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8.1  Background

Overview Keloid disease (KD) is an aesthetically and 
physically distressing skin disorder [74]. KD is considered 
a benign tumor of the dermis that develops as a result of 
a dysregulated healing response to cutaneous wounding 
[88]. Phenotypically, it is an exophytic proliferative fibrous 
growth of ill-defined etiopathogenesis [15, 17]. Keloid 
scarring is an enigma and a challenge to clinicians espe-
cially dermatologists and surgeons [87], due to its poor 
response to clinical management [88].

Keloids are reported to have a high incidence in 
darker skin races and certain ethnicities of Afro- 
Caribbean origin [4]. The incidence of keloid cases is 
16% in black Africans [15] and keloid predominance in 
females as compared to the males might be due to more 
piercing trends in females [82].

This benign skin disease can either occur sporadi-
cally, or can exhibit a familial pattern. Keloid disease 
is considered a genetic disease due to a strong genetic 
susceptibility to keloid formation as it occurs predomi-
nantly in people of  African and Asian descent, runs 
in families, and has been found in twins. However, a 
well-defined comprehensive mode of  inheritance still 
remains unknown due to insufficient studies to uncover 
the genetic basis of  keloid formation. Nevertheless, 
inheritance patterns for X-Linked or autosomal domi-
nant trait have been found in families with keloids 
[71]. Although no specific genes have been identified, 
that is directly linked to the development of  keloids, 
a few genetic loci have been reported to have a poten-
tial role in disease susceptibility. A study conducted in 
a Japanese population revealed four potential SNPs 
(single- nucleotide polymorphisms) in three chromo-
somal regions [76]. Anatomical sites affected with KD 
also vary in different keloid-prone families [9]. Keloid 
scarring may comprise of  multiple genes, and affected 
individuals could possess variable genetic susceptibil-
ity for a set of  genes or gene mutations associated with 
keloid phenotype [4]. Association studies for keloids 
such as gene polymorphisms and mutations have been 
conducted for some genes including SMAD3, SMAD7, 
and SMAD6, TGF-β1–3, and TGF-βRI-III to inves-
tigate the respective genetic basis of  disease pathol-
ogy. Some genetic networks such as cellular apoptosis, 
MAPKs, TGF-β, IL-6 and PAI-1 have also been stud-
ied in keloid pathology [8, 10–13, 15, 99] and also found 
associated with immunogenic processes as well as other 
biological pathways  (PAI-1, Bcl-2, p53, and collagen 
deposition) [88]. Complexity and differences in the 
inheritance modes and familial keloid scarring reflect 
the variability and heterogeneity in genetic susceptibil-
ity, family history, twin genetic makeup, inheritance 
patterns, linkage, genetic associations, variation in gene 
expression and respective gene pathways, HLA (human 

leukocyte antigen) polymorphism, epigenetics, and eth-
nic populations [88]. Currently, none of  hypothesized 
mechanisms can directly explain the disease pathol-
ogy. Moreover, the lack of  effective treatment options 
underlines the lack of  understanding about disease pro-
cess and complex and multivariable pathogenesis [74].

Objectives The objectives of this review are to investi-
gate the evidence related to the genetic basis and its asso-
ciation with keloid disease. A comprehensive literature 
search was performed using PubMed, Google Scholar, 
CNKI and Embase databases, by applying combinations 
of relevant MeSH (Medical Subject Headings) words as 
title. The key search terms included “Keloid, HLA immu-
nogenetics, Linkage, and Large scale population SNP 
analysis.” The appropriate keywords included “Keloid, 
RNA Sequence analysis, Microarray, Micro RNA, 
Methylation, Mutation, Epigenetics, and FISH.” All 
retrieved records were compiled in the study for compre-
hensive review and evaluated based on significance, meth-
odology, evidence, and reproducibility (. Fig. 8.1).

