
Technology-Agnostic Declarative
Deployment Automation of Cloud

Applications

Michael Wurster1(B), Uwe Breitenbücher1, Antonio Brogi2,
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Abstract. Declarative approaches for automating the deployment and
configuration management of multi-component applications are on the
rise. Many deployment technologies exist, sharing the same baselines for
enacting declarative deployments, even if based on different languages
for specifying multi-component applications. The Essential Deployment
Metamodel (EDMM) Modeling and Transformation Framework allows
to specify multi-component applications in a technology-agnostic man-
ner, and to automatically generate the technology-specific deployment
artifacts allowing to deploy an IaaS-based application. In this paper,
we propose an extension of the EDMM Modeling and Transformation
Framework to PaaS and SaaS by allowing to deploy application compo-
nents on PaaS platforms or to implement them by instrumenting SaaS
services. Given that not all existing deployment technologies support
PaaS and SaaS deployments, we also propose the new EDMM Decision
Support Framework allowing us to determine which deployment tech-
nologies can be used to deploy an application specified with EDMM.

Keywords: Deployment modeling · Deployment automation · Cloud
application

1 Introduction

The widespread of cloud computing and DevOps resulted in a plethora of differ-
ent deployment technologies being proposed. These aim at establishing highly
automated deployment processes, as manual deployments of complex multi-
component applications is cumbersome and error-prone [18,25]. By describing
the components and infrastructure of an application in reusable deployment
models, a repeatable end-to-end deployment automation can be established.

This is typically done by following a declarative approach, i. e., by specifying
the structure of an application and the desired state into which an application
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or parts thereof have to be transferred [15]. The declarative approach is indeed
considered the most appropriate for application deployment and configuration
management [6,17,31], as also witnessed by the multitude of existing deployment
technologies following such an approach, e. g., AWS CloudFormation, Chef, Juju,
Kubernetes, Puppet, and Terraform, just to mention some.

At the same time, existing declarative deployment technologies differ in sup-
ported features and mechanisms, as well as in the modeling language for describ-
ing the application and its desired state. Open standards (e. g., TOSCA [23,24])
have been proposed to ensure the portability of cloud application deployments
from a provider/technology to another. However, major providers and deploy-
ment technologies are currently not supporting such standards. This makes it
difficult to compare technologies based on their capabilities, select a deployment
technology that is suited to accomplish given requirements, and to migrate a
deployment model from one technology to another.

In our previous work, we tackled the aforementioned issue by starting from
most used declarative deployment technologies and by distilling their essential
parts into what we called the Essential Deployment Metamodel (EDMM) [31].
We also implemented a concrete YAML-based language for modeling applica-
tions with EDMM. Further, we proposed the EDMM Modeling and Transforma-
tion Framework [30] allowing to exploit EDMM as a “normalized metamodel”
to deploy the same application with different technologies: After specifying the
application with EDMM, the transformation framework can automatically gen-
erate the deployment artifacts needed to deploy the application with the selected
target deployment technology. Notably, by simply re-running the transformation
framework with a different target deployment technology, the same application
specification can be used to migrate the deployment of an application from one
technology to another [30].

The EDMM Modeling and Transformation Framework, however, currently
supports the deployment of multi-component applications only on virtual com-
pute resources such as virtual machines or containers (i. e., IaaS). In this paper,
we overcome this limitation by providing the following two main contributions:

1. We extend the EDMM Modeling and Transformation Framework to deploy
application components also on PaaS platforms, as well as to exploit existing
SaaS services to implement components.

2. We present the EDMM Decision Support Framework allowing us to determine
which declarative deployment technologies can be used to deploy a given
EDMM model.

The latter is intended to help application developers to avoid trying to deploy an
application with a deployment technology not offering the needed features, e. g.,
Juju is intended to automate the deployment of multi-component applications
over IaaS-based virtual machines, but it cannot be used to deploy application
components on PaaS platforms.

