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Abstract. The emerging field of Artificial Intelligence for IT Opera-
tions (AIOps) utilizes monitoring data, big data platforms, and machine
learning, to automate operations and maintenance (O&M) tasks in com-
plex I'T systems. The available research data usually contain only a single
source of information, often logs or metrics. The inability of the single-
source data to describe precise state of the distributed systems leads to
methods that fail to make effective use of the joint information, thus,
producing large number of false predictions. Therefore, current data lim-
its the possibilities for greater advances in AIOps research. To over-
come these constraints, we created a complex distributed system testbed,
which generates multi-source data composed of distributed traces, appli-
cation logs, and metrics. This paper provides detailed descriptions of
the infrastructure, testbed, experiments, and statistics of the generated
data. Furthermore, it identifies how such data can be utilized as a step-
ping stone for the development of novel methods for O&M tasks such as
anomaly detection, root cause analysis, and remediation.

The data from the testbed and its code is available at https://zenodo.
org/record/3549604.

Keywords: AlIOps - Distributed system - Dataset - Tracing -
Metrics + Logs -+ Anomaly detection - Root-cause analysis

1 Introduction

AlIOps refers to multi-layered technology platforms that automate and enhance
IT operations by using analytics and machine learning [6]. AIOps was introduced
to reduce the cost and increase the effectiveness of O&M tasks on ever-increasing
complex public, private, edge, mobile, and hybrid cloud environments. The
transition from mainframes, to virtual machines, to containers, and serverless
computing made existing approaches and tools which rely on simple statistical
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methods obsolete due to the increasing complexity and communication patterns
between services. Notable examples include Zabbix, Cacti, and Nagios [17,33].

Monitoring data is a key element of new AIOps tools and one of the corner-
stones of research. The data generated by distributed IT systems can be classified
into three main categories: metrics, application logs, and distributed traces [30].
Metrics are numeric values measured over a period of time. They describe the
utilization and status of the infrastructure, typically regarding CPU, memory,
disk, network throughput, and service call latency. Application logs enable devel-
opers to record what actions were executed at runtime by software. Service,
microservices, and other systems generate logs which are composed of times-
tamped records with a structure and free-form text. Distributed traces record
the workflows of services executed in response to requests, e.g., HT'TP or RPC
requests. The records contain information about the execution graph and per-
formance at a (micro)service level.

Recently, various approaches — focusing on a wide range of datasets, O&M
tasks, and IT systems — have been proposed. This includes variety of tasks, which
extract knowledge from a specific type of data. For example, anomaly detection
has been applied to metrics (numeric) [11,26,27], logs (unstructured numeric and
text data) [4,7,24], and also to distributed system traces (unstructured numeric
and text data) [18,19].

The existing research has mainly explored publicly available data, which usu-
ally captures only a single data source category. This limits both the development
of new methods that could extract knowledge from multi-source data and their
proper evaluation. The absence of data repositories capturing the three data cat-
egories from modern distributed systems prevents the development of methods
for multi-source mining, knowledge extraction, semantic information learning
from the naturally linked data sources. Furthermore, enables fault detection,
root-cause analysis, and remediation that could give advances in the field as
existing approaches typically produce a large number of false positives.

We address this issues by producing the following contributions:

— A new data of metrics, logs, and traces generated by a distributed system
based on microservice architecture.

— Description of the approach developed to generate the multi-source system
data and its statistics.

— Analysis of existing datasets utilized for the evaluation of AIOps algorithms,
highlighting their benefits and their limitations.

— Applications of the multi-source data to develop new algorithms to support
additional O&M tasks.

Specifically, during the development and data generation process, we derived
the following requirements.:

R1 Originality. The data should fill the gaps in existing datasets for vari-
ous AIOps tasks including anomaly detection and root-cause analysis. Moreover
should open new possibilities for the development of novel methods for O&M
tasks.
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R2 Reusability. The data should be modular and open for and adaptable
to various use cases. Next to that, the system should be easy to handle. This
should allow development of single- and multi-source methods.