8.2  HLA Immunogenetics

Human leukocyte antigen (HLA) is the only complex 
genetic polymorphic system present on the 6th chromo-
some (short arm) and is involved in presentation and pro-
cessing of peptide antigens via HLA class I and II [23]. 
The association or involvement of HLA in keloid etiol-
ogy remains elusive as the pathology of dermal fibrosis 
and poor wound-healing remain ill understood [74].

A study conducted in Caucasians and Chinese Hans 
populations demonstrated the involvement of immuno-
genetics (HLA alleles) in keloid etiology. Generally, 
environmental exposure during the wound-healing pro-
cess alters the antigen presentation and expression levels 
of HLA molecules that trigger respective immune 
response including prolonged inflammation and subse-
quent release of profibrotic cytokine/chemokines con-
tributing to the excessive extracellular matrix (ECM) 
deposition, leading to the development of the keloid 
phenotype. The presence of (altered) immune cells in 
keloids, provides the insight into the disease pathology. 
Variable/altered gene and protein expression in keloids 
supports the contribution of a dysregulated immune 
system for disease progression or development [4]. The 
association of immunogenic molecules with the keloid 
phenotype, has been shown by a study, in which periph-
eral blood mononuclear cells of keloid patient exhibited 
increased expression levels of HLA-DR, -DQ, -DP and 
CD1a molecules in keloid patients [57].

The association of keloids with HLA-I alleles, has 
been studied in Chinese Han population (192 patients 
and 252 healthy individuals) to find out the HLA status 
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as a potential contributor to the keloids formation. The 
frequencies of HLA-A*03, A*25, Cw*0802, and B*07 
were significantly high in keloid group but, the frequency 
of HLA-A*01 was highly decreased in comparison 
with healthy individuals. This study described high risk 
haplotypes (A*03-B*07, A*25-B*07, A*03-Cw*0802, 
A*25-Cw*0802, and B*07-Cw*0802) as contributing 
components in keloid formation. Interestingly, keloid 
site specificities, number, severity and details of fam-
ily inheritance were also associated with specific alleles 
of HLA class. It shows that maybe these alleles are 
linked (linkage) with genes, which are responsible for 
keloid susceptibility [65]. Of note, HLA-I alleles (A*01, 
A*03, A*25, B*07 and Cw*08:02, HLA-DQA1 and 
DQB1)  previously associated with KD in participants 
of Chinese ethnicity were shown to have no significant 
differences in allele frequencies in keloid cases from 
Jamaican Afro-Caribbean ethnic group [4].

Keloid patients were also found to have an association 
with blood type A and human leukocyte antigens HLA-
B14, HLA-B21, HLA-BW35, HLA−DR5, HLA- DRB1, 
HLA−DQA1, HLA-DQB1, and HLA-DQW3 [78, 88, 
110]. The association of HLA-I histocompatibility anti-
gens, patient’s family history with earlobe keloids pathol-
ogy, has been studied in females of Black ethnic group. 
This study revealed some factors that appear in high fre-
quency and acts as a risk factor when associated with: (i) 
HLA-A 9, (ii) HLA-A 23, (iii) HLA-Aw 34, (iv) HLA-Cw 
2 antigens, history of (v) hypertension and (vi) post-ear 
piercing infection [29].

Association between HLA-DRB1 phenotype and 
keloid etiology has been studied in Caucasians popu-
lations of Northern European origin (keloid cases n = 
67, control n = 537). It was revealed that frequency of 
HLA-DRB1*15 was high (38.8%) in Caucasians keloid 
cases, which appeared as a risk factor of developing KD 
following injury [17]. Frequencies of serologically detect-
able HLA antigens, i.e., HLA-B14 and HLA- Bw16, 
were subsequently found to be more (25%) common as 
compared to the control, which further suggests that, the 
individuals having HLA-B14 or HLABwl6 phenotype 
may be at risk for keloid formation [51].