The rest of the paper is organized as follows. Section 2 presents the fundamen-
tals and motivations for our work. Section 3 introduces our approach and Sect. 4
presents the overall system architecture on which our contributions are based
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on. Section 5 describes the prototypical implementation while, finally, Sect. 6 and
Sect. 7 discuss related work and draw some concluding remarks, respectively.

2 Background and Motivations

We hereafter introduce the fundamental notions and terms needed in the rest
of this paper. We also illustrate a simple yet effective example motivating our
work.

2.1 Deployment Models and Deployment Technologies

For automating the deployment of an application, deployment models are typi-
cally used to describe the desired result: In general, there is a distinction between
imperative deployment models and declarative deployment models [15]. Declara-
tive models, in general, declare exactly what the desired state into which an appli-
cation or parts thereof are transferred to. In contrast, imperative models define
the exact process of how the desired state is reached using executable workflows
or programmatic actions. Hence, a declarative deployment model specifies the
structure of components to be deployed and defines the desired state in the form
of properties or configurations for those components, but it requires a deployment
technology that interprets the model and derives the exact order of operations to
reach this state. For example, in Terraform an application developer creates a set
of files defining the cloud resources the foreseen application requires. Terraform,
when executing the application deployment, analyzes the resource definitions
and derives a workflow having exact steps and actions required to roll-out the
desired state defined by the application developer.

In industry and research, declarative deployment models are widely accepted
as the most appropriate approach for application deployment and configura-
tion management [17]. As a result, a plethora of different technologies have
been developed following this approach such as Chef, Puppet, AWS CloudFor-
mation, Terraform, and Kubernetes. However, application systems are often in
constant change and, besides the major effort for adapting the application itself,
the associated deployment models must be adapted using different or additional
deployment technologies. Deployment technologies are heterogeneous regarding
supported features and modeling languages, and this could result in major efforts
whenever an application and its actual deployment have to be adapted to changes
or evolutions in the application requirements. Therefore, it is crucial to postpone
as late as possible the choice of which deployment technology to use. An even
better approach for application developers is to define their application struc-
ture and desired state in a technology-agnostic manner, e.g., by exploiting a
normalized metamodel. With a normalized modeling of the application and of
its desired state, one can indeed automatically generate the deployment artifacts
needed to deploy the application using a given deployment technology.

In our previous work [31], a systematic review of widely used declarative
deployment technologies revealed the Essential Deployment Metamodel
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Fig. 1. Simple cloud application which can only be deployed by using a subset of one
of the top-most deployment technologies.

(EDMM). EDMM provides a normalized metamodel as a technology-
independent baseline for deployment automation research and provides a com-
mon understanding of declarative deployment models. EDMM comprises the
essential parts supported by well-known technologies and facilitates the trans-
formation in different concrete technologies by a semantic mapping, which avoids
deployment technology lock-in.

2.2 Motivating Scenario

As a motivating scenario for our work, we consider a rather simple cloud appli-
cation. Figure 1 depicts the scenario and shows a Java application, named “Pet
Clinic”, in the center that is hosted on AWS Beanstalk, the platform as a service
(PaaS) offering by Amazon Web Services (AWS). This application connects to a
fully managed database platform, Amazon Aurora which is a managed MySQL
database as a service (DBaaS) offering by AWS. Both the Java application as
well as the Database component have an artifact attached (cf. Fig. 1), which is,
for example, a packaged JAR file in case of the Java application and a SQL file
containing the actual database schema and initial data in case of the database
component. The left hand side of Fig. 1 depicts a software as a service (SaaS)
offering. For this scenario, we envision the usage of a managed authentication
service to provide single sign-on between different applications. The Java appli-
cation, therefore, needs to connect or redirect users to this authentication service
to authenticate and authorize them.