R3 Quality. The data should be analyzed before publishing, free of errors,
and directly usable.

R3 Extendability. The testbed generating the data should allow differ-
ent system configurations, fault injections, workloads, and thus data generation
which suits the real production scenario of various interested parties.

2 Related Work

Metrics, logs, and traces are important data sources that are fundamental to the
operation of complex distributed systems. In following we study related work for
these data accordingly.

The metric data is a common way to extract useful information for describ-
ing the state of the system. However, often it is not sufficient and reliable to
model the complex systems. The metrics data are obtained from monitoring of
the resources such as CPU, memory, disk and network throughput and latency.
A plethora of available collections of datasets containing metric data can be
found in Stonybrook [31], where multiple datasets for different tasks related to
anomaly detection can be found. Numenta [1] predominantly contains datasets
from streaming and real-time applications, while Harvard [9], ELKI [8], LMU [15]
store network intrusion data. Recently, there are multiple studies which utilize
these datasets for anomaly detection, root-cause analysis, and remediation. In
Subutai et al. [1], a novel anomaly detection method based on hierarchical tem-
poral memory (HTM) is introduced. It enables anomaly detection in the stream-
ing setting to tackle the problems of concept drift and the problem of multiple
streaming sources utilizing metrics data. In Schmidt et al. [26], an unsupervised
anomaly detection framework is developed and applied to real-time monitoring
data in a distributed environment.

The main challenge that AIOps systems analyzing log data are facing is the
unstructured nature of the logs. This problem usually requires prior and proper
preprocessing and/or inclusion of domain knowledge. Often, approaches extract
log key identifiers for the logs and are modeling their sequences. There exist two
resources of log data for cluster systems available. The CFDR resource [3] stores
links or 19 log datasets grouped in 11 data collections. The datasets cover both
hardware and software logs. The second resource is the loghub data resource [35].
It consists of 16 datasets describing systems spanning across distributed sys-
tems, supercomputers, operating systems, mobile systems, server applications
and standalone software. The datasets cover a different time from a few days
until a few months. From the perspective of the system description, these data
have weakness in providing just a single aspect of the system. In Meng et al. [16]
the LogAnomlay system for detection of anomalies from logs is introduced. It
utilizes a novel template2vec technique to encode the logs. Further, it extracts
quantitative patterns from the logs. It uses LSTMs to detect the sequential and
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quantitative anomalies in the logs. In Zheng et al. [7] the DeepLog system is
introduced. It tries to model the logs as natural language sequences. It allows to
update the model by the operator and provides an automatic reconstruction of
the workflows to enable root cause analysis.

In microservice architectures, traces are graph-like structures composed of
events or spans [22]. The traces represent the system execution workflow, hence
detailed information for individual services and the causal relationship to other
related services can be inferred. Nedelkoski et al. [18,19] introduce novel anomaly
detection methods for distributed tracing data. They proposed a multimodal
neural network with long short-term memory (LSTM) to enable the learning
from the sequential nature in the tracing data. They describe how the data
is obtained, but the datasets are not publicly available. Azure Public dataset
composes of two datasets representing two representative traces of the virtual
machine of Microsoft Azure [5]. It is mostly utilized to improve resource man-
agement in large cloud platforms. Alibaba’s cluster data is a collection of two
datasets from real-world production [2,14,28]. In Zhen et al. [28] a novel system
which automatically diagnoses stragglers for jobs is introduced. Li et al. [14]
propose a deep reinforcement learning approach towards the job scheduling
task. It can automatically obtain a fitness calculation method that optimizes
the throughput of a set of jobs from experience. Google’s collection of two trac-
ing datasets originates from parts of Google cluster management software and
systems [10].

Limitation for all the above-mentioned datasets is the absence of multi-source
(view) data describing a single system. The lack of data from all observability
components from one system does not allow the development of holistic systems
for fault detection, root-cause analysis and remediation that consider multi-
ple sources of data simultaneously. Our collection of data, describing the same
system from the 3 perspectives of logs, metricise and traces, to the best of our
knowledge, is the first of its kind. This enables building models with diverse com-
plementary information, hence making AIOps systems to perform better [19].

