velocity
field.

v
! ¼ vxbex þ vybey þ vzbez ð15:45Þ

As before, vx is the x component of velocity, and bex is the unit vector in the x direction. The “system” is
“closed” if there are five independent conservation equations that relate the variables to each other.
Those equations should be familiar by now and are reproduced below:
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∂ρ
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The form of the entropy Eq. (15.47) is rather more general than will be required but includes the
square of the viscous shear tensor, Φ, and the bulk viscosity, ζ, along with thermal conductivity, κ, all
as potential sources of entropy production.

As before, those conservation laws contain both p and ρ as (mechanical) thermodynamic variables,
so that an equation of state, p ¼ p(ρ, s), describing each individual fluid’s properties, is required to
“close” the set. In the absence of dissipation (i.e., κ ¼ μ¼ ζ ¼ 0), the equation of state can be combined
with the continuity Eq. (15.46), and the entropy conservation Eq. (15.47) to demonstrate that the
entropy will be conserved.
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This simplifies the expansion of the equation of state in terms of the density deviation, ρ0 ¼ ρ � ρm,
since all of the derivatives can be evaluated at constant entropy.
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15.3.1 The (Nondissipative) Nonlinear Wave Equation

As with Earnshaw’s solution and the calculation of the harmonic amplitude components in the weak
shock limit, this analysis will be restricted to one-dimensional propagation (i.e., vy¼ vz¼ 0), but at this
point, there is no penalty for retaining the vector velocity for evaluation of the hydrodynamic equations
and the equation of state up to terms of second-order in the deviation from equilibrium.
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The first-order wave equation is homogeneous.
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s

∇2ρ1 ¼ 0 ð15:54Þ

The first-order terms from Sect. 7.2 that were combined to produce that linear wave equation can be
subtracted from the combination of Eqs. (15.51), (15.52), and (15.53) to leave a wave equation for the
space-time evolution of the second-order sound fields.7
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2
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This wave equation for the second-order deviations of the density from equilibrium is not homoge-
neous; it has a source term that is driven by quadratic combinations of the first-order sound fields.
Using the Euler relation for the first-order fields and Eq. (15.10), this second-order wave equation can
be re-written in a more familiar form for plane progressive waves.

∂2ρ2
∂t2
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� �
s

� 	
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∇2ρ21 ð15:56Þ

Not surprisingly, the strength of this nonlinear source term is proportional to the Grüneisen
parameter, Γ.

15.3.2 Geometrical Resonance (Phase Matching)

The second-order wave equation should reproduce the results obtained for second harmonic distortion
in the weak shock limit that were generated by the trigonometric expansion of Earnshaw’s solution.
That result can be recaptured by squaring the right-going sinusoidal travelingwave, ρ1¼ρ0 cos (ωt� kx),
and then inserting it into the source term on the right-hand side of Eq. (15.56).

Γ
c2o
ρm

∇2ρ21 ¼ Γ
c2o
ρm

ρ02

2
∇2 1þ cos 2ωt � 2kxð Þ½ � ð15:57Þ

The constant will disappear upon operation by the Laplacian, but the cos2(ω t� kx) term will drive
the second-order wave equation. What is crucially important is the recognition that the phase speed of
the source term, cph ¼ 2ω/2k, is identical to the phase speed of the second-order density deviations, ρ2,
which propagates with speed, co ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂p=∂ρð Þs

p
.

This correspondence between the phase speed of the source and the phase speed of the disturbance it
creates is called geometric resonance. In this case, the wavevectors representing the first- and second-

order fields, k
!
1 and k

!
2, are colinear. Considering this process as the first-order wave’s interaction with

itself, the geometric resonance for these colinear propagation directions can be expressed as a
wavevector sum.

k
!
2 ¼ k

!
1 þ k

!
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!
2

��� ��� ¼ 2 k
!

1

��� ��� and ω2 ¼ 2ω1 ð15:58Þ

7 Do not confuse the wave equation for the second-order deviations from equilibrium with the fact that both the first- and
second-order wave equations are both second-order partial differential equations. For the classification of differential
equations, second-order refers to the highest-order derivative that appears in the equation.
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Each infinitesimal fluid volume that is excited by quadratic combinations of the first-order sound
fields can be considered a source for the second-order sound field. In Fig. 15.11, those fluid volumes
are represented by individual loudspeakers with amplitudes that are proportional to ρ02. Because the
phase velocity is also the thermodynamic sound speed, co, each of those “virtual loudspeakers”
produces sound that sums in just the same way as the discrete end-fire line array in Sect. 12.7.1.
When the sound radiated by the first virtual loudspeaker propagates to the position of the second, the
two will be in-phase, and their amplitudes will add coherently. The sum then propagates to the third
location and adds in-phase and so on. This coherent addition along the direction of propagation
produces the linear growth in the second harmonic’s amplitude that was described in Eqs. (15.37)
and (15.43), as well as in Fig. 15.10. It also demonstrates the corresponding quadratic dependence on
the amplitude of the first-order field at any location.

15.3.3 Intermodulation Distortion and the Parametric End-Fire Array

The distortion of a single, initially sinusoidal plane wave is due to the wave’s own influence on the
medium through which it is propagating. The formalism of Eq. (15.56) makes it convenient to consider
the nonlinear interaction of two plane waves propagating in the same direction but having different
frequencies, ω# and ω". For simplicity, let both sound waves have equal amplitudes, ρ1.

At the linear level, they create a sound field that is simply their superposition.

ρ0 x, tð Þ ¼ ρ1 cos ω#t � k#x

 �þ cos ω"t � k"x


 ��  ð15:59Þ

The nonlinear source term in Eq. (15.56) is driven by the square of that linear superposition. Letting
a ¼ (ω#t � k#x) and b ¼ (ω"t � k"x), the drive can be expressed as the sum of five contributions.

ρ02 ¼ ρ21=2

 �

2þ cos 2að Þ þ cos 2bð Þ þ cos aþ bð Þ þ cos a� bð Þ½ � ð15:60Þ

Again, the constant term in the square brackets will be eliminated from the driving term by the
Laplacian in Eq. (15.56). The (2a) and (2b) terms represent the second harmonic distortion of the
individual wave produced by their self-interaction. The sum and difference terms, cos(a þ b)
and cos (a � b), are called intermodulation distortion products and represent the effect that one
wave has on the medium that the other wave is passing through.

Having already analyzed the self-distortion that creates the second harmonic distortion, our interest
will now be focused on two interacting waves. Those interacting waves will be called the pump waves
or primary waves. We will assume that their frequencies are closely spaced: |ω" � ω#|� (ω" þ ω#)/2.
These two colinear waves, as well as the products of their nonlinear interactions, are still all in
geometric resonance.

Fig. 15.11 Conceptual representation of the linear growth of the amplitude of the second harmonic with distance
produced by the inhomogeneous source term that drives the wave equation for the second-order acoustic density
deviations expressed in Eq. (15.56). The original pump-wave source “loudspeaker” is shown in bold lines and bold
fonts at the far left of this figure
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In the absence of dispersion, if the two waves are not colinear, then the phase matching that is the
consequence of geometrical resonance does not occur, and the interaction does not produce waves that
propagate beyond the interaction volume [28].

Since the two “pump” or “primary”waves are assumed to be close in frequency, they have about the
same thermoviscous spatial attenuation coefficient, αT-V, resulting in a characteristic exponential decay
distance, ℓ ¼ (αT-V)

�1, as identified before in Sect. 15.1.3 for definition of the Gol’dberg number. Since
the bulk attenuation coefficient is proportional to the square of the frequency, the two self-distorted
second harmonic components will suffer exponential decay over a distance that is only one-fourth of ℓ,
as will the wave that is produced by the nonlinear interaction that creates a wave at the sum of the two
pump frequencies. The exponential decay of either of the pump waves is represented symbolically in
Fig. 10.12 (Left). The growth and subsequent exponential decay of the second harmonics and sum
waves are represented symbolically in Fig. 10.12 (right).

Although the waveform instability caused by nonlinear distortion had been understood since the
time of the American Civil War, it was not until 1963 that Peter Westervelt recognized that highly
directional receivers and transmitters of sound may be constructed by use of the nonlinearity in the
equations of hydrodynamics8 [29]. Although it had been known, both theoretically [30] and experi-
mentally [31], that two plane waves of different frequencies propagating in the same direction generate
two new waves at the sum and difference frequencies, it was not until Westervelt’s paper that the
practical utility of that difference-frequency wave was recognized.

As we know from the analysis of the radiation from baffled circular pistons in Sect. 12.8, it is
impossible to produce a narrow (i.e., directional) sound beam if the circumference of the radiating
piston, 2πa, is on the order of the wavelength, λ, of the sound being radiated, or smaller. This makes it
impossible to produce a directional sound beam at low frequencies from small vibrating surfaces. On
the other hand, if 2πa � λ, then the radiated sound will be confined to a narrow beam as quantified in
Eq. (12.108). Westervelt recognized that it was possible to use nonlinear acoustics to create a narrow
low-frequency beam through the interaction of two narrow high-frequency, high-amplitude sound
beams of slightly different frequencies. If the high-frequency beams interacted over a distance that was
much longer than the difference frequency wavelength, λdiff ¼ 2πco/(ω" � ω#), then the virtual array,
like that depicted symbolically in Fig. 15.11, would produce a directional low-frequency sound beam.

As long as the attenuation distance for the pump waves is longer than the wavelength of the
difference frequency wave, the difference frequency will be produced by the end-fire linear array from
the nonlinear interaction of the two pump waves and will have the directionality characteristic of the
pump wave’s directionality (see Fig. 15.15). The growth of the difference frequency wave will initially
be linear with distance (as it was for the second harmonic distortion derived in Sect. 15.2.2), but due to
the attenuation of the higher-frequency pump waves, depicted symbolically in Fig. 15.12 (left), the
difference wave will reach some limiting amplitude as shown in Fig. 15.13.

An array consisting of 30 40 kHz piezoelectric transducers, shown in Fig. 15.14, was built to
demonstrate the directionality of the difference-frequency beam. Fifteen of the transducers were wired
electrically in parallel and driven at ω#/2π¼ 37.5 kHz, and the other 15 were wired in parallel and
driven at ω"/2π¼39.5 kHz to produce a parametric array that would create a difference wave at

8Westervelt first presented his parametric array at a meeting of the Acoustical Society of America in Providence, RI, in
1960, J. Acoust. Soc. Am. 32, 934 (1960). The abstract for that presentation included an expression for the radiated
intensity of the difference-frequency beam.
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(ω" � ω#)/2π¼ 2.0 kHz. These two sub-arrays were interlaced so that the nearest neighbors to any
transducers driven at one of the frequencies would radiate at the other frequency.