It seems that most likely there is an association 
between alleles of HLA class and/or shield against der-
mal fibrosis, because allele loci (DQ and DR) from class 
II is a promising genetic marker owing significance con-
tribution in poor wound healing and fibrosis [74]. All of 
these investigations deliver a strong statement about sig-
nificant involvement of immunogenic component in 
keloid pathogenesis [19, 23].

8.3  Linkage

The prevalence of KD in identical twins, in families, in 
certain ethnicities, and at multiple sites strongly sup-
ports a genetic predisposition in the development of 
keloid phenotype [9, 71]. Certainly, the risk of KD 
occurrence is higher in genetically susceptible individu-
als (Bayat et al. [8, 12, 16]). In addition to that, recur-
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rence rate (50%) is also higher in the African population 
with family history having positive keloid cases [9]. The 
linkage loci of KD were initially found to be on chromo-
somes 2q23 and 7p11 by Marneros et al. [72], but no 
putative gene target was further identified.

Single-nucleotide polymorphisms (commonly found 
to be useful genetic markers in various association stud-
ies) may also confer a risk for keloid disease develop-
ment, such as PTEN (The phosphatase and tensin 
homolog) gene polymorphisms at rs2299939, rs17431184, 
rs555895, and rs701848) were found significantly related 
with high risk of keloid development in Chinese Han 
population. In addition, it was found that CC genotype 
from rs2299939 appeared as a risk factor in keloid 
patients as compared to ACTC haplotype prevalence in 
population, which seems protective factor against keloid 
formation [55, 56].

The GWAS (genome-wide association study) identi-
fied three keloid susceptibility loci (rs873549 at 1q41, 
rs8032158 at 15p21.3 and rs940187 and rs1511412 at 
3q22.3) in a Japanese population. Furthermore, an asso-
ciation study of these susceptibility loci was also investi-
gated in keloid patients from Chinese Han population. 
The SNPs 1q41 (rs873549, and rs1442440,) and 15q21.3 
(rs2271289 present in NEDD4) revealed significant 
association with keloid in the Chinese Han population. 
In addition, AG haplotype was identified as risk factor 
whereas, GA and AA haplotypes appeared as protective 
factors from rs1442440 and rs873549 SNPs. It is also 
suggested that 15q21.3 and 1q41 loci shows genetic 
association and predisposition for keloid formation in 
Japanese and Chinese Han populations [116].

Predisposing genes also showed linkage association 
with keloid susceptibility genes. A study conducted in a 
selected Han Chinese keloid pedigree, mapped to the 
region about 1 Mbp on chromosomes 10q23.31, between 
Fas gene marker D10S1765 and D10S1735, provides the 
first genetic evidence of a predisposing Fas gene linkage 
association with keloid susceptibility genes [22].

Another genome-wide association research study 
(keloid cases =824, Healthy cases= 3205) found strong 
association of keloid cases with four more SNP loci pres-
ent at three chromosomal locations (3q22.3–23, 1q41, 
and 15q21.3) in a Japanese population. It was found that 
SNP rs873549 at chromosome 1 showed the most signifi-
cant association with keloid cases [76].

The linkage between the susceptibility locus (18q21.1, 
SMAD, and PIAS2) to keloid and two loci, 18q21.1and 
15q22.31-q23, was also investigated through pedigree 
linkage analysis in a five-generation Han Chinese keloid 
family. Seven critical regions of microsatellite markers on 
chromosomes 18q21.1 and 15q22.31-q23 and were 
included in analysis. Out of the seven markers, only two 
(D18S460, D18S467) showed linkage to the disease locus 
[108]. SMAD genes 3, 6, and 7 are known to be involved 

in fibrotic disorders, and their association with keloid dis-
ease susceptibility was also studied in Jamaican keloid 
patients. Thirty-five SNPs across these genes were geno-
typed using  time-of- flight mass spectrometry (MALDI-
TOF MS) and iPLEX assay. Linkage disequilibrium (LD) 
was established between several of the SNPs investigated. 
These findings indicated that the SMAD SNPs were not 
significantly associated with high risk of keloid formation 
in the Jamaican population. This study also highlighted 
the importance of identification of genetic bio-markers as 
a candidate such as SMAD, which can be helpful diagnos-
tic, prognostic tool and can provide hope for development 
of new therapeutics for keloid scar management [15].