3 Dataset Generator

In this section, we describe the infrastructure, experiments, workload, and the
injected faults as part of the testbed for data generation. The testbed and the
generated data follow the requirements stated above, as every parameter stated
in following can be easily changed, satisfying part of R2, and R4.

3.1 Infrastructure

An OpenStack [29] testbed based on a microservice architecture that is run-
ning in a dockerized environment called Kolla-Ansible [13] was first deployed.
OpenStack is a cloud operating system that controls large pools of computing,
storage, and networking resources throughout a data-centre, all managed and
provisioned through APIs with common authentication mechanisms.
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The experimental testbed setup is shown in Fig.1 and for the purpose of
the generation of the data it consists of one control node named wally-113 and
four compute nodes: wally-122, wally-123, wally-124, and wally-117. It was
deployed on bare-metal nodes of a cluster where each node has RAM 16 GB, 3x
1TB of disks, and 2x 1Gbit Ethernet NIC. Three hard disks were combined to
a software RAID 5 for data redundancy.
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Fig. 1. Illustration of the infrastructure from where the data was generated.

3.2 Workloads and Faults Injected

To generate workloads and inject faults into the infrastructure we used Rally
[25]. Rally docker image was used to create the load and inject os-faults [23]
appropriately. Jasmin: We selected a list of workloads and faults that are close
representatives to real production faults. The listed workloads and faults in
following cover user request that is served by the main Openstack projects.

— Create and delete server. Jasmin: Creates and deletes a server (virtual
machine). Nova project is mostly affected and present in the data. We injected
a compute fault which is restarting the api container that run on the compute
nodes.

— Create and delete image. Jasmin: The task for creating and deleting images
accepts the image-location locally/ over the internet, format of the output
image once created. It creates and deletes an image. The glance project of
Openstack provides a service where users can upload and discover data assets
that are meant to be used with other services. Here we inject the fault in the
glance-api running on the controller node.
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— Create and delete network. Jasmin: Rally provides task that accepts the for-
mat for creating and deletion of networks for various configurations such as
multiple users and tenants. Neutron is an OpenStack project to provide net-
working as a service between interface devices (e.g., vINICs) managed by other
Openstack services (e.g., nova, heat etc). There are various components that
we focus on while injecting faults such as disrupting the below-mentioned ser-
vices running in docker containers: neutron metadata agent, neutron 13
agent, neutron dhcp agent, neutron openvswitch agent and neutron
server.

We performed two different experiments. In the first experiment, the user
actions as a workload were executed in a sequential way, when one finishes then
the next is started. This experiment was performed for 750, 1000, and 1000
iterations (create and delete server, create and delete image, create and delete
network), where faults were injected every 250 iterations respectively. The fault
was injected in only one iteration, however, we noticed that some of the faults
take time and propagate the errors to other iterations as well. In the second
experiment, the rally workloads were concurrently executed. This experiment
was performed for 2000, 3000, and 6000 iterations for create and delete server,
create and delete image and create and delete network, respectively. The faults
were injected at different rates, 250 for create and delete server and create and
delete image and 500 iterations for create and delete network. The number of
the iterations for each action was chosen so that all workloads approximatelly
finish in the same time. The data from the second experiment is slightly more
suited for multi-source methods utilizing distributed log data, as it was generated
with that as a goal. Also, HTML reports were collected which correlates all the
events of creations, failures and which injections were made. This report serves
as ground truth for the normal and anomalous state of the system.

Jasmin:

3.3 Data Collection

In following we describe the technologies and the methods used to collect the
generated data.