That array is shown in Fig. 15.14. It has a height, h¼ 5 cm, and width, w ¼ 21 cm. This produces a
circular-equivalent effective radius, aeff ¼ (h þ w)/π ffi 8 cm. At 40 kHz, the pump wavelength is
λpump ffi 0.9 cm, so kaeff ffi 60, making the pump waves very directional at that frequency. Using the
directionality for a baffled piston in Eq. (12.108), the pump wave’s major lobe is confined within about
�3.6
. Since the array is rectangular rather than circular, the 40 kHz beam will be wider than this
circular approximation in the vertical direction and narrower in the horizontal direction.

The attenuation of a 40 kHz sound wave in air is strongly dependent upon humidity (see Fig. 14.5).
In dry air, the exponential absorption length, ℓ (0% RH) ¼ 23 m, while for a relative humidity of 60%,
ℓ (60% RH)¼ 2 m. The pump amplitude, p1ffi 20 Pa, so by Eq. (15.15), the shock inception distance is
DS ¼ 8 m, assuming no spreading. A conservative estimate of the effective low-frequency end-fire
array length, deff, might be 2 m, making the virtual line array’s value of kdiff deff ffi 36 for the 2.0 kHz
difference-frequency wave.

Although the directionality that can be achieved by the parametric array in this example is
impressive, the electroacoustic energy conversion efficiency is very poor. The difference-frequency
acoustic pressure amplitude, measured at 4 m from the source, was p2¼ 0.14 Paffi 74 dB re: 20 μParms.

Fig. 15.12 (Left) Symbolic representation of the exponential decay of the one-dimensional pump wave due to
thermoviscous attenuation. (Right) Symbolic representation of the growth and subsequent decay of the second harmonic
and sum waves generated by nonlinear processes. Since the frequencies of the second harmonics and the sum wave are
approximately twice that of the pump waves, the decay of these nonlinear products takes place over a characteristic
exponential decay distance that is one-fourth of that for the pump waves
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0.2

0.4
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Fig. 15.13 A directional low-frequency “difference wave” can be created by the nonlinear interaction of two “pump”
waves of slightly different frequency, like the wave shown in Fig. 15.12 (left). Since the pump wave attenuates with
distance from the source, the difference-frequency wave amplitude initially increases linearly with distance from the
source but eventually reaches a maximum amplitude before attenuating or spreading at greater distances
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At that distance, the beam’s cross-section was about 1 m2. The intensity corresponding to p2 ¼ 0.14 Pa
is 22 μW/m2. The electrical input power to the array was about 18 watts, so the net electroacoustic
conversion efficiency is just about one-part-per-million or approximately 0.0001%.

This increase in difference-frequency directionality and the low conversion efficiency is illustrated
in the directionality plots in Fig. 15.15 for a parametric end-fire array operating at pump frequencies of
22 kHz and 27 kHz to produce a 5 kHz difference-frequency wave in water. The efficiency is better
than in air due to the higher value of Γ in water and the higher acoustic pressures that could be
produced, but the ratio of the amplitude of the difference-frequency to the pump is quite low, as
demonstrated when both the pump and the difference frequency waves are plotted together in
Fig. 15.15 (left). The smaller-amplitude difference-frequency wave’s directionality is plotted by itself
in Fig. 15.15 (right). Comparison of the two graphs shows that the difference-frequency beam is only
slightly wider than the pump frequency beams.

Fig. 15.15 (Left) The directionality of the pump and of the difference-frequency waves is plotted on the same scale.
(Right) When the directionality of the difference-frequency wave is plotted by itself, it is clear that the directionality of
the difference-frequency wave is only slightly broader than the directionality of the pump waves

Fig. 15.14 Photograph of an array of 30 small piezoelectric transducers that is 5 cm tall and 21 cm wide. The array was
wired as two interlaced 15-element sub-arrays. One sub-array was driven at ω#/2π¼ 37.5 kHz and the other at ω"/
2π¼39.5 kHz to produce a difference-frequency wave at (ω" � ω#)/2π¼ 2.0 kHz. [Transducer and photo courtesy of
T. B. Gabrielson]
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The low conversion efficiencies of the parametric array are deemed acceptable for some niche
applications. Parametric arrays for use in air are being produced commercially, but I have some
trepidation about the possibility of detrimental physiological effects due to the very high pump-
wave amplitudes at frequencies that are above the normal range of human hearing. I’m not of the
opinion that “what you can’t hear, can’t hurt you.”

The ubiquity of such commercially available parametric arrays that are used to produce directional
sound in air (i.e., “audio spotlights”) has renewed interest in the potentially detrimental health effects
of high-amplitude ultrasound exposure and led to the publication of a Special Issue of the Journal of
the Acoustical Society of America that is focused on this subject [32].

We are currently in the undesirable situation where a member of the public can purchase a $20 device that can be
used to expose another human to sound pressure levels that are > 50 dB in excess of the maximum permissible
levels for public exposure.

Concern has been exacerbated by reports of the “weaponization” of high-amplitude ultrasound that
may have been used to injure diplomats at the US Embassy in Havana, Cuba [33], and elsewhere [34].

When I make measurements near such an ultrasound source (e.g., Fig. 15.14), I wear ear plugs and
place sound-attenuating earmuffs over my plugged ears. Other experimentalists who have not taken
such precautions have exhibited symptoms like dizziness and nausea.

15.3.4 Resonant Mode Conversion

So far, the concept of geometrical resonance has restricted the evolution of harmonic distortion or the
production of sum and difference waves to media that do not exhibit significant dispersion, as indicated
by Eq. (15.61). If there is dispersion, so dco/df 6¼ 0, then the some portions of the virtual array will start
to become out-of-phase with other portions, and the uniform linear increase in amplitude with distance
will become instead a “beating” where the amplitude would start growing and then start diminishing,
possibly repeating that alternation if the interaction length were sufficiently long, as some portions of
the virtual array subtract from the growth produced by other portions.

In this sub-section, two beams that are not colinear are allowed to interact to produce another wave
that travels at a different speed. That beating is illustrated by the measurements made in a waveguide of
rectangular cross-section, made by Hamilton and TenCate [38], shown in Fig. 15.16.

Fig. 15.16 The difference
frequency amplitude
vs. distance along a
waveguide showing the
“beating” created by the
dispersion caused by the
waveguide’s frequency-
dependent phase speed
when the difference
frequency, f2 ¼ 165 Hz,
propagates as a plane wave
and the two pump waves,
at f1 ¼ 2900 Hz and
f� ¼ 2735 Hz, propagate in
the lowest-frequency
non-plane wave mode [38]
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If the propagation speed of the nonlinear product is greater than the propagation speed of the pumps
and if the pump wavevectors are not colinear, there can be geometrical resonance (i.e., phase matching)
at a unique interaction angle. I like to call this a “scissors effect.” If we assume that there are two waves
of the same frequency, ω" ¼ ω# ¼ ω, but their wavevectors make a relative angle, θ, with each other,
then the phase speed of the “sum” wave will be higher than the phase speed of either pump (primary)
wave. This simple geometry is illustrated in Fig. 15.17.

cph ¼ ω" þ ω#

k
!

" þ k
!
#

��� ��� ¼ 2ω

2 k
!��� ��� cos θ=2ð Þ

¼ co
cos θ=2ð Þ � co ð15:62Þ

This is similar to a scissors in that the speed of the intersection of the two blades moves faster than
the speed at which the tips of the blades approach each other.

As introduced in Sect. 5.1.1, the speed of longitudinal waves in bulk solids is cL ¼ ffiffiffiffiffiffiffiffiffi
D=ρ

p
, where

D is the dilatational modulus, also known as the modulus of unilateral compression (see Sect. 4.2.2).
Shear waves in bulk isotropic solids propagate at the shear wave speed, cS ¼

ffiffiffiffiffiffiffiffiffi
G=ρ

p
, where G is the

material’s shear modulus (see Sect. 4.2.3). The relationship between the moduli of any isotropic solid,
summarized in Table 4.1, allows the relationship between those two sound speeds to be expressed in
terms of the solid’s Poisson’s ratio, ν, and its Young’s modulus, E.

c2S ¼
G
ρ
¼ E

2ρ 1þ νð Þ < c2L ¼ D
ρ
¼ E 1� νð Þ

ρ 1þ νð Þ 1� 2νð Þ ð15:63Þ

The stability criterion discussed in Sect. 4.2.3 restricts positive values of Poisson’s ratio to ν < ½,
thus guaranteeing that cL > cS.

Based on the phase speed increase calculated for the interaction of two waves that are not colinear in
Eq. (15.62) and the fact that cL > cS, it would be possible to have two shear waves interact though
nonlinearity to produce the faster longitudinal wave where the mode-conversion interaction angle, θmc,
is determined by the Poisson’s ratio of the solid in which the two shear waves are interacting.

cos
θmc
2

� �
¼ cS

cL
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2νð Þ
2 1� νð Þ

s
< 1 ð15:64Þ

For polycrystalline aluminum, νAl ¼ 0.345 [35], so cos (θmc /2) ¼ 0.486. The required angle
between the two shear wavevectors in aluminum must be θmc ¼ 122
 to make the interaction phase
speed in Eq. (15.62) satisfies geometrical resonance for nonlinear mode conversion that couples two
shear waves, each at frequency, ω, to a longitudinal wave with frequency 2ω.

Fig. 15.17 Two pump
waves of the same
frequency interact at an
angle, θ. If θ 6¼ 0
, the
vector sum of their
wavevectors will be less
than the sums of their
wavenumbers
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Resonant mode conversion in solids was first described theoretically by Jones and Kobett [36] and
observed experimentally shortly thereafter in aluminum, by Rollins, Taylor, and Todd, at the interac-
tion angle predicted in Eq. (15.64) [37].

Another opportunity for resonant mode conversion is afforded by inspection of Fig. 15.5. From 1 K
to 2 K, second (thermal) sound has a speed, c2, of about 20 m/s, while the speed of first (compressional)
sound, c1, is around 230 m/s. Two second sound waves that are almost anti-colinear could have an
interaction phase speed equal to that of first sound. Using the geometry of Fig. 15.16, the mode
conversion half-angle, at temperatures below Tλ ¼ 2.172 K, depends upon the velocity ratio.

cos
θmc
2

� �
¼ c2 Tð Þ

c1 Tð Þ  0:10 ð15:65Þ

This suggests that θmc will be close to 180
.
A waveguide of rectangular cross-section affords an ideal geometry to provide a long interaction

length while also affording precise control of the mode conversion angle for two plane waves of second
sound. In a waveguide, the interaction angle of the two traveling plane waves (see Fig. 13.23) is
controlled by the ratio of the drive frequency to the cut-off frequency. From Fig. 15.17 and Eq. (13.69),
the mode-conversion interaction half-angle, θmc/2, is related to the ratio of the second sound drive
frequency, ω, to the cut-off frequency of the waveguide’s first non-plane wave mode, ωco.

cos
θmc
2

� �
¼

k
!��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � k2z

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ω2

co

ω2

r
ð15:66Þ

As shown in Fig. 15.18, if the height of the waveguide is ℓz, then the cut-off frequency would
correspond to a single half-wavelength of second sound being equal to the waveguide’s height:
ωco ¼ πc2/ℓz. Substitution of Eq. (15.65) into Eq. (15.66) determines the ratio of the second sound
frequency necessary for resonant mode conversion, ωmc, to the waveguide’s cut-off frequency, ωco.