Keloid predisposition loci at chromosome 7p11 was 
studied in a Chinese population pedigree [21] consist-
ing of  5 affected generations and a total of  32 mem-
bers. Four microsatellites on chromosome 7p11 were 
selected as the genetic markers. This study provided the 
first genetic indication that keloid predisposition loci 
did not locate on chromosome 7p11 in Chinese popula-
tion, furthermore, it suggested that familial keloid pre-
disposition loci are heterogeneous.

Recently in another research study, analysis was con-
ducted through whole genome sequence data, and identi-
fied “Leu401Pro variant” in ASAH1 (N-acylsphingosine 
amidohydrolase) gene, that revealed co-segregation pat-
tern with keloid phenotype in a large population of 
Yoruba family. This genetic variant is known to play a 
role in tumor formation, inflammation and cell prolif-
eration, which suggested that it may be involve in keloid 
development through various other mechanisms. This 
study also found some rare coding variants but their sus-
ceptibility for non-syndromic development of keloid is 
not known [85].

8.4  Large-Scale Population 
Single-Nucleotide Polymorphism (SNP)

Researchers have started to investigate deeper into the 
human genome by using high-throughput microarray 
genotyping technologies with an objective to develop 
high-density SNPs map arrays in families with keloid 
history. Previously genome-wide case-control associa-
tion study described three susceptibility loci (i) 1q41, (ii) 
3q22.3-23, and (iii) 15q21.3 in association with keloid 
disease, in a Japanese population [76]. NEDD4 gene 
present in 15q21.3 chromosomal locus, is involve in up 
regulation of collagen type 1 and fibronectin, that result 
in extracellular matrix formation [24].

An independent case-control study was conducted to 
find correlation between SNPS i: e rs2118610, rs873549, 
rs2271289, rs1511412) and phenotypes of keloid cases in 
Chinese Han population. This study revealed that inheri-
tance patterns of four SNPs (particularly SNP rs2271289) 
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were dominant in severe keloid cases, in comparison with 
mild cases and control groups. Similar pattern of associa-
tion of SNP rs2271289 with keloid cases, appeared in 
family with no case history of keloids as well as in groups 
having multiple keloid sites. These associations revealed 
that SNP rs2271289 is a strong contributing factor and a 
likely candidate in keloid pathology [114].

Association of  FOXL2 gene, keloid and SNP 
rs1511412 have also been identified in Japanese 
 population [76], but this association wasn’t significant 
in the Chinese Han population [116] may be due to low 
frequency of  this variant. Another SNP rs1511412 
showed significant association with FOXL2 gene and 
keloid cases, which appeared as genetic risk factor for 
keloid development in various ethnic groups of  Asian 
population  [64].

A comprehensive study of  familial keloids, based 
on genetic and clinical parameters, was conducted in 
mostly African Americans, White, Japanese, and 
African Caribbean families. Individuals affected with 
keloids exhibited a variable pattern of  expression 
within the families, for example some family members 
had minor keloids on earlobes and other had large 
body areas highly affected with severe keloids. In same 
family, seven members were identified as unaffected 
but obligate carriers for keloid phenotype. The genetic 
analysis revealed an autosomal dominant inheritance 
pattern along with variable phenotypic expression [71].

8.5  Gene Expression

Gene regulation and unique genetic components have 
also been studied in keloid dermal fibroblasts (KDF). 
Studies revealed up-/downregulated expression of vari-
ous genes (. Table 8.1). The specific genes and their dif-
ferentially regulated expression may have direct 
implications toward understanding the keloid develop-
ment [25].