Even if simple, this application cannot be deployed by various deployment
technologies (and by almost all of the most popular technologies we analysed
in our previous work [31]). This scenario, as it is, is only fully supported by
Terraform, as Terraform provides different plugins for different cloud providers
and services. Indeed, parts of the application structure are supported by other
deployment technologies as well. For example, AWS CloudFormation, Ansible,
and Chef are capable to deploy applications to AWS Beanstalk. However, SaaS
hosted components are not widely supported—Terraform supports many popular
SaaS offerings. Alternatively, custom deployment automation tools are required
that are most likely offered by SaaS providers.
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To fully automate the deployment, a decision support system is needed to
determine which declarative deployment technologies can be used to fully deploy
a given application deployment model. It is important that application develop-
ers receive early deployability feedback immediately while modeling the applica-
tion. Further, to overcome the technology-specific differences, EDMM as a nor-
malized metamodel provides a solid baseline for deployment automation research
and a common understanding of declarative deployment models. The knowledge
of essential parts supported by well-known technologies facilitates transforma-
tion to different deployment technologies, which avoids deployment technology
lock-in.

2.3 Essential Deployment Metamodel

The EDMM was introduced as the result of a systematic review of technolo-
gies that contain the essential elements of declarative deployment models to
enable the comparison and selection of appropriate technologies [31]. The EDMM
enables a common understanding of declarative deployment models and, thus,
eases the comparison and selection of appropriate technologies. It defines Com-
ponents as physical, functional, or logical units of an application. Further, Rela-
tions are defined as directed physical, functional, or logical dependencies between
exactly two components. Both can be typed using Component Types and Rela-
tion Types to express reusable entities that specify a certain semantic. Further,
EDMM defines Properties as a way to describe the current state or prescribe
the desired target state or configuration of a component or relation. Moreover,
Operations are used in declarative deployment models to define executable pro-
cedures performed to manage a component or relation. Such operations provide
hook points and are executed by deployment technologies to implement certain
requirements during application deployment. Finally, the EDMM also defines
Artifacts such that an artifact implements a component or operation and is
therefore required for the execution of the application deployment as well as the
final application system. The terminology of EDMM is considered as baseline in
the course of this paper.

3 Transforming EDMM Models into Deployment
Technology-Specific Models

In this section, we introduce our approach to transform a technology-independent
application deployment model based on EDMM into a deployment technology-
specific model (DTSM) while ensuring supportability by respective deployment
technologies. As depicted in Fig. 2, the approach is structured in four steps: (1)
Create EDMM Model, (2) Check Supportability with Different Technologies, (3)
Transform EDMM Model into DTSM, and (4) Execute DTSM. In the following,
we will provide details on each of such steps. Notably, the grey-dashed boxes
represent already existing building blocks [30] that are extended in this work,
while dark boxes highlight the new main contributions of this work.
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Fig. 2. Transformation of EDMM Models while ensuring their transformability to spe-
cific deployment technologies (based on [30])

3.1 Step 1: Technology-Independent Application Modeling

The modeling of the application is done in EDMM to provide a normalized and
technology-independent model. The model is composed graphically by using the
EDMM Modeling Environment that we proposed in our previous work [30]. The
application developer uses the modeling environment to compose a cloud appli-
cation that, for instance, has the structure as depicted in Fig. 1. The creation
of certain EDMM components is based on existing types that are provided by
the modeling environment. At any time, the resulting model is compliant to the
EDMM in YAML specification1 and can be exported. To improve the model-
ing experience and to tackle the issue that an application developer needs live
feedback whether a certain deployment technology is capable of deploying the
current model, the modeling environment uses the Deployment Technology Deci-
sion Support System, which is presented next.