ωco

ωmc
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c22

c21

s
< 1 ð15:67Þ

Of course, it is necessary to do this experiment in superfluid helium at temperatures below Tλ, since
second sound provides the pump (primary) waves, as well as to have an adequate nonlinear interaction

Fig. 15.18 A waveguide can provide precise control of the interaction angle, θ, of the two second sound traveling plane
waves that satisfy the waveguide’s boundary conditions, since the ratio of the frequency to the cut-off frequency controls
the interaction angle
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length to observe this resonant mode conversion of second sound to first sound. Those two constraints
led to the use of a spiral waveguide shown in Fig. 15.18 (left). Sum and difference waves generated by
non-colinear waves in an air-filled waveguide of rectangular cross-section that were not geometrically
resonant are shown in Fig. 15.16 that were measured by Hamilton and TenCate [38].

Landau’s two-fluid description of superfluid helium requires eight variables [39]. In addition to the
two thermodynamic variables, two separate velocity fields are necessary to describe the motion of the
superfluid component and of the normal fluid component, v

!
s and v

!
n . This makes the second-order

wave equation for the nonlinear acoustic interactions more complicated than Eq. (15.56), but the
inhomogeneous form, which provides a wave Eq. (15.68) to describe the space-time evolution of the
second-order pressure, p2, is still driven by quadratic combinations of the first-order sound fields
produced by first sound (v21 and p21), second sound(T2

1 and w2
1), or their interaction ( p1T1) [15].

∂2p2
∂t2

� c21∇
2p2 ¼ c21

∂2

∂ri∂r j
ρviv j þ ρnρs

ρ
wiw j

� ��
� 1
2

∂2ρ
∂p2

� �
∂2p21
∂t2

� 1
2

∂2ρ

∂T2

� �
∂2T2

1

∂t2
� ∂2ρ

∂p∂T

� �
∂2 p1T1ð Þ

∂t2
� ∂ρ

∂w2

� �
∂2 w2ð Þ
∂t2

# ð15:68Þ

Since there are two velocity fields, Eq. (15.68) expresses the fluid’s motion in terms of the center-of-
mass velocity, v!, which is nearly zero for second sound and w! ¼ v

!
n � v

!
s, which is nearly zero for first

sound. Because w2 is a Galilean invariant (i.e., its value is not dependent on the motion of the
coordinate system), it is also a thermodynamic variable, as evidenced by the partial derivative in the
final term in Eq. (15.68).

Resonant mode conversion of second sound to first sound was observed experimentally from
1.15 K < Tm < 2.0 K using the spiral waveguide and heater shown in Fig. 15.19 (Right) [40].

Fig. 15.19 (Left) A spiral waveguide shown with the lid that housed the first and second sound sensors (microphones)
removed. The depth of the waveguide, Lz ¼ 14.73 mm, and the width, Ly ¼ 4.8 mm. The edge length of the square block
into which the spiral groove was cut is 12.7 cm. The total length of the spiral is 150 cm, and a wedge absorber, visible
near the waveguide’s center, occupies the final 60 cm. (Right) Second sound is generated by periodically heating the
superfluid. This heater consists of two individual NiCr resistance wire elements with a nearly sinusoidal profile to
optimize coupling to the first non-plane waveguide (height) mode. Due to the frequency doubling produced when the
heaters are driven with an AC current, the two heater halves were driven 90
 out-of-phase (electrically) at one-half the
mode conversion frequency

728 15 Nonlinear Acoustics



15.4 Non-zero Time-Averaged Effects

Nonlinear acoustical effects are driven by quadratic combinations of first-order sound fields. When the
first-order sound field was squared to produce Eq. (15.57), the constant term was ignored because it
was operated upon by a Laplacian to produce the virtual sources that drove the inhomogeneous wave
equation for the propagation of the second-order sound field. In this sub-section, the effects of that
constant term will be explored, first with a focus on the square of the first-order particle velocity, v1,
initially restricting our analysis to one-dimensional propagating plane waves.

v21 x, tð Þ ¼ v02 cos 2 ω t � kxð Þ ¼ v02

2
1þ cos 2 ω t � kxð Þ½ � ð15:69Þ

Since the first-order acoustic fields have a sinusoidal time dependence, their time-averaged values
must vanish over times that are long compared to the periods of such disturbances, T � 2π/ω.

p1h it ¼
1
T

ðT
0
p1 dt ¼ 0 ð15:70Þ

The second-order terms, like the squared velocity in Eq. (15.69), that contain a constant term, will
produce time-averaged second-order pressures that will not vanish: hp2it 6¼ 0. These second-order
non-zero time-averaged pressures can produce substantial forces [41] and torques [42] on objects that
are within the sound field. As early as the 1940s, Hillary St. Clair was able to levitate copper pennies
(ρCu ¼ 8.9 gm/cm3) [43]. Using an intense sound field produced by a siren and a reflector, Allen and
Rudnick were able to repeat St. Clair’s demonstration:

“When a number of pennies are placed on a stretched silk screen, the parameters can be so adjusted that the
pennies do somersaults with “Rockette“-like precision; or so that a penny can be made to rise slowly to a vertical
position, appearing all the while to be supporting, acrobatically, another which finally assumes a horizontal
position above the first penny touching rim to rim. Also, coins resting on the silk screen can be flipped a distance
of a few feet by varying the frequency of the siren rapidly.” [44]

15.4.1 The Second-Order Pressure in an Adiabatic Compression

Nonlinear distortion, the generation of harmonics, and the “scattering of sound by sound” were
attributed to the fact that a wave will modify the properties of the medium through which it is
propagating. To start our investigation of non-zero time-averaged effects, it will be instructive to
consider the piston of area, Apist, in a close-fitted cylinder that is filled with an ideal gas at equilibrium
pressure, pm. With the piston in its equilibrium position, designated as x¼ 0, the equilibrium volume of
the gas in the cylinder will be Vo ¼ Apist L, where L is the length of the cylinder from the rigid end
located at x ¼ L to the piston’s equilibrium position. This arrangement is identical to that depicted
schematically in Fig. 8.5.

If the gas inside the cylinder obeys the Adiabatic Gas Law and if the motion of the piston is
sinusoidal, with the piston’s position given by x(t) ¼ x1 sin (ω t), then the pressure within the cylinder
will be uniform throughout and given by the Adiabatic Gas Law as long as

ffiffiffiffiffiffiffiffiffi
Apist

p � λ=2π ¼
co=ω and L � co=ω , so that the cylinder can be treated as a “lumped element,” where co ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∂p=∂ρð Þs
p

is the speed of sound under equilibrium conditions.
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pV γ ¼ const: ) p1 tð Þ
pm

¼ �γ
δV
Vo

¼ �γ
�Apistx1 sin ω tð Þ

ApistL

) p1 tð Þ ¼ γpm
x1 sin ω tð Þ

L
� p1 sin ω tð Þ

ð15:71Þ

This is the familiar “linear” result; a sinusoidal variation in the piston’s position leads to a sinusoidal
variation of the pressure within the cylinder. Such a result assumes that x1/L� 1, so the motion of the
piston does not affect the volume, Vo, that appears in Eq. (15.71). Of course, that is not exactly true. As
the ratio of x1 to L increases, the importance of the piston’s instantaneous position on the value of the
volume of the gas becomes more influential. It is easy to take the change in the cylinder’s volume into
account. When the piston moves inward, it sweeps out a volume, δV(t) ¼ �Apist x(t), which should be
subtracted from the equilibrium volume, Vo.

p tð Þ ¼ �γpm
δV

Vo 1� δV
Vo

� � ffi �γpm
δV
Vo

1þ δV
Vo

� �
¼ �γpm

δV
Vo

þ δV
Vo

� �2
" #

ð15:72Þ

Taking the time-average of the pressure over a period, T, the linear term vanishes, but the quadratic
term produces a non-zero time-averaged pressure, hp2it, since sin2(ω t) ¼ ½[1 � sin (2ω t)].

p2h it ¼
γpm
2T

x1
L

� �2
ðT
0
1� cos 2ω tð Þ½ �dt ¼ γpm

2
x1
L

� �2
ð15:73Þ

The integral over the component oscillating at 2ω will vanish but the constant component will not.
That time-averaged excess pressure will tend to push the piston away from the closed end of the
cylinder. This effect produces “piston walk” in Stirling cycle machines.

This time-averaged pressure can be expressed in terms of the first-order pressure calculated in
Eq. (15.71): x1=L ¼ p1=γpm ¼ p1=ρmc

2
o, if the cylinder contains an ideal gas.

p2h it ¼
p21

2ρmc2o
ð15:74Þ

In this form, it is clear that the non-zero time-averaged pressure is quadratic in the first-order
pressure. It is also useful to recognize that this result is equal to the potential energy density as derived
from the energy conservation Eq. (10.35).

As with the results of weak shock theory in Sect. 15.2, it is the effects of the piston’s position on the
volume that appears in the Adiabatic Gas Law of Eq. (15.72) that produces corrections to the linear
result. The creation of a net second-order pressure is due to the asymmetry produced by the fact that the
average volume on compression of a piston is smaller than the average volume during expansion.

Application of this result to a one-dimensional standing wave resonator is straightforward. Within
the resonator, the first-order pressure can be written as p1 x, tð Þ ¼ ℜe bp cos nπx=Lð Þejω t½ �. Close to the
end at x¼ 0, the first-order acoustic pressure is nearly independent of position, just as it is in the piston
and cylinder example. By the Euler equation, the longitudinal particle velocity can be written as
v1 x, tð Þ ¼ ℜe j bp=ρmcoð Þ sin nπx=Lð Þejω t½ � � �v1 sin nπx=Lð Þ sin ω t þ φð Þ , so the particle velocity
goes linearly to zero as x goes to L, just as it does in the piston and cylinder example. This situation
near to the rigid end of the resonator (or close to any standing wave pressure anti-node) can be
represented by an imaginary line (i.e., a Lagrangian marker) that moves with the gas, acting as the
piston while neglecting the remaining gas in the resonator.

In a sealed resonator, the total mass of the gas cannot change. If the static pressure at the rigid ends
(as well as at any pressure anti-node for higher-order longitudinal modes of the resonator, n > 1)
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increases by the amount specified in Eq. (15.74), then the density of the gas must also increase in those
locations. For that to happen in a sealed system, the gas density (and pressure) must decrease
elsewhere.

In a standing wave, the amplitude of the gas particle velocity at a pressure node (velocity anti-node)
is v1 ¼ p1/ρmco, so if the total mass of the gas cannot change, then the non-zero, second-order, time-
averaged pressure at the first-order pressure node must be equal and opposite to the value in Eq. (15.74)
and can be re-written in terms of v1.

p2h it ¼ � p21
2ρmc2o

¼ � ½ð Þρmv21 at a pressure node ð15:75Þ

In this form, it is clear that the non-zero time-averaged pressure is quadratic in the first-order
velocity amplitude. It is also useful to recognize that this result is equal to the kinetic energy density at
the velocity anti-node as derived from the energy conservation Eq. (10.35). It also has the functional
form of the Bernoulli pressure.