8.6  MicroRNAs (miRNA)

MicroRNAs are 21–23 nucleotide molecules, targeting 
the 3’UTR of mRNA and microRNA deregulation 
may indicate a potential need for clinical intervention 
[2]. Role of  various miRNAs has been established for 
activation of  fibroblasts. A study reported 32 microR-
NAs differentially expressed in keloid tissues [63], in 
which total 23 miRNAs (e.g. miR-4269, miR-21, miR-
382) were up-regulated and 9 miRNAs (e.g. miR-205, 
miR-203, miR-200b/c) were down-regulated. These 
miRNAs are involved in various cellular signaling net-
works particularly wound- healing, development of 
scar and collagen synthesis [39]. Various studies 

revealed that microRNAs play a key regulatory role in 
keloid fibroblasts, for instance, miR200b was found 
associated with abnormal proliferation in fibroblasts 
and miR200c was involved in radiation-induced cell 
apoptosis pathway [50, 55, 56, 61, 117]. These microR-
NAs may be considered potential candidates for thera-
peutic targets for keloids [33]. Three common miRNAs, 
has-miR-21, has-miR-199a-5p and has-miR-214 were 
found in some studies [69, 104, 105] among them, has-
miRNA-21 exhibited variable expression [40]. 
Comparative expression profiles study of  miRNA was 
further extended and found that, keloid derived fibro-
blasts have total nine different miRNAs as compared to 
the normal skin fibroblasts. Out of  nine, six were up-
regulated (hsv1-miR- H7, miR-320c, miR-31- 5p, miR-
23b-3p, miR-152, miR-30a-5p) and three (miR-143-3p, 
miR-4328 and miR-145-5p) were down-regulated [54, 
66]. Some of  the key miRNAs that appear differentially 
expressed in keloid cells have been assessed in more 
detail the table below (. Table 8.2).

8.7  Long noncoding RNA (lncRNA)

Long noncoding RNA, remains uncovered with 
respect to their association with keloid pathology. 
The advanced microarray technology was used first 
time to investigate the keloids in 2015 by Liang et al. 
group that demonstrated constantly up-regulated (total 
1,731) and down-regulated (782) lncRNAs in keloids. 
In this study, a total of  55 pathways were highlighted: 
out of  which 11 pathways were related to the upregu-
lated transcripts and 44 with downregulated transcripts 
in keloids. In addition to that, it has been found that 
the CACNA1G-AS1, as one of  the selected lncRNA, 
may have a potential role in keloid development [58]. 
The lncRNAs regulating encoding transcripts/genes are 
considered to participate in Wnt signaling pathway in 
keloids [95]. The lncRNA H19 stimulate cell prolifera-
tion in keloid fibroblasts which reversed by H19 siRNA 
treatment on keloid fibroblasts [113].

8.8  Small Interfering RNA (siRNA)

RNA interference is an evolutionally conserved genetic 
regulatory mechanism involving inhibition of target 
gene expression at transcriptional, or translational level, 
or by degrading the mRNA [101]. Advances in gene 
silencing [102] provide the opportunity to apply RNA 
interference technology to uncover the details of molec-
ular mechanisms  maintain keloid tissue growth [6]. It is 
found that β-catenin expression significantly increased in 
keloid tissue [18] and has been shown to have a role in 
the regulation of keloid scarring. Knockdown of 
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β-catenin/siRNA inhibits cell proliferation and induces 
arrest in G0/G1 phase of cell cycle. It also induces apop-
tosis in fibroblasts via down-regulation of cyclin D1 and 
Wnt2 pathways. Keloid fibroblasts (KFs) overexpress 
AMF (autocrine motility factor), which acts through 
RhoA/ROCK1 signaling network, to enhance their cell 
migration and proliferation. Knocking down AMF/
siRNA significantly reduces the migration as well as pro-
liferation potential of KFs that ultimately reduces keloid 
size [98].