Metrics. For the metrics collection across the physical nodes in the infrastruc-
ture, we utilize Glances [20], a cross-platform monitoring tool which aims to
present a maximum of information into a minimal space through curses or Web-
based interface. Glances is written in Python and uses the psutil library to
get information from a system. It can adapt dynamically the displayed informa-
tion depending on the terminal size. It can also work in client/server mode, also
remote monitoring could be done via terminal, Web interface or APT (XMLRPC
and RESTful). Glances was used to gather information such as CPU, MEM and
load of the machine (either controller or the compute nodes). These metrics were
saved into a CSV file via the glances-cli.
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Logs. OpenStack services use standard logging levels. For aggregating logs from
all services running across the physical nodes, was used ELK (Elasticsearch,
Logstash, and Kibana). Elasticsearch is a search and analytics engine which
resolves the search requests. Logstash is a server-side data processing pipeline
that ingests data from multiple sources simultaneously, transforms it, and then
sends it to Elasticsearch. For this Fluentd, which is an open-source data collector
for the unified logging layer, was utilized. It allows unifying data collection and
consumption for better use and understanding of data. Kibana is a dashboard
that gives the ability to the users to visualize data with charts and graphs
using data that is collected by Elasticsearch. Finally, for exporting data from
Elasticsearch into CSV a CLI tool, es2csv [32] was utilized. The benefit we
obtain from this tool is that it can query bulk docs in multiple indices and get
only selected fields, this reduces query execution time and enhances the speed of
aggregating these logs that are existing on various physical nodes. We provide
both, the aggregated logs as well as the raw logs to cover possible development
of methods that process raw logs, such as log parsing.

Traces. OpenStack consists of multiple projects, where each project is com-
posed of multiple services. To process user requests, e.g., creating a virtual
machine, OpenStack uses multiple services from different projects. To sup-
port troubleshooting, OpenStack introduces a small but powerful library called
osprofiler that is used by all OpenStack projects and their Python clients [21]
to generate traces. It generates one trace per request, that goes through all
involved services, and builds a tree of calls which captures a workflow of service
invocations. To identify workflows, we monitor the following call types:

— HTTP. Captures HTTP requests, the latency of service, and projects
involved.

— RPC. Represent the duration of parts of request related to different services
in one project.

— DB API. The time that the request spent in the DB layer.

— Driver. In the case of nova, cinder and others we have vendor drivers.

The osprofiler library collects these records in a trace per request and
stores them in a database (e.g., Redis). From Redis, we can query and analyze
traces.

4 Dataset Description

The workloads and faults described in the previous section were executed on the
testbed. As explained, the execution generated three main categories of observ-
ability data: distributed traces, metrics, and application logs. These data were
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recorded in concurrently in order to provide the state of the system from multi-
ple points of view, which satisfies the R1 for originality as no such dataset exists
in previous work. In the following two sections, we describe the main attributes,
properties, and statistics of each data category of the first experiment. Due to
page limitations, we refer the reader to the above link in the abstract for the
code for extracting the data statistics from the second experiment. All other
properties hold for both experiments.

4.1 Metrics

The metrics data category contains data for the 5 physical nodes in the infras-
tructure. The 5 files are named metrics_wally_N, where N is either the controller
node or one of the compute nodes. Each of these files has 7 features:

— now. The timestamp of the recording.

— cpu.user. Percent time spent in userspace. The user CPU time is the time
spent on the processor running your program’s code (or code in libraries).

— mem.used. The RAM usage of the physical host.

— load.cpucore. The number of cores of the physical host.

— load.minl, minb5, min15. Linux load averages are system load averages that
show the running tasks demand on the system as an average number of run-
ning plus waiting threads. This measures demand, which can be greater than
what the system is currently processing.

A small sample of the metrics data for the wally113 is shown in Tablel
where we can see part of the metrics data.