The relationship between the second-order time-averaged pressure [45], also known as the radia-
tion pressure, and the kinetic and potential energy densities will be derived from the hydrodynamic
equations in Sect. 15.4.4 after examining a few examples of the acoustical consequences produced by
the Bernoulli pressure in the following sub-section and in Sect. 15.4.3.

15.4.2 The Bernoulli Pressure

The first introduction in this textbook to the Bernoulli pressure9 was provided in the analysis of the
Venturi tube (see Sect. 8.4.1) that was intended to aid in the understanding of the convective term in the
total hydrodynamic derivative in Eq. (8.33). This resulted in the introduction of a pressure gradient
produced in the tube that was driven by the square of the fluid’s velocity, v2.

p ¼ pm � 1
2
ρmv

2 ð15:76Þ

Since the Bernoulli pressure is proportional to the square of the fluid’s velocity, it is independent of
the direction of flow. For the oscillatory velocities that are produced by sound waves, this means that
the time-averaged Bernoulli pressure will be non-zero.

The effects of the Bernoulli pressure for oscillatory flows produced by sound waves were
recognized and understood by Lord Rayleigh. The Kundt’s tube was a popular piece of acoustic
apparatus that produced high-amplitude standing waves by stroking a rod that would excite longitudi-
nal vibrations and couple those vibrations to the air contained in a transparent glass tube [46]. Cork
dust or lycopodium seeds were commonly used to visualize the sound field by “decorating” velocity
anti-nodes. Figure 8.14 shows cork dust striations in the neck of a resonator that is excited in its
Helmholtz mode, fo ¼ 210 Hz (left), and at a frequency, f1 ¼ 1240 Hz, that excited a half-wavelength
standing wave in the neck (right) [47].

9 Daniel Bernoulli (1700–1782) was a Dutch physicist and mathematician who published Hydrodynamica in 1738 that
provided the basis of the kinetic theory of gases which he applied to explain Boyle’s law. He was also well known for
early development of elasticity theory with Leonard Euler, an effort recognized to this day by the fact that Eq. (5.36) is
called Euler-Bernoulli beam equation.
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Rayleigh recognized that two small particles of sufficient mass to remain stationary within the
oscillatory flow field, due to their inertia,10 would be attracted to each other because the oscillatory air
flow must accelerate as it passes between the constrictions produced by the adjacent particles. By
Eq. (15.76), the increased fluid velocity between the particles results in a lower pressure so that the
resultant pressure gradient would drive the particles together.

The figure taken from Rayleigh’s Theory of Sound that diagrams this attraction is shown in
Fig. 15.20 (center). This effect, known as acoustic agglomeration, has been used in several applications
where removal of larger clusters of smaller particles from a fluid is easier than the removal of smaller
individual particles [48]. More recently, “acoustic agglomeration” has been used for separation of
biological cells grown in bioreactors from their nutrient liquid [49].

Rayleigh makes a similar argument, as also illustrated in Fig. 15.20 (left), to explain the striations of
the dust particles agglomerated in planes that are normal to the oscillatory flow. When two particles
(or planes of particles) are separated along the direction of the oscillatory flow, the stagnation of the
fluid between them produces an increase in the time-averaged pressure that causes the particles
(or planes of particles) to repel each other, as clearly visible in the striations seen in Fig. 8.14.

Another interesting manifestation of the Bernoulli pressure was mentioned by Rayleigh in regard to
the forces on a Helmholtz resonator. The fluid’s velocity in the neck of a Helmholtz resonator is high.

Fig. 15.20 Three figures taken from Rayleigh’s Theory of Sound, Vol. II [50]. (Left) In Fig. 54b, two particles are
oriented along the direction of oscillatory flow indicated by the double-headed arrow. Since the flow is occluded between
the two spheres, the time-averaged pressure is greater between the particles causing them to repel. (Center) When the
same two particles are oriented normal to the oscillatory flow in Fig. 54c, the increase in the velocity between the two
produces a lower pressure that causes the two particles to attract each other. (Right) A rigid disk is placed at 45
 with
respect to the oscillatory flow

10 The motion of a small particle in a sound field will depend upon the competition between the particle’s inertia (mass),
which tends to make it remain stationary in the laboratory frame of reference, and the Stokes drag due to the viscosity of
the medium which tends to force the particle to move along with the acoustically oscillating fluid. The inertial force is
given by Newton’s Second Law, Finertia ¼ m (dv1/dt), and the Stokes drag force on a spherical particle of radius, a,
(at sufficiently low Reynolds number) is Fdrag ¼ 6πμav1. Their dimensionless ratio will determine if the particle moves
with the fluid or if the fluid moves around the particle. That ratio can be written for a spherical particle with mass density,
ρ, and sound with frequency, f.

Finertia

Fdrag
¼ 4π

9
a2f ρ
μ

For a particle with the density of water (ρ¼ 103 kg/m3), in air with μffi 1.8 x 10�5 Pa-s, and then at 100 Hz, that ratio is
one for a spherical particle with a radius of about 10 microns. A larger radius particle, like cork dust, coffee whitener, or a
seed, will remain nearly stationary in the laboratory frame, and the fluid will oscillate around it, while a much smaller
particle, like smoke, will move with the fluid.
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Based on Eq. (15.76), this suggests that the pressure in the neck must be reduced. Since the neck is in
direct contact with an effectively infinite reservoir of atmospheric pressure, the only means by which
the required pressure difference can be maintained is if the static time-averaged pressure within the
compliance (volume) of the Helmholtz resonator is greater than atmospheric pressure.

This second-order, acoustically induced pressure difference, hp2it, will lead to a net force on the
Helmholtz resonator since the pressure on the surfaces of the volume are unbalanced over the cross-
sectional area, πa2neck , of the neck:Fnet ¼ πa2neck p2 v2neck


 �� �
t.

“Among the phenomena of the second order which admit of a ready explanation, a prominent place must be
assigned to the repulsion of resonators discovered independently by Dvořák [51] and Meyer [52]. These observers
found that an air resonator of any kind when exposed to a powerful source experiences a force directed inwards
from the mouth, somewhat after the manner of a rocket. A combination of four light resonators, mounted
anemometer fashion upon a steel point, may be caused to revolve continuously.” [53]

Apparently, an acoustical demonstration of the nonlinear force on a resonator that resembles a lawn
sprinkler, shown in Fig. 15.21, from [52], was well known to RaylTheir dimensionless eigh.11 This
effect can be observed in a quantitative way by placing a Helmholtz resonator on a sensitive balance
and producing a large amplitude sound field in the vicinity using a loudspeaker driven at the Helmholtz
resonance frequency and then observing the increase in the resonator’s apparent weight to do “the
rocket.”

15.4.3 The Rayleigh Disk

The Bernoulli pressure of Eq. (15.76) can also exert torques, N v21

 �

, on an extended object placed in an
oscillatory flow field. Rayleigh’s diagram of such a disk that is aligned at about 45
 with respect to the

Fig. 15.21 Apparatus
drawing, taken from
Dvořák [52], showing “four
very light paper or glass
[Helmholtz] resonators
upon two wooden rods, o p,
q r, crossing at right angles,
and balanced on a glass cap;
all the openings of the
resonators fronting one side
in the direction of tangents.
The whole apparatus is
placed before the
opening, K, of the
resonating box and fork, in
the manner indicated”

11 Video demonstrations of several of the non-zero, time-averaged effects in this section were recorded at the 100th

meeting of the Acoustical Society of America held in Los Angeles, CA, in 1988. This video is included in the second disk
of the Collected Works of Distinguished Acousticians—Isadore Rudnick, compiled by J. D. Maynard and S. L. Garrett
(Acoust. Soc. Am., 2011); https://www.abdi-ecommerce10.com/ASA/p-230-collected-works-of-distinguished-
acousticians.aspx.
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flow field is shown in Fig. 15.20 (right). That figure captures the flow at an instant when it is moving
from right to left, as indicated by the arrows. The approaching flow stagnates between A and B where it
diverges, and the receding flow stagnates on the other side of the disk between C and Q where it
rejoins. On the inflow side of the desk, the flowmust accelerate along A-Q-C as the two flows converge
on the outflow side at P. The stagnant flow between A and B on the inflow side and between C and Q
on the outflow side has a higher pressure than the faster-moving flows at the same locations on the
opposite sides of the disk. This produces a net torque that tends to orient the disk perpendicular to the
flow, regardless of the flow direction.

An appreciation for the magnitude of this torque can be obtained by calculation of the moment of
the Bernoulli pressure in Eq. (15.76) over both sides of a disk having radius, a, assuming the presence
of the disk does not perturb the sound field.12 The circle in Fig. 4.11 that was used to calculate the
radius of gyration for beam flexure will provide the coordinate system for this integration.

N ¼
ða
0
p2h itr dS ¼ 4

ða
0

ρm v21
� �

t

2
h 2h cos θ½ � dh

¼ 4ρm v21
� �

t

ðπ=2
0

a sin θð Þ2a cos θ dθ ¼ 4
3
ρm v21

� �
t
a3

ð15:77Þ

If the disk is assumed to be suspended by a torsion fiber in the oscillatory flow, then the torque will
be zero when the surface of the disk is perpendicular to the flow or when the surface of the disk is
aligned with the flow. If the angle between the normal to the disk’s surface is designated θ, then the
torque will be zero when θ ¼ 0
 (occluding the flow) or when θ ¼ 90
 (aligned with the flow), except
that the θ ¼ 90
 orientation will be unstable. If the disk is aligned with the flow and its orientation
deviates slightly from θ ¼ 90
, then the torque will cause the disk to seek the θ ¼ 0
 orientation. If the
disk is in the θ ¼ 0
, any small deviation in θ will subject the disk to a torque that will tend to restore
the θ ¼ 0
 orientation.

Based on the magnitude of the torque in Eq. (15.77) and the previous stability argument, the torque
as a function of the square of the time-averaged oscillatory velocity amplitude, v21

� �
t
, and the orienta-

tion angle can be written in the form that appears in Theory of Sound, which Rayleigh attributes to
König [54].

N θð Þ ¼ 4
3
ρm v21

� �
ta

3 sin 2θ ð15:78Þ

Rayleigh recognized that “Upon this principle an instrument may be constructed for measuring the
intensities of aerial vibrations of selected pitch” and suggests that the disk be a mirror suspended by a
silk thread so a light beam could be used as an optical lever (see Sect. 2.4.4) to determine the disk’s
orientation [55].