TIMP-1 and small interfering RNA regulation has an 
important role in keloid pathology. Generally, it is known 
that keloid phenotype appears as a result of dispropor-
tion between synthesis and degradation of extracellular 
matrix. There are two main vital components (i) Matrix 
metalloproteinase (ii) Tissue inhibitors of metallopro-
teinase, which regulate the process of synthesis degrada-
tion and remodeling of ECM. Knockdown of TIMPs 
(siTIMP-1 or siTIMP-2)/siRNA resulted in suppression 
of MMP-1/TIMP-1 and MMP-1/TIMP-2 complex mol-
ecules but upregulation of MMP-2 and increased colla-
gen type I degradation. KFs also showed increased 
apoptosis and reduced cell viability [3].

The role of siRNA during TGF-β-induced regula-
tion of of PTB (Polypyrimidine Tract-Binding Protein)
in keloid pathophysiology has been demonstrated 
recently [43]. It is a splicing regulator and known to play 
an important role in tumor cell proliferation, invasion 
and metastasis. TGF-β1 stimulation caused over expres-
sion of PTB along with its upstream regulatory compo-
nent (C-MYC) in keloid derived fibroblasts, resulting in 
dysregulation of alternative splicing events, leads to 
enhanced fibroblast proliferation and deposition of 

fibronectin in keloid. PTB/siRNA knockdown shift the 
alternative splicing of RTN4 and USP, and caused sig-
nificant reduction in fibroblasts proliferation and depo-
sition of COL3A1 and FN1, that resulting in the fast 
regression of keloid tissues.

Silencing the Smad2 (Sma and Drosophila mothers 
against decapentaplegic homolog 2) downregulate the 
TGF-β-induced synthesis of procollagen, in keloid 
derived fibroblasts [35]. The role of siRNA during 
Smad3 (Sma and Drosophila mothers against decapen-
taplegic homolog 3)-induced TGF-β signaling in keloid 
pathogenesis has been studied. Smad3 is recently char-
acterized as an intracellular effector of TGF-β signaling 
pathway. TGF-β participate as key component in fibrotic 
pathology by stimulating keloid fibroblasts to synthesize 
extracellular matrix excessively, including collagen I and 
III. The knockdown of Smad3/siRNA expression 
caused significantly and uniquely decrease in types I and 
III procollagen level. Thus Smad3 is thought to play a 
significant role in the TGF-β-induced keloid fibrosis  
[101].

Keloid derived fibroblasts over expressed NLRC5 
(NOD-like receptor family CARD domain containing 
5) belongs to the family of nucleotide-binding domain 
and leucine-rich repeat. It has been shown that silencing 
of NLRC5 results inhibition of proliferation and expres-
sion of ECM in keloid derived fibroblasts via inhibition 
of TGF-β1/Smad signaling network, suggesting poten-
tial therapeutic target keloids [67]. Increased expression 
of Stat3 (signal transducer and activator of transcrip-
tion 3) was also found in keloid tissue. Stat3 is a latent 
transcription factor activated under the stimulation of 
various growth factors and cytokines during wound-

       . Table 8.2 Differential expression of  miRNAs and their effects on keloid fibroblasts

S. No Type of microRNA Expression level 
in keloid 
fibroblasts

Role in keloid phenotype Reference

1. miR- 7 Low Induce excessive collagen expression [31]

2. miR- 29a Low Collagen I and III expression regulation,
TGF-β/Smad signaling pathway, fibrosis

[73, 41, 112]

3. miR- 199a Low Influence proliferation of  keloid fibroblasts via cell 
cycle regulation

[104, 105, 109]

4. miR- 21 High Stimulate fibroblast proliferation and apoptosis via 
P13K/AKT pathway and synthesis of  extracellular 
matrix

[62, 75, 100]

5. miR- 196a High Regulates the stabilized elevated expression of 
COL1A1 and COL3A1 genes

[1, 48, 54]

6. miR- 152 High It promotes keloid fibroblast proliferation and 
collagen synthesis

[54, 63]
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healing process. Short interfering RNA inhibited its 
expression and subsequent phosphorylation and 
resulted in reduction of collagen synthesis, cell prolifera-
tion and migration in keloid derived fibroblasts, hence 
suggesting another therapeutic candidate for the treat-
ment of keloids [59].