3.2 Step 2: Check Deployment Technology Support

In this work, we introduce the Deployment Technology Decision Support Sys-
tem building block as shown in Fig. 2. Having this, an application developer can
immediately check whether a EDMM model can be transformed into a deploy-
ment technology-specific model (DTSM) used by a certain deployment technol-
ogy. The latter obviously holds if the EDMM model includes entities and features
supported by a deployment technology. For example, the user gets immediate
feedback if a modeled application is supported by Terraform, AWS CloudForma-
tion, Juju, or Ansible, to name just a few. Hereby, the EDMM modeling environ-
ment triggers the decision support module whenever an application developer
changes the EDMM model. This module consumes the current EDMM model
and checks whether and to which degree the model is transformable into a DTSM
of a specific deployment technology. The decision support module generates a

1 https://github.com/UST-EDMM/spec-yaml.

https://github.com/UST-EDMM/spec-yaml
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report that is presented to application developer. Based on this report, we facil-
itate decision support by checking transformability into a specific deployment
technology.

3.3 Step 3: Transform EDMM Model into DTSM

For transformation, the EDMM model is consumed by the EDMM Transforma-
tion Framework module. In this work, we build on top of the existing EDMM
Transformation Framework, which we proposed in a previous work [30]. This
system is already able to transform EDMM models containing virtual compute
resources (IaaS), i. e., operating systems, virtual machines, or containers, and
the software that needs to be deployed on them including their configuration
and orchestration. To further support cloud application scenarios, we extend the
module to comprise certain transformation rules for PaaS and SaaS component
types such that EDMM models containing these can be transformed into respec-
tive deployment technology-specific models (DTSM). For example, there are
transformation rules for AWS CloudFormation to transform possibly modeled
PaaS components. Further, we provide rules, e. g., for Terraform, to transform
respective SaaS components into the deployment technology’s counterpart. Due
to the extensibility and pluggable architecture of the EDMM Transformation
Framework, this only leads to changes in the respective plugins to implement
the transformation rules accordingly for PaaS and SaaS.

3.4 Step 4: Technology-Specific Deployment Execution

The output of the EDMM Transformation Framework is a deployment
technology-specific model (DTSM). For example, in Terraform this will be a con-
figuration that consists of one or more *.tf files referencing respective artifacts
to deploy. In our approach, we deliberately output technology-specific models to
facilitate DevOps activities such as infrastructure as code (IaC) in modern soft-
ware development environments. By producing human- and machine-readable
model files, we enable that transformed results are managed using version control
system, e. g., to trigger Git-based continuous integration and delivery (CI/CD)
workflows. Notably, by simply re-running the EDMM Transformation Frame-
work targeting a different deployment technology, the same EDMM model can
be used to generate the respective technology-specific deployment model [30].

4 System Architecture of the EDMM Modeling, Decision
Support, and Transformation System

Figure 3 shows the overall system architecture of the proposed approach. To
support the depicted approach from above, several components are required.
The Modeling Tool is a web-based modeling environment that uses a REST API
to retrieve and update its data. The Types Repository contains reusable EDMM
component types that an application developer can use for modeling and provide
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Fig. 3. System architecture supporting modeling, decision support, and transformation
of EDMM models into DTSMs.

the respective technical and platform abstractions. An application developer uses
these types through the Modeling Tool to graphically compose the structure of
the EDMM model, which are stored and manged in the Models Repository.

To check the transformation support and facilitate decision support, the Deci-
sion Support Framework is introduced as depicted in Fig. 3. To transform an
EDMM model the Transformation Framework is envisioned. Both components
employ a plugin architecture that supports the integration of various deploy-
ment technologies in an extensible and pluggable way. Each plugin employs the
knowledge whether a certain EDMM component is supported for transformation
or not. The Decision Support Framework is able to utilize the plugins to check a
given EDMM model and to produce a report what components (or component
types) are not supported. Further, the plugins carry the logic and transformation
rules to transform an EDMM model into a deployment technology-specific model
(DTSM), which includes the creation of respective technology-specific directory
structures, files, and artifacts. The Model Parser consumes a textual EDMM
model in YAML and creates an internal data structure used by the Decision
Support Framework, the Transformation Framework, and the respective plugins.