Prior to the introduction of the reciprocity method for calibration of reversible transducers (see Sect.
10.7.2, 10.7.3 and 10.7.4), the Rayleigh disk was a primary technique for determination of acoustic
sound field amplitudes [56]. Due to its importance, a detailed analysis of the torque was made by King
to include corrections produced by the disk’s influence on the sound field [57]. The torque on a
Rayleigh disk located at a velocity anti-node in a standing wave field included wavelength-dependent

12 This assumption is not as bad as it seems since the Bernoulli pressure, as described in Eq. (15.76), is only valid along a
streamline. The streamlines in Fig. 15.20 (right) will follow the contours of the disk accounting for the fact that simple
results of Eqs. (15.77) and (15.78) are very nearly the correct result.
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corrections for the disk’s mass, m1, as well as the disk’s hydrodynamic (inertial) entrained mass,
mo ¼ (8/3)ρma

3, as calculated in Eq. (12.126).

Nanti�node θð Þ ¼ 4
3
ρm v21

� �
t
a3 sin 2θ

m1 1þ 2
5 kað Þ2 cos 22θ

h i
m1 þ mo 1þ 1

5 kað Þ2
h i

8<:
9=; ð15:79Þ

The indifference of the sign of the torque produced by flow in either direction was important in
establishing the physical reality of Landau’s two-fluid theory of superfluid hydrodynamics.5 As
mentioned briefly in Sects. 15.1.2 and 15.3.4, there are two velocity fields necessary to characterize
the dynamics of superfluid flow, v!s and v

!
n . In a thermally induced second sound wave, the

superfluid’s center-of-mass velocity is zero, but the counterflow of v!s and v
!
nis non-zero.

Since the Rayleigh disk responds to the torque of both flow fields without respect to their direction,
Pellam and Hanson were able to establish the physical existence of both velocity fields and make the
first mechanical measurement of second sound in superfluid helium [58]. Later, Koehler and Pellam
were also able to measure the superfluid fraction, ρs/ρ, as a function of temperature using their
Rayleigh disk [59]. Both measurements employed a mirror as the disk to detect the disk’s deflection
optically. Later measurements of torques in superfluids used a nonoptical method to determine the
Rayleigh disk’s orientation [60].

15.4.4 Radiation Pressure

Restricting attention to one dimension, the Bernoulli pressure can be derived from the Euler
Eq. (15.48).

∂v
∂t

þ v
∂v
∂x

¼ � 1
ρm

∂p
∂x

ð15:80Þ

The goal will be to express Eq. (15.80) entirely in terms of the gradient of a scalar, so it is useful to
introduce the specific enthalpy (heat) function (see Sect. 14.2), h ¼ ε þ pV, where ε is the fluid’s
internal energy per unit volume (see Sect. 7.1.2): dε ¼ dU/V.

dh ¼ dεþ p dV þ V dp ð15:81Þ
Using the definition of the internal energy from Eq. (7.10), dε ¼ T ds – p dV, the pressure gradient

can be expressed in terms of the specific enthalpy, dh ¼ dp/ρm, and the product rule can be invoked to
consolidate the convective contribution.

∂v
∂t

þ 1
2
∂v2

∂x
¼ �∂h

∂x
ð15:82Þ

Having started with the Euler equation, the effects of viscosity have already been eliminated, so the
Kelvin circulation theorem guarantees that the velocity field will be curl free; thus it can be expressed

as the gradient of a scalar, ϕ, known as the velocity potential: v! ¼ ∇
!
ϕ [61].

∂
∂x

∂ϕ
∂t

þ v2

2
þ h

� �
¼ 0 ð15:83Þ
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Since the argument within the gradient in Eq. (15.83) is equal to zero, the function within the
gradient must be a constant everywhere throughout the fluid.

∂ϕ
∂t

þ v2

2
þ h ¼ constant ð15:84Þ

This is the “strong” form of Bernoulli’s equation, since it is not restricted only to streamlines, as it
was for the version introduced in Eq. (15.76).

To retain accuracy to second-order, the specific enthalpy must also be expanded to second-order.

h ¼ ho þ ∂h
∂p

� �
s

p1 þ p2ð Þ þ ∂2h
∂p2

� �
s

p21
2

ð15:85Þ

These thermodynamic derivatives can be evaluated for adiabatic processes, dS ¼ 0, from the
differential form of the specific enthalpy: dh ¼ T dS � dp/ρm.

∂ϕ
∂t

þ v2

2
þ ho þ p1 þ p2ð Þ

ρm
� 1
2

p21
ρ2mc

2
o
¼ constant ð15:86Þ

In this sub-section, we are only interested in the parts of Eq. (15.86) which produce a non-zero time-
average. As in Eq. (15.70), the time-average of first-order variations will vanish: h∂ϕ/∂tit ¼ hp1it ¼ 0.

p2h it ¼
1
2

p21
ρmc2o

� 1
2
ρmv

2
1 þ constant ð15:87Þ

The second-order time-averaged pressure is the difference between the potential and kinetic energy
densities. In classical mechanics, that combination is known as the Lagrangian density [62].

For a collimated traveling wave of the usual form,13 p1(x, t) ¼ p1 cos (ω t � kx), the linearized
Euler’s equation provides the ubiquitous relationship between the first-order acoustic field variables:
p1 ¼ ρmcov1. That relationship can then be substituted into Eq. (15.87).

p2h it ¼
1
2

p21
ρmc2o

� 1
2

p21
ρmc2o

¼ 0 ð15:88Þ

This result is oddly both philosophically significant and trivially obvious. If there were an object in
the traveling-wave field, it would scatter some portion of the sound (see Sects. 12.6.1 and 12.6.2), and
the sum of the scattered and incident wave fields would produce a standing wave. If the field is entirely
a traveling wave, then that wave field cannot include an “object” which would feel the force of a time-
averaged second-order pressure based on the object’s density and/or compressibility contrast.

15.4.5 Acoustic Levitation in Standing Waves

The result for the time-averaged second-order pressure in Eq. (15.87) can also be evaluated for a
standing wave.

13 For a plane wave of infinite extent, the constant in Eq. (15.87) cannot be set to zero as it has to produce Eq. (15.88).
This is discussed in C. P. Lee and T. G. Wang, “Acoustic radiation pressure,” J. Acoust. Soc. Am. 94(2), 1099–1109
(1993).
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p1 x, tð Þ ¼ p0 cos kxð Þ cos ω tð Þ and v1 x, tð Þ ¼ p0

ρmco
sin kxð Þ cos ω tð Þ ð15:89Þ

Substitution of Eq. (15.89) into (15.87) produces the time-averaged second-order pressure distribu-
tion for a standing wave in an ideal gas where ρmc

2
o ¼ γpm.

p2 x, tð Þh it ¼
1
4

p02
ρmc2o

cos 2 kxð Þ � sin 2 kxð Þ�  ¼ 1
4

p02
γpm

cos 2kxð Þ ð15:90Þ

A standing wave produces a time-averaged (i.e., static) second-order pressure distribution. Due to
the spatial dependence on cos (2kx), there is a minimum in the second-order pressure at the location of
each pressure node, thus at each velocity anti-node and a maximum one-quarter wavelength from that
minimum. This is consistent with the second-order piston example used as an introduction to non-zero
time-averaged effects in Sect. 15.4.1.

This second-order time-averaged pressure distribution produces pressure gradients that are fixed in
space and time and will exert forces on solid objects of non-zero thickness. The force on an object at
either the maximum or the minimum in hp2it will be zero, but that equilibrium will be unstable at the
maximum. If a levitated object is displaced slightly from the maximum, it will be forced toward the
minimum in hp2it that occurs at a first-order velocity anti-node which has the lowest pressure, due to
Bernoulli.

The integrated pressure over a small sphere of radius, a� λ, will produce a force, Fsphere, that is, a
function of the sphere’s location in the standing wave field.

Fsphere ¼ 4πa2

3
p02

ρmc2o
kað Þ sin 2kxð Þ ¼ kV sphere

p0ð Þ2
2ρmc2o

sin 2kxð Þ ð15:91Þ

Rudnick provided a clever confirmation of this result in a simple standing wave tube that measured
the angle of displacement of small spheres suspended by “a hair” due to the standing wave [63]. The
integrated pressure over a small disk of thickness, t, and radius, a, will produce a force, Fdisk, that is, a
function of the disk’s location

Fdisk ¼ πa2

2
p02

ρmc2o
ktð Þ sin 2kxð Þ ¼ kVdisk

p0ð Þ2
2ρmc2o

sin 2kxð Þ ð15:92Þ

To levitate a small sphere made of a material with a mass density, ρsphere, against the force of
gravity, the weight of the sphere must be cancelled by the levitation force. This requires that the square
of the first-order standing wave pressure field amplitude, p02, exceed a minimum value, p02min.

p02min > γpmρsphere
gλ
π

ð15:93Þ

When this criterion is satisfied, then the position of the sphere will adjust itself within the (vertical)
standing wave field to make the net force on the sphere be zero at some location below a velocity anti-
node. The stability of that equilibrium will be the subject of Sect. 15.4.6.

Of course, the levitated object does not have to be either a sphere or a disk. As shown in Fig. 15.22,
almost any small object can be suspended against the force of gravity if the amplitude of the standing
wave sound field is sufficient.
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15.4.6 Adiabatic Invariance and the Levitation Force

In the previous sub-section, the influence of the object being levitated by the standing wave on the
response of the resonator was ignored. As will now be demonstrated, the perturbation of the
resonator’s normal mode frequency caused by an object will provide an alternative method to predict
the levitation force by use of adiabatic invariance and without the necessity of integrating the pressure
gradient around the object. In the subsequent sub-section, the feedback between the radiation force and
the object’s influence on the resonance frequency will also have significant impact on the stability of
the levitated object in a resonator that is driven at a constant frequency.

Throughout this text, the concept of adiabatic invariance [64] has been utilized when it was
convenient to relate changes in a system’s constraints (e.g., boundary conditions) to one or more of
that system’s normal mode frequencies. Now adiabatic invariance will be applied in the same way (i.e.,
the “variable constraint” being the position of the object in the sound field) to a one-dimensional
standing wave tube’s resonance frequencies that are perturbed by an incompressible obstacle that can
be placed anywhere within the resonator of length, L, and cross-sectional area, A.

It is assumed that the obstacle of volume, V, shown as a small cube in Fig. 15.23 (left), has
dimensions that are all much smaller than the wavelength, λn, of any normal mode of interest:ffiffiffiffi
V3

p � λn . Because the obstacle is located at a pressure anti-node (velocity node) in Fig. 15.23
(left), the excluded (incompressible) volume “stiffens” the gas springiness at that rigid end and raises
the unperturbed (empty resonator) frequency, f1, of the fundamental (n ¼ 1) mode:f1 ¼ co/2L.