Table 1. Metrics from the controller node (wally 113)

timestamp cpu.user | mem.used (B) | load. load. |load. |load.
cpucore | minl | min5 | minl)

0.8 1.02 1.18
0.8 1.02 1.18
0.8 1.02 1.18
0.8 1.02 1.18
0.8 1.02 1.18
0.8 1.02 1.18

2019-11-19 16:56:32 | 11.5 10221035520
2019-11-19 16:56:32 | 10.4 10221117440
2019-11-19 16:56:33 | 11.1 10222948352
2019-11-19 16:56:33 | 14.3 10223144960
2019-11-19 16:56:34 | 10.7 10222866432
2019-11-19 16:56:34 | 10.7 10223480832

Q| Co| 00| 0Co|Co| 0o

4.2 Logs

The log files are distributed over the infrastructure and they are grouped in
directories by the OpenStack projects (e.g., nova, neutron, glance, etc.) at the
wally nodes. At each of the physical nodes, there are different project running.
The control node has more services running and thus has more log files for the
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OpenStack projects. Each project on the physical hosts has its log directory
where the logs are stored. Inside each of the log directories for the projects,
there are several log files. Important to note here is that even the log files are
highly distributed over projects and physical nodes, they all represent the state
of the system. We provide the raw log directories in this dataset along with the
aggregated log file. Using the elastic search and Kibana stack we can aggregate
all the logs into a central database which can serve as a starting point for the
analysis.

The log entries have in total of 23 features. Not all the features are always
present for all the log entries. The features: _id, _index, _score are added meta-
data from Kibana. The _type is fluent, the collector which is responsible for
sending all the metrics and logs to Kibana. In the following, we describe the
main features present in the log data.

— hostname. Name of the physical host (e.g., wally113)

— user id, project domain, tenant id, request id, user domain,
domain id. Are features describing the user request to Openstack.

— timestamp, @timestamp. The time when the record was created.

— log level. Describes the level of the log entry. It can be info, error, warning,
etc.

— pid. Process ID.

— Payload. Gives the most important information of the log i.e., the body of
the log entry.

— programname. The OpenStack project that generated the log entry.

— python module The module responsible for generation of the log entry, and
the

— logger Tells which project logs the event.

— http * related fields. Are only present if there is an HTTP call describ-
ing the endpoint, status core, version, and the method.

For the parsing of the logs, template matching, and analysis we suggest using
the aggregated file described instead of the directories with raw log files, as all
of the information is preserved and more structured for direct analysis. For
multi-source log anomaly detection, if the aggregated file is utilized, we sug-
gest splitting by “logger” in order to obtain entries which are grouped by their
corresponding service.

4.3 Traces

The traces in the dataset are contained in 3 directories: boot_delete, cre-
ate_delete_image, and network_create_delete. Each of the directories contains the
scripts for running the workload and the fault injections along with the actual
tracing data. These directories contain JSON files of the traces. This structure
is preserved among all types of workloads (Rally actions).

Every trace has its features in the JSON entries or events. These features
depend on multiple factors such as the user request, infrastructure, load bal-
ancers, and caching. An event is a vector of key-value pairs (k;,v;) describing
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the state, performance, and further characteristics of service at a given time ;.
In following we describe the main features of the events in a trace:

— host. Name of the physical host.

— name. Event name (e.g., compute_apistop).

— service. Service name (e.g., osapi_compute).

— project, Openstack project (e.g., nova).

— timestamp. The time when the event is recorded.

— trace_id. ID of the span (contains two events, e.g., compute_api-stop and
compute_api-start).

— parent_id. The parent_id gives the ID of the parent event. This attribute can
be used to represent the trace in a graph.

— base_id. ID of the trace, different events and spans with same base_id belong
to one trace.

Two start and stop events (e.g., compute_apistart and compute_apistop) with
the same trace_id. The subtraction between the stop timestamp and the start
timestamp gives the duration of the span. The above features together with
the duration are the most important in describing the structure, preserving the
parent-child causal relationship, and the duration which represents the response
time of the service invoked.

The events also contain other attributes that can be found for specific types.
For example, path, scheme, method for HT'TP calls, where the path and scheme
represents the HTTP endpoint and HTTP scheme and method can be GET or
POST. Further, the db statement in DB calls gives information about the SQL
query, while the function, name, args, kwargs in RPC calls tell which function
was invoked with the its corresponding arguments.