In addition, the system offers a command-line interface (CLI) that can be
either used directly by the user or integrated into any automated workflow, e. g.,
to facilitate IaC by using it within a CI/CD pipeline. Either way, using the CLI
or the web-based interface, an application developer can select the desired target
deployment technology in which an EDMM model should be transformed.

5 Validation: Prototypical Implementation

In this section, we illustrate a prototypical implementation of the proposed app-
roach and the foreseen system architecture. As mentioned before, we base our
prototype on two existing components: (i) Eclipse Winery [21] as the EDMM
Modeling Environment and (ii) the EDMM Transformation Framework [30].
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Fig. 4. Prototype flow demonstrating the modeling, decision support, and transforma-
tion of an EDMM model to Terraform.eps

5.1 Overview

Eclipse Winery is a web-based environment to graphically model TOSCA-based
application topologies. It provides a back-end to manage component and relation
types, their property definitions, operations, and artifacts. Further, it provides a
Topology Modeler component which enables the graphical composition of appli-
cation deployment models including the specification of the components’ proper-
ties. Even though Winery was initially developed as TOSCA modeling environ-
ment, in previous work we showed that EDMM can be mapped to TOSCA [31].

First of all, we extended the EDMM modeling language and introduced new
built-in types to respectively cover the motivation scenario depicted in Fig. 1.
We extended Winery’s Topology Modeler in order to provide a live checking
of application models. Winery calls the Decision Support Framework when-
ever the application developer changes the EDMM model, e. g., when adding or
removing components. For this purpose, the EDMM Transformation Framework
was extended by the Decision Support Framework component. Due to the fact
that the EDMM Transformation Framework employs a plugin architecture, we
extended the existing plugin interface and its checkModel() lifecycle method
to return a respective result set that highlights the components that are not
supported. The communication between Winery and the EDMM Transforma-
tion Framework is achieved using REST over HTTP. In addition to the existing
CLI of the EDMM Transformation Framework, we now also provide a REST
API over HTTP to trigger the transformation for a certain target deployment
technology.
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components:  
# other components
# omitted for brevity
authentication:

type: auth0
properties:

domain: example.test
identifier: ...
scopes: user,admin
client_id: abc
client_secret: xyz123abc

resource "auth0_resource_server" "authentication" {
name = "authentication"
identifier = "..."
signing_alg = "RS256"
scopes {

value = "user"
} 
scopes {

value = "admin"
}
...

}

EDMM in YAML Transformation to Terraform

Fig. 5. Terraform transformation mapping.

To use the prototype2, we created a Docker Compose configuration able to
start a pre-configured and ready-to-use EDMM Modeling, Decision Support,
and Transformation System. All changes and improvements in the course of this
paper have been merged to the master branches of the respective repositories.

5.2 Modeling and Transformation Flow

In this section, we show the overall modeling, decision support, and transforma-
tion flow of our implemented prototype. The flow is explained based on a mod-
eling example that follows our motivating scenario in Fig. 1. Further, we chose
Terraform to describe the flow based on a concrete deployment technology.

Application developers start the integrated EDMM Modeling, Decision Sup-
port, and Transformation System. By using the EDMM Modeling Tool, users
are able to model their desired application structure. As depicted in Fig. 4, the
user composes the structure by drag-and-drop desired components to the can-
vas. Additionally, users define respective relations between them by connecting
the components. To facilitate decision support, we implemented live modeling
feedback directly in the modeling environment (cf. 1 in Fig. 4). Whenever, the
overall model is changed, the EDMM Decision Support Framework is triggered.
All available plugins of the Decision Support and Transformation Framework
are queried to check if the current model contains unsupported components.
The modeling environments retrieves the result and presents it to the appli-
cation developer. For example, a model that reflects the scenario depicted in
Fig. 4, can be transformed into “Terraform” but not into “Chef”. If a model is
supported by one or more deployment technologies, application developer can
export the model according to the EDMM in YAML specification. From here,
the user executes the transformation, i. e., using the EDMM CLI, and selects
the desired and supported deployment technology (cf. 2 in Fig. 4). The output
of the system is the transformed output according to the need a corresponding
deployment technology requires. For example, in case of Terraform, it will be a