To estimate the increase in frequency caused by the obstacle when it is near a pressure anti-node
(velocity node), we can use the same trick that simplified the calculation of the frequency shift caused
by the deposition of a thin layer of gold that lowered the fundamental frequency of a quartz microbal-
ance in Sect. 5.1.2 due to its additional mass loading. Let the cube be made of wax. If the wax were
melted with the tube in the vertical orientation, then the volume of wax would remain unchanged, but it
would be spread uniformly over the resonator’s endcap as shown in Fig. 15.23 (right). Since the slope
of the pressure at the endcap is zero, the cube and slab versions of the obstacle produce the same

Fig. 15.22 Clockwise
from the top left are shown
a ladybug, minnow, spider,
and ant being levitated by
intense standing waves in
air. [Courtesy of
Northwestern Polytechnical
University in Xi’an, China]
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stiffening of the gas (i.e., exclude the same amount of resonator volume). The perturbed frequency, f10,
is then that of the slightly shorter resonator shown in Fig. 15.23 (right): f1

0 ¼ co/2Leff.
If the same obstacle was moved to the center of the resonator, as shown in Fig. 15.24, then it would

lower the resonance frequency below the unperturbed frequency, f1. This is because the obstacle has
created a constriction in the resonator’s cross-sectional area, A, at a position within the fundamental
mode that is located at a velocity anti-node (pressure node). The high-speed gas near the resonator’s
midplane must accelerate to go around the obstacle, thus increasing the kinetic energy without
affecting the potential energy stored at the ends of the resonator (see Sect. 13.3.4).

By Rayleigh’s method (see Sect. 2.3.2), this means that the fundamental normal mode frequency
must be reduced. The amount of that frequency reduction is dependent upon the shape of the obstacle,
so it is not as easy to make a quantitative estimate of the frequency reduction as it was for the case
where the incompressible obstacle was located at a pressure anti-node (velocity node). Fortunately, the
use of adiabatic invariance provides a method to measure the effect of an obstacle of any shape and any
location within the standing wave then relate that frequency shift produced to the levitation force, as
described in the next sub-section.

For the resonator’s second mode (n ¼ 2), the obstacle is located at a pressure anti-node and thus
raises the resonance frequency of that mode. Again, since the resonator’s midplane contributes gas
stiffness in the second mode (along with the gas stiffnesses at both ends), the volume exclusion
produced by the obstacle increases the gas stiffness. The “melted wax” trick would work again by
symmetry, treating the resonator as two half-resonators, each shortened by the appropriate amount:
Leff/2 < L/2.

It is worthwhile to notice that when this obstacle is located at the center of the resonator, it has
ruined the harmonicity of the modes of the closed-closed resonator of uniform cross-section: fn 6¼ nf1.
All of the n ¼ odd modes will be “flattened” (b) (i.e., their normal mode frequencies will be lowered),
and all of the n ¼ even modes will be sharpened (#), as long as the

ffiffiffiffi
V3

p � λn constraint is satisfied so
the obstacle can be consider to be “small.” This strategy is regularly employed to suppress the
formation of shock waves in standing wave resonators that are used in high-amplitude applications
like thermoacoustic refrigerators [65] and sonic compressors [66].

Fig. 15.23 (Left) A small rigid obstacle (grey square) is placed adjacent to the rigid end of a one-dimensional standing
wave resonator of length, L. (Right) That obstacle has been “melted” so that its entire volume (grey rectangle) has been
preserved but is now distributed uniformly over the resonator’s cross-section, producing a decreased effective length, Leff

Fig. 15.24 The same obstacle that was shown in Fig. 15.23 is now located at the center of the resonator. In that position,
it lowers the frequency of the fundamental (n ¼ 1) normal mode but raises the frequency of the second normal mode
(n ¼ 2)
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In previous applications of adiabatic invariance, the work that was done against (or by) the radiation
pressure was used to estimate normal mode frequencies of resonators with shapes that did not conform
to the 11 separable geometries (see Sect. 13.1). It will now be easy, using Eq. (15.87), to demonstrate
the connection between frequency changes and work done against the radiation force. If the resonator,
shown schematically in Fig. 15.25, has an initial length, L, the standing wave pressure distribution is
related to the velocity distribution that satisfied the rigid (impenetrable) boundary conditions as
provided in Eq. (15.89). Here, we will focus on the fundamental mode, n ¼ 1.

The time-averaged energy in the first mode, E1, can be expressed as the time-average of the sum of
the kinetic and potential energies, or by the virial theorem (Sect. 2.3.1), as the maximum potential
energy,(PE)max, by integrating the potential energy density of Eq. (10.35) throughout the resonator’s
volume.

E1 ¼ PEmaxh it ¼
ðL
0

p0 cos πx=Lð Þ½ �2
2ρmc2o

A dx ¼ p0ð Þ2
4ρmc2o

AL ¼ p0ð Þ2
4γpm

AL ð15:94Þ

The rightmost result again assumes an ideal gas. The radiation force on the piston at the left of
Fig. 15.23 is given by Eq. (15.90). The work increment, dW, done by the piston against the radiation
force is just the force, Frad ¼ hp2itA, times the displacement, dx.

dW ¼ A p2h itdx ¼ A
p0ð Þ2
4γpm

dx ð15:95Þ

Adiabatic invariance requires that the ratio of the energy in a mode to its frequency remains constant
if the system’s constraints are changed slowly (i.e., we don’t “jerk” the piston).

En

f n
¼ const: ) δEn

En
¼ dW

E1
¼

A p0ð Þ2
4γpm

dx

p0ð Þ2
4γpm

AL
¼ dx

L
¼ δf

f 1
ð15:96Þ

This is exactly the frequency change that would be due to a decrease in the resonator’s length by an
amount, dx, based on the simplest result: f1 ¼ co/2 L. In fact, the triviality of this result can be
interpreted as a check on the expression (or a derivation) of the radiation pressure, hp2it, in Eqs. (15.87)
and (15.90).

It is now possible to combine adiabatic invariance and the normal mode frequency change, related
to the change in an obstacle’s position in a standing wave resonator, to calculate the levitation force
from an alternative perspective [67]. A DELTAEC model of a resonator is provided in Fig. 15.26. The
DELTAEC model makes use of a “Master-Slave Link” between Segments #2c and #6c that keeps the
total length of the resonator fixed as the constriction, produced by Segments #3, #4, and #5, is moved
from one end of the resonator to the other by changing the length of the DUCT in Seg. #2c from 0.0 m
to 0.97 m.

Fig. 15.25 A simple plane
wave resonator with an
adjustable left boundary
position (piston)
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The resonance frequencies of the first and second standing waves that are plotted in Fig. 15.27 as a
function of the constriction’s location were produced using DELTAEC’s incremental plotting function
(see Sect. 8.6.12). Plots of the normal mode frequency shifts, similar to those in Fig. 15.27, appeared in
the literature for the fundamental mode and for the n ¼ 2 mode [68], although it was not recognized at
that time that those shifts were related to the levitation forces by adiabatic invariance.

The mobile constriction in the DELTAEC model removes 40 cm3 of resonator’s unperturbed 10 liter
volume (10,000 cm3). This is approximately equivalent to a resonator of uniform cross-sectional area,

Fig. 15.26 Screenshot of a DELTAEC model of a resonator with cross-sectional area, A ¼ 1.0 x 10�3m2, and length,
L ¼ 1.0 m, filled with dry air at 300 K and pm ¼ 100 kPa. There is a constriction that reduces the cross-sectional area to
8.0� 10�3 m2 that is 1.0 cm long and two transitions using CONE segments, each 1.0 cm long. That combination of two
CONE segments and the constrictive DUCT (Seg. #4) can be positioned anywhere within the resonator. The “Master-
Slave Link” in Segments #2c and #6c maintain the total length as the position of the constriction is moved when the
DUCT length in Seg. #2c is changed. The “schematic view” at the top of this figure shows the center of the tapered
constriction positioned 31.5 cm from the driven end
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A ¼ 1.0 � 10�2 m2, that contains an incompressible sphere of radius, asphere ¼ 2.12 cm, or to a disk of
radius, adisk¼ 2.52 cm and thickness, t¼ 2.0 cm. Again, the DELTAEC model will not be exact because
the shift in the frequency due to a kinetic energy perturbation is shape dependent, even if the obstacle is
small compared to the wavelength. Although the constriction in the DELTAEC model is trapezoidal and
not a sphere or disk, it provides a plausible approximation of the change in the resonator’s cross-
sectional area that would be caused by the sphere or disk that provides the same volume exclusion.

Adiabatic invariance requires that the ratio of the modal energy to the modal frequency, En/fn, be a
constant as long as the motion of the obstacle is slow compared to the period of the standing wave,
Tn ¼ ( fn)

�1. As shown in Fig. 15.27, the resonance frequency is a function of the constriction’s
location within the resonator. The energy of the mode must also be a function of position so the
radiation force on the sphere, Fsphere, or an obstacle of some other shape must be equal to the gradient
in that energy (see Sect. 1.2.1).

F
!
sphere ¼ �∇

!
En ) Fsphere ¼ � dEn

dx
¼ � dEn

df n

df n
dx

ð15:97Þ

Adiabatic invariance guarantees that En/fn ¼ constant, so by log differentiation (Sect. 1.1.3),
dEn/dfn ¼ En/fn ¼ constant.

The value of dfn/dx will depend upon the obstacle’s position within the resonator. That slope will
have its maximum value at locations equidistant between the nodes and the anti-nodes of the first-order
standing wave fields. Using the results for the second standing wave mode produced by the DELTAEC
model and plotted in Fig. 15.25, the maximum slope is just π/2 times the difference between the
maximum frequency ( f2+ ¼ 348.4 Hz) and the minimum frequency ( f22 ¼ 345.09 Hz), divided by the
separation between the location of those two extrema, Δx ¼ 0.235 m: df2/dx ¼ 21.1 Hz/m.

Fig. 15.27 Resonance frequency of the resonator modeled by DELTAEC in Fig. 15.26 as a function of the position of a
constriction that could represent the location of an incompressible sphere or disk. The frequency of the fundamental
(n ¼ 1) mode is shown as the solid line with that frequency to be read from the left axis. The frequency of the second
harmonic mode (n ¼ 2) is shown as the dashed line to be read from the right axis
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For convenience, the constant, E2/f2, can be evaluated with the obstacle located at the driven end of
resonator (i.e., Seg. #2c ¼ 0.0 m), where E2 is given by Eq. (15.94), with p’ ¼ 2.0 kPa (Seg. #0d),
pm ¼ 100 kPa (Seg. #0a), γ ¼ (7/5), and (AL) ffi 0.01 m3. At that location, f2 ¼ f2+ ¼ 348.4 Hz, and
E2 ¼ 7.14 x 10�2 J, so E2/f2 ¼ 2.05 x 10�4 J/Hz. Substitution of these two results into Eq. (15.97)
provides the radiation force due to the constriction, Frad, at a position equidistant between the nodes
and the anti-nodes of the first-order standing wave fields, which is a consequence of adiabatic
invariance for a trapezoidal-shaped obstacle.