4.4 Ground Truth Labels

The workloads described along with the faults injected are both recorded in Rally
HTML and JSON reports which are located at each of the directories containing
trace data. These reports provide pseudo ground truth labels for the traces,
metrics, and logs. They contain information for the times when the faults were
injected and the resulting high level error messages. Taking the period when the
anomaly was injected and merging it with the timestamps of the data files can
give us true labels for the evaluation. We suggest to use the ground truth labels
to evaluate algorithms and methods which are based on unsupervised learning,
as in production systems injection of anomalies and access to labeled data is
restricted.

Jasmin:

5 Dataset Statistics

This section provides a descriptive statistic of the datasets generated. It quan-
titatively describes the properties of the trace, metrics, and log datasets.
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Additionally, it ensures the R3 and R2 requirements. In following, due to page
limitations, we discuss the statistics for the first experiment only. The code for
extracting the statistics for the second experiment is provided in the data repos-
itory.

5.1 Metrics

The number of recordings of the utilization of the resources, more specifically the
CPU, memory and the load, per node varies in the range of (108900, 298251).
The average number of recordings is 239127. The total number of the metric
recordings is 1195637. All of the nodes have 8 CPU cores. It is important to
note that the metrics data cover a time span larger than the period of execution
of the experiments.

As depicted in Figs. 2 a and b, in general, the wally113 experience the greatest
CPU and memory load as observed by the distribution of these two features. Fur-
thermore, the correlation analysis of the load.minl, load.min5 and load.minl5
show that they exhibit high correlation given their relatedness through time.
The correlation analysis also shows quite distinct behaviour for the load.min5,
load.min10, load.minl5 correlations between the control node and the remain-
ing nodes. Regarding the dependence between the cpu.user, memory.used and
load.min features, no significant correlation can be identified. Roughly 3 groups
of features emerge - the load.CPU, mem.used and the load.min group.

5: i mﬂl’wh A, L ol o ‘L\“,

eeeeeeeeeeeeeeeee load.min1

(a) Control node load (b) Compute node load

Fig. 2. Traces: counts of services per rally action

5.2 Logs

Since the logs are semi-structured data, first we try to organize them and observe
the range of interesting features that can appear in them. There are 139799
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Table 2. Traces information: count of operations per workload execution.

wsgi | db comp. |nova neutron | neutron | rpc
api image | api db
image create delete | 11436 81321 0 0 0 0 0
network create delete | 4692 | 14101 0 0 0 | 125321 855
boot delete 46591 | 125975 | 21572 | 752 313744 | 46642 | 36560

Table 3. Traces information: median time of a service per iteration

wsgi | db comp. | nova neutron | neutron | rpc
api image |api db
image create delete |0.046 |0.001 |0 0 0 0 0
network create delete | 0.285 |0.001 |0 0 0 0.001 0.001
boot delete 0.0410/0.001 | 0.039 |0.035 | 0.001 0.002 0.009

log messages appearing in the sequential execution of the operations. We used
Kibana to identify the different features describing them. Each log has its unique
identifier referenced by the label _id. The Timestamp feature has 8 missing val-
ues. However, the timestamps provided by Kibana, stored in @timestamp contain
the relevant information for the moment where the logging happened.

There are a total of 6 services recording their logs in the OpenStack logger:
nova, neutron, keystone, glances, placement and cinder. Nova and neutron are
services with the greatest number of logs appearing. The logs contain 3 levels of
logging (INFO, WARNING and ERROR). There are 5 operation host nodes -
Hostname (wallyl113, wallyl17, wally122, wally123, wally124). Most of the logs
originate from the control node wally113. The python_module contains the name
of the 61 modules that are logging their information into the logs with wsgi
related modules being the most frequent ones (neutron_wsgi, nova.osapi_wsgi
and server_wsgi). The programname refers to the program which operations are
being executed. There are a total of 127654 different Payloads happened in the
system and the most frequent is related to the GET operation.