2 https://github.com/UST-EDMM.

https://github.com/UST-EDMM
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ready to use working directory containing Terraform configuration files (cf. 3 in
Fig. 4). Lastly, the application developer is able to execute the actual deploy-
ment using the tools and interfaces provided by the deployment technology. For
instance, Terraform provides a CLI to “apply” the generated configuration. At
this point, application developers can use their well-known development envi-
ronments and tools to deploy and manage their applications (cf. 4 in Fig. 4). For
example, the generated deployment artifacts can be versioned in revision control
systems, such as Git, to facilitate the use of automated CI/CD pipelines.

We executed the modeling and transformation flow according to our moti-
vation scenario from Sect. 2.2 (the full EDMM modeling example in YAML is
available online3 on GitHub). In Fig. 5, we show an excerpt a modeled EDMM-
based SaaS component and its mapping to the actual Terraform resource. In
such cases, the system generates a respective auth0 resource server resource
that maps to the corresponding properties. For this special case, the Terraform
plugin comprises a special transformation rule to split the comma-separated list
of the EDMM property scopes into separate scopes blocks.

6 Related Work

The problem of automating the deployment of multi-component applications
on cloud platform is well-known [29], with most of existing approaches being
declarative [6]. The OASIS standard TOSCA [23,24] is one of the most known
approaches in this direction, as it provides a standardized language for specify-
ing multi-component application in a portable way. Specified applications can
then be deployed on cloud infrastructures, provided that the latter support the
declarative processing of TOSCA application specifications, e. g., by featuring
the OpenTOSCA runtime [7]. Our approach differs from TOSCA, as we aim at
automatically generating the deployment artifacts needed to deploy an applica-
tion with an existing technology as it is.

Similar considerations apply to other approach à la TOSCA, e. g.,
CAMEL [1], MODAClouds [12], Panarello et al. [26], SeaClouds [8] and trans-
cloud [9], just to mention some. Starting from a vendor-agnostic specification
of a multi-component application, all such approaches enable its deployment on
heterogeneous clouds. This is done by relying on additional components offered
by the targeted clouds or on ad-hoc middleware platforms processing the appli-
cation specification to deploy their components on heterogeneous clouds. Our
approach also starts from agnostic representations of multi-component applica-
tions, but it rather automatically generates different deployment artifacts for
different deployment technologies, in order to directly utilize them to deploy
applications on heterogeneous clouds.

In this perspective, closer approaches to ours are those by Di Cosmo et
al. [10,11] and by Guillén et al. [16], which both share our baseline idea of
generating concrete deployment artifacts from a vendor-agnostic specification of
a multi-component application and of its desired configuration. Di Cosmo et al.
3 http://bit.ly/3akWSYR.

http://bit.ly/3akWSYR
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indeed propose a solution for automatically synthesizing a concrete deployment
for a multi-component application in a cloud environment, based on a high-level
specification of the application and its desired state. Their solution is however
targeting OpenStack cloud deployments, while we target 13 different production-
ready deployment technologies, each allowing to deploy applications on various
different cloud infrastructures [30].