Frad ¼ 2:05� 10�4 J
Hz

� 21:1
Hz
m

¼ 4:3� 10�3N ð15:98Þ

This result can be compared to the radiation force at the same position for the n¼ 2 mode, under the
same conditions, if the pressure at either anti-node (i.e., rigid end) is set to p’ ¼ 2.0 kPa, equivalent to
157 dB re: 20 μParms, for a sphere, Fsphere, in Eq. (15.91), or a disk, Fdisk, in Eq. (15.92). To make a
reasonable comparison, the volume of the sphere is set equal to the volume excluded by the trapezoidal
constriction: V ¼ 40 cm3.

Fsphere ¼ V sphere
p0ð Þ2
γpm

π f 2
co

¼ 3:6� 10�3 N ð15:99Þ

From Eq. (15.92), the result would be the same for a disk of the same volume.
Our estimate of the levitation force based on the DELTAEC model and adiabatic invariance is

reasonably close to that result, given that the frequency shift computation was based on a constriction
rather than an obstruction.

At this point, the serious reader will pause to marvel at the elegance and beauty that adiabatic
invariance has demonstrated by its ability to circumvent the difficulties of integrals of second-order
pressure fields over objects of arbitrary shape in favor of a simple measurement of the resonant
frequency shift as a function of position of the object to be levitated within the resonator. Putterman
claims that adiabatic invariance is “the cornerstone of modern physics” [69]. Similar results can be
obtained for determination of the torque on a Rayleigh disk by measuring the shift in the resonance
frequency as a function of the disk’s orientation [60].

15.4.7 Levitation Superstability (“Acoustic Molasses”)

Most acoustic levitation systems are driven at a fixed frequency [70]. Since the position of the levitated
object can change, the ratio of the drive frequency to the resonator’s resonance frequency, ω/ωo, will
also change. That frequency shift at fixed drive frequency produces an effect referred to as “de-tuning”
that is illustrated in Fig. 15.27. The frequency shift causes the amplitude of the standing wave to
change resulting in a change in the radiation pressure acting on the levitated object. This modifies the
Hooke’s law “stiffness” of the radiation force acting on the object. If the object did not influence the
tuning, then the object would be levitated at the equilibrium position within the standing wave where
the radiation force and the gravitational force would be equal and opposite. The fact that the object’s
position also changes the tuning would change the trapping stiffness constant because its position
influences the amplitude of the sound in the resonator when driven at fixed frequency.

This change in stiffness can be understood by examining the three shifted response curves
illustrated in Fig. 15.28. All the resonance curves in Fig. 15.28 correspond to a quality factor of
Q ¼ 10. Assume that the resonator is driven at a fixed frequency that was 5% above the resonance
frequency of the empty resonator so that ω/ωo ¼ 1.05. The value of v1

2 would be 51.2% of the
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maximum that occurs at ω/ωo ¼ 1.00, if the resonator was empty. If the object moved up from its
equilibrium position (i.e., toward the closest velocity anti-node), then the resonator’s resonance
frequency would become lower, corresponding to the dotted resonance curve. The force on the object
would decrease because the acoustic standing wave amplitude would decrease, since the value of v1

2

would be 32.3% of the maximum that occurs at ω/ωo ¼ 1.00.
If the object moved down from its equilibrium position (i.e., toward the closest velocity node), then

the resonator’s resonance frequency would become higher, and the drive frequency would be closer to
the resonance frequency. The value of v1

2 in Fig. 15.28 would be 80.4% of the maximum that occurs at
ω/ωo¼ 1.00, if the resonator was empty. This corresponds to the dashed resonance curve in Fig. 15.28,
and the force on the object would increase because the acoustic standing wave amplitude would have
increased. The combined effect would be an increase in the stiffness.

If the empty resonator was initially tuned ω/ωo ¼ 0.95, then the effective stiffness would be less by
the same argument except that the object’s influence on the sound amplitude would be determined by
its “motion” along the vertical line in Fig. 15.28 above ω/ωo ¼ 0.95, instead of the previous discussion
that had the object’s motion causing changes to the acoustic amplitude represented by “motion” along
the vertical line above ω/ωo ¼ 1.05 in Fig. 15.28.

If this influence of the object’s position on the effective stiffness of its capture around its
equilibrium position in the standing wave occurred instantaneously in response to the object’s change
in position, then any displacement of the object would simply oscillate at a slightly different frequency
about the equilibrium position than it would if the de-tuning was neglected. Viscous effects (i.e.,

Fig. 15.28 The presence of the acoustically levitated object changes the resonance frequency of the resonator [68]. The
solid line is the normalized value of the square of the peak velocity amplitude, v1

2, produced when the resonator is driven
a frequency relative to the resonance frequency of the empty resonator, ω/ωo ¼ 1. The dotted line corresponds to the
resonator’s frequency response when the levitated object is located closer to a velocity anti-node. The dashed line
corresponds to the resonator’s frequency response when the levitated object is located closer to a velocity node (i.e., a
pressure anti-node)
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Stokes drag) would eventually damp those oscillations, corresponding to a mechanical resistance, Rm,
in the simple harmonic oscillator equation.

m
d2x

dt2
þ Rm

dx
dt

þ Kx ¼ 0 ð15:100Þ

Because we are considering the standing wave resonator as a driven resonant system withQ 6¼ 0, the
exponential relaxation time, τ, required for the resonator to achieve its steady-state response after its
tuning is changed is non-zero (see Sect. 2.5.4): Q ¼ (½)ωoτ. The resonator’s response time is much
longer than the period, T ¼ 2π/ωo, of the standing wave: τ ¼ (Q/π)T. That delay in the resonator’s
response to the position of the levitated object means that there will be a component of the force
modulated by the object’s position that will not be in-phase with the object’s position but that will be
in-phase or out-of-phase with the object’s velocity. The influence of the de-tuning will be retarded by a
time, τ, so the current radiation force acting on the object will depend upon the position of that object at
an earlier time, t � τ.

If this retardation produces a component of the excess (i.e., de-tuning) force that is out-of-phase
with the velocity of the object’s displacement from its equilibrium position, dx/dt, then this force will
behave like mechanical damping in addition viscous “Stokes drag,” in Eq. (15.100). If this retardation
produces a component of the excess (i.e., de-tuning) force that is in-phase with the velocity of the
object’s displacement from its equilibrium position, dx/dt, then this force will behave like a negative
mechanical resistance.

When the magnitude of that negative resistance is less than the ordinary viscous resistance, Rm, in
Eq. (15.100), then oscillations will take longer to damp out. If the magnitude of that negative resistance
is greater than Rm, then the amplitude of the object’s oscillations will grow exponentially with time
until some other effect limits the oscillation’s amplitude. In some important cases this de-tuning/de-
phasing instability will throw the levitated object out of the equilibrium position and possible propel
the object against the resonator’s boundaries [71].

The two possible scenarios are illustrated symbolically in Fig. 15.29. If the natural frequency of the
resonator is lower than the drive frequency, ω/ωo > 1 (sharp tuning), then motion of the levitated object

Fig. 15.29 The de-tuning/de-phasing instability (or superstability) for an acoustically levitated object depends upon
whether the resonance frequency of the resonator is above or below the frequency of the sound produced by the
loudspeaker. (Left) If the drive is tuned “sharp” (i.e., ω/ωo > 1), then small displacements from equilibrium will increase,
and the trapping will become unstable. (Right) If the drive is tuned “flat,” (i.e., ω/ωo < 1), then small displacements from
equilibrium will damp out faster than if only viscous drag was providing the mechanical resistance making the trapping
“superstable”
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toward a pressure anti-node (i.e., away from a velocity anti-node) will raise ωo and bring the drive
frequency closer to the resonance frequency. This will produce an excess force, Fexcess, that will be
increased, thus in-phase with the velocity of the object as it is moving up from its lowest position, since
the force will depend upon the previous position of the object at a time, τ, earlier. When the object
reaches its maximum vertical position, the natural frequency of the standing wave resonator will be
farther out-of-tune, and the radiation force is reduced, so gravity will provide an excess force. Again,
due to the delay, that excess force will be acting in the downward direction and is again in-phase with
the (now downward) velocity of the object. This scenario is depicted in Fig. 15.29 (left).

The net effect for the “sharp tuning” case has the excess force doing work on the object, thus
increasing the amplitude of its oscillations during each cycle. If the effect is sufficiently large, it can
overcome viscous damping making the amplitude of the object’s oscillations grow linearly with time
until some other effect limits the amplitude of the oscillations or the object is flung too far from the
equilibrium position that it is no longer trapped or bangs against the walls or ends of the resonator.

If the natural frequency of the resonator is higher than the drive frequency, ω/ωo < 1 (flat tuning),
then motion of the levitated object toward a pressure anti-node (i.e., away from a velocity anti-node)
will raise ωo and bring the drive frequency farther from the resonance frequency. This will reduce the
excess radiation force, Fexcess, making the influence of gravity more important. That will produce an
additional force that is out-of-phase with the velocity of the object as it is moving up from its lowest
position, since the force depends upon the previous position of the object at a time, τ, earlier.

When the object reaches its maximum vertical position, the natural frequency of the standing wave
resonator will be closer to the drive frequency, and the radiation force will be increased. Again, due to
the delay, that excess force will be acting in the upward direction and is again out-of-phase with the
velocity of the object which will be moving downward. This scenario is depicted in Fig. 15.29 (right).

The net effect for the “flat tuning” case has the excess force adding to the viscous resistance and thus
increases the damping. The amplitude of the object’s oscillations, if displaced from equilibrium, will
decay more quickly than it would if the damping was due only to the Stokes drag. This additional
damping causes superstability [72].

This same damping effect is observed in optics where it is known as “optical molasses” and was
responsible for Stephen Chu sharing the Nobel Prize in Physics in 1997 with Claude Cohen-Tannoudji
and William Phillips “for development of methods to cool and trap atoms with laser light” [73].

15.5 Beyond the Linear Approximation

Most ordinary acoustical phenomena can be analyzed from the linear perspective that has been the
focus of every other chapter of this textbook. Linear acoustics and vibrations provide many useful and
convenient simplifications. As we have seen, such simplifications are applicable to a large range of
interesting problems. That said, this chapter has introduced a few interesting and useful phenomena
that are not contained within a linear analysis. Waveform distortion, harmonic generation, shock wave
formation and dissipation, parametric end-fire arrays, and mode conversion all rely upon incorporation
of effects that a wave has on its propagation medium which are ignored in the linear limit. Inclusion of
nonlinear effects leads to an interesting “life cycle” for a large amplitude acoustic disturbance:
distortion ! shocking ! dissipation ! classical attenuation [21]. That evolution in an ordinary
fluid is depicted symbolically in Fig. 15.30.

By restricting the analysis to one-dimensional propagation of plane wave, many of the nonlinear
behaviors have been demonstrated while avoiding more complicated mathematics and still being able
to appreciate the cumulative influence of convection and of the medium’s own nonlinearity.
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The inclusion of nonlinear contributions also provided an introduction to the ability of a sound wave
to exert non-zero time-averaged forces and torques on objects that are exposed to high-amplitude
sound waves. Acoustic radiation forces are generally much larger than forces that can be exerted by
electromagnetic radiation used for trapping atoms [73]. Much of our understanding of these effects can
be attributed directly to the Bernoulli pressure that provides an intrinsically second-order contribution
to the linear (first-order) pressure field. Once again, exploitation of adiabatic invariance provided a
means of avoiding complicated mathematics while providing useful quantitative results.