For the realized HTTP calls there is information for the http status with
6 different code values, http.method with 4 possible values (GET, POST,
DELETE and PUT), http_urls with a total of 3655 values and the ver-
sion of the http protocol stored ins http_version. There are columns such
as domain id, user domain, tenant_id, request_id, user_id, _score, _type,
project_domain, Pid and domain_id that have either very large or very small
variance in the number of unique values per feature. They represent start and
end point in form of IP address or a result from a hash function.
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5.3 Traces

Table 2 represents the total number of services for each of the traces for the
three sequential operations being executed. It is given as a total sum over all the
repetition of the experiment. One can be observe that there are different service
invoked per operation. For example, for the image_create_delete operation the
open stack service involved is completely on the controller node, hence the com-
pute nodes are contacted and there is no operation related to them. The most
frequently occurring invocation is split between db and wsgi. Second the opera-
tions are ordered by complexity and it can be seen that the boot_delete_task
involves all of the 7 services.

Table 3 represents the median time of execution for each of the invoked ser-
vices. The median is chosen since the distributions are skewed and the mean is
not representative of the sample distribution. As it can be observed, the wsgi
services are slower than the db calls since wsgi relays on http communication.
It is interesting to observe that for the network create delete operation the rpc
is quite small. One explanation for this is the small rate of rpc call per individ-
ual execution. This means that not all executions of this operation involve rpc
calls. Since multiple workloads involve invoking different number of individual
operation the times should be compared with caution.

We inject the fault in the glance-api running on the controller node.

6 Applications of Multi-source AIOps

While previous work has been generally done on single-source data, we believe
that to develop robust, holistic approaches for anomaly detection, root-cause
analysis, self-healing, resource optimization, and performance analysis a multi-
source data is highly desirable.

In this section, we shortly describe possible AIOps approaches that can
exploit the benefits of processing multi-source observability data.

Multi-source Anomaly Detection. The distributed logs over projects and phys-
ical hosts enable multimodal end-to-end learning and more robust log anomaly
detection. Of course, this adds complexity for data integration and fusion, as
the distributed logs are produced with different timestamps. Together, the dis-
tributed logs and metrics can again be combined into more complex model or
network of models. Lastly, the graph-like structures of the tracing data can
be incorporated to complete the robust anomaly detection where all available
observability data is considered.

Root-Cause Analysis. The integration of multi-source observability data can
be exploited by using some kind of Fishbone diagrams [12] to find the root-cause
of problems. A method can start with simple metric-only anomaly detection,
which typically provides little information about the root-causes of problems,
and drill down to more complex data structures which are richer in explaining
anomalies. For example, one can start by analyzing the latency of microservices
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endpoints. If anomalies are detected after processing metrics, one can use the
timeframe when the anomaly occurred to select and analyze structural changes
in traces. Traces can provide information about which servers are possibly faulty.
Afterwards, application logs can be accessed to find the root-cause of problems.

Precision Increase. Ensemble learning [34] can be used to machine learning
algorithm results by combining several models applied to the three correlated
data sources categories. Such an approach would allow the production of algo-
rithms with better predictive accuracy when compared to the algorithms which
process single-data sources.

Feature Extension. Many machine learning algorithms rely on features, which
for AIOps are individual measurable characteristics of the behaviour of IT dis-
tributed systems at a given time. By using multi-source data, the spectrum of
available features to an algorithm is dramatically increased. Thus, we expect the
quality of algorithms and their results to increase in the future.

7 Conclusion

AlIOps systems rely on suitable observability data. We released a multi-source
data containing distributed metrics, logs, and tracing data obtained from a
complex distributed system based on microservice architecture. We describe in
details the infrastructure, experiments performed, and the fault injection. Fur-
thermore, we provided descriptive statistical properties of the data.

Furthermore, we motivated possible applications of this data for improve-
ments in anomaly detection, root-cause analysis, remediation, and feature exten-
sion. We hope that this dataset will foster advances in the research of AIOps,
which has been limited mainly to explored data capturing only a single data
source category.
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