Guillén et al. [16] instead present a framework for developing multi-service
application that are decoupled from the architecture, services, and libraries pro-
vided by cloud vendors. Based on additional metadata indicating application
requirements, the framework generates cloud compliant software artifacts that
are deployed in each cloud platform. This approach is even closer to ours, as the
same application can be deployed differently by re-running the framework and
instructing it to target different clouds. The approach by Guillén et al. however
differs from ours since it is intended to process applications whose sources are
available to the framework, while our approach only considers the application
specification and the final packaged software artifact. This allows us to process
a wider set of applications, as we allow developers to reuse black-box third-party
software or SaaS services to implement the components of an applications. Sim-
ilar considerations apply to the solution proposed by Alipour and Liu [3], who
exploit model-to-model transformation to obtain a cloud specific application
deployment from a vendor-independent application.

Other solutions worth mentioning are OAM [22], Kompose [28] and Compose
Object [13]. The OAM has recently been proposed to allow developers and oper-
ators to separately describe containerized applications with a vendor-agnostic
representation. It indeed allows developers to describe what containerized com-
ponents do and how they should be configured, while operators can complete
application specifications by configuring runtime environments. Obtained appli-
cation specifications can then be run on Kubernetes with Rudr4. Our approach
can be used for the same purposes, and it can be used not only for running
containerized applications on Kubernetes, but also for running other types of
applications on other deployment technologies. Similar considerations apply to
Kompose and Compose Object, both enabling the deployment of containerized
applications on Kubernetes. Kompose does so by automatically generating a
Kubernetes deployment for containerized applications specified in Docker Com-
pose, while Compose Object is a Kubernetes plugin for directly running such a
kind of applications on Kubernetes clusters.

It is worth noting that our approach of transforming EDMM models to
deployment artifacts is essentially a M2M (Model-to-Model) transformation [20].
We could have hence implemented our approach by suitably configuring exist-
ing frameworks, e. g., ATL [19], QVTd [14], or ADOxx [2], which already come
with tooling for graphical modeling and transformation. However, we decided
to implement our solution as a lightweight command-line tool, as it offers a
convenient way to be integrated in CI/CD pipelines and supporting DevOps [5].

4 https://github.com/oam-dev/rudr.

https://github.com/oam-dev/rudr
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It is also worth noting that our approach is inspired by the work by Papa-
zoglou and van den Heuvel [27], who firstly outlined the possibility of blueprinting
cloud-based application deployments, i. e., specifying the deployment of multi-
component applications in a reusable way, and to exploit such specifications
to automate application deployments. Such a foundational idea is the rationale
behind our EDMM modeling and transformation framework. Our framework was
also inspired by Andrikopoulos et al. [4], who firstly investigated the commonali-
ties among existing cloud modeling languages and collected them in the so-called
GENTL topology language. In our previous work [31] we followed a similar app-
roach for obtaining the EDMM itself, which we then exploit in this and former
work to develop the EDMM modeling and transformation framework.

In summary, to the best of our knowledge, ours is the first approach auto-
matically generating the artifacts needed to process multi-component applica-
tions using different existing deployment technologies by also allowing to reuse
third-party software and SaaS services to implement some components of an
application. It does so by starting from the widely accepted idea of specifying an
application in a technology-agnostic way, without requiring cloud providers to
support additional runtimes, and by piggybacking on existing, production-ready
deployment technology to actually enact application deployments.

7 Conclusions and Future Work

The EDMM modeling and transformation framework [30,31] allows to deploy
a multi-component application using different, existing declarative deployment
technologies. It indeed features a YAML-based language distilling the essentials
of existing technologies, which allows to describe a multi-component application
and its desired state. Deploying an application or migrating from a deployment
to another then only requires to feed the EDMM transformation framework with
the application specification. By selecting the target deployment technology, the
transformation framework will automatically generate the deployment artifacts
needed to deploy the specified application using such technology. This currently
comes at the price of only exploiting IaaS-based virtual machines or containers
as compute nodes where to deploy the components of an application.