Finally, it is important to recognize that this chapter was only the “tip of the iceberg.” Many
important nonlinear acoustical phenomena have not even been mentioned. Among the most significant
are thermoacoustic engines, refrigerators [74], pulse-tube cryocoolers, and sonic mixture separators
[75], as well as other important cases of acoustically driven mass streaming [76]. Another area that has
been entirely ignored is nonlinear bubble oscillations that can be so violent that they convert sound into
light by a process referred to as “sonoluminescence” [77]. The nonlinear distortion of pulses and the
propagation of N-waves [78], like those which produce a “sonic boom” [79], are other important
phenomena also worthy of investigation.

Topics in the area of nonlinear vibrations also abound. As mentioned in the beginning of this
textbook, the inclusion of non-Hookean elasticity leads to the violation of Galilean isochronous
independence of period and amplitude. Much like the harmonic distortion produced in high-amplitude
wave propagation, a driven nonlinear oscillator will respond at frequencies that are not just the driving
frequency. In fact, the response of a nonlinear oscillator can be at sub-harmonic frequencies or can
become entirely chaotic rather than deterministic [80].

The purpose of this chapter was to raise awareness of the limitation of linear analysis, not to create
professional expertise in nonlinear acoustics. If the reader can recognize the “symptoms” of nonlinear
behavior and understand how they arise, then the goals of this final chapter will have been realized.

Talk Like an Acoustician

Convective nonlinearity Phase matching
Self-interaction Resonant mode conversion
Intermodulation distortion Pump waves
Shock inception distance Primary waves
Grüneisen parameter Bernoulli pressure
Virial expansion Radiation pressure
Second sound Kundt’s tube
Gol’dberg number Internal energy
Order expansion Enthalpy
Blackstock bridging function Velocity potential
Geometric resonance Acoustic levitation
Intermodulation distortion De-tuning/de-phasing instability

Fig. 15.30 The simplified life cycle of an initially sinusoidal large amplitude acoustic disturbance propagating as a
plane wave in one dimension
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Exercises

1. Shock inception distance. The derivation of Eq. (15.8) used the fact that the crest of a plane
sinusoidal wave advances “by one radian length,” k�1, toward the zero-crossing when the slope of
the zero-crossing, dv/dx, becomes infinite. By using the excess velocity, Γv, defined in Eq. (15.9),
show this is true in the case where dissipation can be neglected, with an initial waveform,
v x, tð Þ ¼ bvj j sin ωt � kxð Þ. For the waveform to become the fully developed sawtooth shock, the
crest of the initially sinusoidal wave must advance by λ/4, placing the crest directly over the zero-
crossing (see Fig. 15.6). Express that distance, Dsaw, in terms of DS, again for the case where
dissipation can be neglected.

2. Waveform distortion. A 19.2 m long waveguide of circular cross-section with inside diameter,
D ¼ 5.21 cm, is shown in Fig. 15.31 and Fig. 15.32 (center). The waveguide is driven by two
compression drivers, shown in Fig. 15.32 (left), which can produce large amplitude sound waves.14

The waveguide is terminated by a porous anechoic cone.
Three ¼” microphones are flush-mounted at three locations using the fixture that joins smoothly

to the PVC pipe to eliminate reflections, shown in Fig. 15.32 (right). One microphone is located

Fig. 15.31 A U-shaped waveguide made from 200 diameter (nominal) Schedule 40 PVC pipe is suspended from the
ceiling to provide an overall propagation path of 19.2 m. At the far end are two compression drivers, and at the near end is
a 1.05 m long porous wedge absorber to eliminate reflections. [Waveguide courtesy of Lauren Falco]

Fig. 15.32 (Left) Two compression drivers. (Center) U-shaped waveguide turn-around section. (Right) Microphone
flush-mount holder

14 The use of two drivers not only increases the achievable amplitudes but also facilitates measurements of the interaction
of two waves of different frequencies.
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very close to the drivers at a position designated x ¼ 0. The second microphone is located at
x ¼ 3.17 m, and the third is located at x ¼ 17.9 m.
Assume that the waveguide contains dry air at pm ¼ 100 kPa with a sound speed, co ¼ 345 m/s, and

it is driven sinusoidally at f1 ¼ 880 Hz.
(a) Attenuation length. Using the expression in Eq. (13.78), determine the exponential

thermoviscous attenuation length, ℓ ¼ α�1
T�V , due to boundary layer dissipation at the

fundamental frequency, f1. Is that attenuation length shorter or longer for the higher
harmonics?

(b) Shock inception distance and Gol’dberg number. Determine the shock inception distance,
DS, and using the result of part (a), determine the Gol’dberg number, G, if p1(0) ¼ 100 Pa
(131 dB re: 20 μParms), p1(0) ¼ 300 Pa (140.5 dB re: 20 μParms), and p1(0) ¼ 1000 Pa
(151 dB re: 20 μParms).

(c) Harmonic distortion. Using Eq. (15.43) and neglecting attenuation, determine the amplitude
of the fundamental, f1 ¼ 880 Hz, second harmonic, f2 ¼ 1.76 kHz, third harmonic,
f3 ¼ 2.64 kHz, and forth harmonic, f4 ¼ 3.52 kHz, at x ¼ 3.17 m and at x ¼ 17.9 m,
assuming p1(0) ¼ 100 Pa.

(d) More harmonic distortion. Repeat part (c) assuming p1(0) ¼ 300 Pa.
3. Repeated shock. Determine the ratio of the amplitudes of the harmonics to the amplitude of the

fundamental, Cn/C1, for a fully developed shock wavelike that shown in Fig. 15.8.
4. Levitation demonstration resonator. A ground-based levitator (i.e., g ¼ 9.8 m/s2) is being

designed to demonstrate acoustic levitation by levitating the bottoms of Styrofoam coffee cups.
Those disks have a diameter of 5.0 cm and a thickness of 1.5 mm, and each has a mass,
mdisk ¼ 0.15 gm. Assume that resonator will be constructed from a 1.5 m long, 600 (nominal)
diameter, optically clear cast acrylic tube with inside diameter, Dtube ¼ 14.0 cm.
(a) Levitation force. If the resonator is operated in its n ¼ 3 standing wave mode, f3 ¼ 350 Hz.

Determine the pressure amplitude of the standing wave at the rigid end of the resonator so
that the levitation force on the disk is three times its weight.

(b) Equilibrium location. If the tube is oriented so that the speaker is at the bottom and the rigid
end is at the top (like those in Fig. 15.29), how far from the top end of the resonator will the
disk be levitated at its highest stable location if the standing wave amplitude is that
calculated in part (a)?

(c) DELTAEC model. Make a DELTAEC model of the resonator (without the levitated disk) to
determine the volume velocity of a piston that has the same diameter as the tube, Dtube,
which would be required to produce the standing wave pressure amplitude at the rigid end
calculated in part (a) for the n ¼ 3 mode. You may make a slight adjustment of the tube’s
length to force f3 ¼ 350 Hz. What are the frequencies of the f1, f2, and f4 modes?

(d) Adiabatic invariance. Use your DELTAEC model in part (a) to estimate the frequency as a
function of disk position by moving a constricted DUCT segment that is the same length as
the disk (1.5 mm) and has a cross-sectional area equal to that of the empty tube minus the
cross-sectional area of the disk. Move that constricted section from the rigid end to about
0.3 m from the driven end of the resonator. Plot f3 vs. position to produce a graph similar to
Fig. 15.27. Repeat for f2 vs. position.

(e) Advanced DELTAEC model. Repeat part (c) but explicitly includes the loudspeaker in
Fig. 2.43 using the following speaker parameters: mo ¼ 12.0 gm, K ¼ 1440 N/m,
Bℓ ¼ 7.1 N/A, Rdc ¼ 5.2 Ω, L ¼ 0.1 mH, Rm ¼ 1.9 kg/s, and Apist ¼ 98.5 cm2. The rear
of the speaker is enclosed (to protect your hearing!) in a cylindrical enclosure that has an
inside diameter of 600 (15.2 cm) and a length of 800 (20 cm). What is the electrical current that
must be supplied to the voice coil to produce the n ¼ 3 standing wave amplitude calculated
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in part (a) at f3 ¼ 350 Hz? What are the frequencies of the f1, f2, and f4 modes of the coupled
speaker-resonator system (see Sect. 10.7.5)?

Hints: The DELTAEC model of the bass-reflex loudspeaker enclosure in Fig. 8.41 might provide a
helpful starting point. An “enclosed current driven speaker” segment, IESPEAKER, will provide a
way to incorporate the rear enclosure with the electrodynamic speaker’s excitation of standing waves
in the tube.
(5) Rayleigh disk. The apparatus in Fig. 15.33 shows a rigid disk (e) suspended at the midplane of a

cylindrical resonator from a torsion fiber (b). The resonator has an electrodynamic dome tweeter
(g) at one end and an electret microphone (see Sect. 6.3.3) providing a rigid termination at the
other end (f). The disk’s angular orientation is detected with the coils surrounding the resonator
that incorporates a split-secondary astatic transformer [60]. A gearing system (a) and a coil (d ) and
magnet structure (n and s) from an analog meter movement can be used to adjust the equilibrium
orientation, θo, of the disk or excite a free-decay oscillation. The maximum occlusion of the
resonator occurs when θo ¼ 0
.
The resonator’s inside diameter is 3.0 cm and its length, L ¼ 12.0 cm. The diameter of the disk is
Ddisk ¼ 1.2 cm. The disk has a mass, m1 ¼ 0.80 gm and a moment of inertia of about its diameter
of Idisk ¼ 2.0 x 10�8 kg-m2

Assume the resonator contains dry air at 300 K with pm ¼ 100 kPa.

Fig. 15.33 Cross-
sectional view of a
“modern” Rayleigh disk
apparatus. [60]
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(a) Fundamental resonance frequency. What is the frequency of the fundamental half-wavelength
mode of the resonator?

(b) Torsional stiffness. If the frequency of disk oscillations is 1.1 Hz, what is the torsional stiffness of
the disk’s suspension?

(c) Standing wave pressure amplitude. The disk’s equilibrium position is adjusted so that θo ¼ 45
.
What is the acoustic pressure amplitude, p1, at the surface of the electret microphone if the
standing wave causes the disk equilibrium orientation to be θ ¼ 35
 and the corrections in the
curly brackets of Eq. (15.79) are ignored?

(d) Scattering corrections. How large is the correction provided by Eq. (15.79) relative to the simpler
expression for the torque in Eq. (15.78)? Express your result as Nantinode (35
)/N (35
).

(e) Electret microphone sensitivity. If the open-circuit output voltage of the electret microphone is
285 mVac under the conditions of part (b), what is the microphone’s open-circuit sensitivity?
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