In this paper, we presented an extension of the EDMM Modeling and Trans-
formation Framework allowing to deploy application components on PaaS plat-
forms and to exploit existing SaaS services to implement components of an appli-
cation. We also proposed a decision support system allowing to determine which
declarative deployment technologies can actually be used to deploy an applica-
tion specified with EDMM, as some existing technology may not be offering all
features needed to deploy the specified application (e. g., Juju and CFEngine are
not supporting the deployment application components on PaaS platforms). To
illustrate the helpfulness of our extension, we also shown how it was exploited
on a running example, which, despite simple, would have not be addressed by
the original EDMM Modeling and Transformation Framework.

The contributions in this paper present a first step towards cloud-native
application deployments using EDMM. However, in future work, it needs to be



110 M. Wurster et al.

analyzed which general features a declarative deployment technology has to sup-
port to deploy arbitrary cloud-native applications comprising, e. g., FaaS compo-
nents and arbitrary other managed services such as message queues. Therefore,
we will first analyze the requirements on deployment technologies to support
deploying arbitrary cloud-native applications and integrate required mechanisms
and plugins afterwards into our system. Further, we plan to extend the intelli-
gence of the decision support system by allowing to measure the distance from
an application specification to its deployment on a given technology, e. g., in
terms of the least amount of adaptation updates that must be applied to the
application to allow its deployment on such technology. We also plan to include
an adaptation recommender in the decision support system, capable of indicat-
ing to the application developer the changes to apply to an application to allow
its deployment on a desired technology, e. g., indicating to replace the PaaS plat-
form used to host some components with a IaaS-based software stack, so as to
enable the deployment of an application on Juju and CFEngine.
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for cloud application topologies. In: Villari, M., Zimmermann, W., Lau, K.-K.
(eds.) ESOCC 2014. LNCS, vol. 8745, pp. 148–159. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44879-3 11

5. Belmont, J.M.: Hands-On Continuous Integration and Delivery, 1st edn. Packt
Publishing, Birmingham (2018)

6. Bergmayr, A., et al.: A systematic review of cloud modeling languages. ACM Com-
put. Surv. 51(1), 1–38 (2018)

7. Binz, T., et al.: OpenTOSCA – a runtime for TOSCA-based cloud applications. In:
Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp.
692–695. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45005-
1 62

8. Brogi, A., et al.: EU project seaclouds - adaptive management of service-based
applications across multiple clouds. In: Proceedings of the 4th International Con-
ference on Cloud Computing and Services Science (CLOSER 2014), pp. 758–763.
SciTePress (2014)

9. Carrasco, J., Durán, F., Pimentel, E.: Trans-cloud: CAMP/TOSCA-based bidi-
mensional cross-cloud. Comput. Stand. Interfaces 58, 167–179 (2018)

https://doi.org/10.1186/s13677-019-0138-7
https://www.adoxx.org
https://doi.org/10.1007/978-3-662-44879-3_11
https://doi.org/10.1007/978-3-642-45005-1_62
https://doi.org/10.1007/978-3-642-45005-1_62


Technology-Agnostic Declarative Deployment Automation 111

10. Di Cosmo, R., Eiche, A., Mauro, J., Zacchiroli, S., Zavattaro, G., Zwolakowski, J.:
Automatic deployment of services in the cloud with Aeolus Blender. In: Barros, A.,
Grigori, D., Narendra, N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp.
397–411. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48616-
0 28

11. Di Cosmo, R., et al.: Automated synthesis and deployment of cloud applications.
In: Proceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering, pp. 211–222. ACM (2014)

12. Di Nitto, E., Matthews, P., Petcu, D., Solberg, A. (eds.): Model-Driven Develop-
ment and Operation of Multi-Cloud Applications: The MODAClouds Approach.
SAST. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46031-4

13. Docker Inc: Compose Object (2020). https://github.com/docker/compose-on-
kubernetes. Accessed 13 Feb 2020

14. Eclipse Foundation: Eclipse QVTd (QVT Declarative) (2020). https://projects.
eclipse.org/projects/modeling.mmt.qvtd. Accessed 13 Feb 2020
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