Keloid fibroblasts characteristically showed overex-
pression of collagen and PAI-1. Short interfering RNA 
targeted treatment results in reduction the collagen 
deposition, which showed that PAI-1-targeted siRNA 
interference may offer therapeutic alternative in keloid 
formation  [99]. Another study showed that silencing of 
PAI-1 caused significant reduction in keloid volume up 
to 28% in fourth week. It also decreased the synthesis of 
collagen I and III and resulted in shrinkage of keloid 
tissue mass [96].

VEGF (vascular endothelial growth factor) plays vital 
roles in the regulation of inflammation and angiogenesis 
during wound-healing process. The role of vector-based 
RNAi (shRNA) for inhibition of VEGF expression in 
keloid fibroblasts has been studied. siRNA sequences 
(clone of three potential short interfering RNA sequences) 
were used to silence the VEGF gene in keloid fibroblasts 
that resulted in significantly inhibited VEGF gene expres-
sion and fibroblasts growth. In addition, the expression of 
plasminogen activator inhibitor-1 (PAI-1) was also down-
regulated. This study provides the insight about the modu-
lation of VEGF production as a potential therapeutic 
strategy for keloid [111].

Silencing by HIF-1α siRNA in keratinocytes resulted 
in decreased expression levels of fibronectin and vimen-
tin, whereas ZO-1 and E-cadherin expression levels were 
restored. This indicated that HIF-1α stimulation can 
regulate the respective mesenchymal changes, caused by 
hypoxia in the keloid derived keratinocytes during keloid 
development [68].

Knockdown of PAI-2, Hsp27, α2β1-integrin/siRNA 
also cause significant reduction in ECM deposition, cell 
anchorage, and mobility in keloid derived fibroblasts 
[94]. Hsp70/siRNA and Hsp47-shRNA knockdown 
decreased collagen synthesis in keloid derived fibroblasts  
[20, 90]. hTERT gene regulates telomere length homeo-
stasis and influences cell cycle of fibroblasts. Knockdown 
of hTERT-siRNA in keloid fibroblasts was shown to 
reduce telomere length and fibroblast growth [87].

The role of siRNA in apoptosis of keloid fibroblasts 
has also been investigated. Keloids exhibited increased 
reactive oxygen species (ROS) production and disrupted 
apoptosis mechanisms. ROS plays an important role in 
the induction of apoptosis under pathological conditions. 
Cellular defense mechanisms against oxidative stress and 
apoptosis are regulated by nuclear factor erythroid 
2-related factor 2 (Nrf2) through activation of B-cell lym-
phoma 2 (Bcl-2) protein. Transfection of fibroblasts with 
the Nrf2-specific siRNA resulted in increased apoptosis 
and decreased cell viability [53]. NRG1/ErbB2/Src/PTK2 

signaling pathway in fibroblast migration and the role of 
siRNA have been investigated in keloid development. 
Keloid fibroblasts exhibit upregulation of the polypep-
tide growth factor neuregulin-1 (NRG1) and receptor 
tyrosine-protein kinase erbB-2 (ErbB2) oncogene that 
contributes to altered cytokine expression profiles, 
increased Src and protein tyrosine kinase 2 (PTK2/FAK) 
gene expression, and migration in keloid fibroblast. 
siRNA knockdown of ErbB2 gene resulted in reduced 
migration and Src/PTK2 expression but didn’t affect the 
NRG/ErbB2/Src/PTK2 network, revealing the possibility 
that this network may affect migrating potential of keloid 
fibroblasts indirectly [47]. Therefore, siRNA silencing on 
various  targeted mechanisms such as Smad2,3-TGF-β, 
HIF-1α- EMT, PAI-1-VEGF production, and NRG1/
ErbB2/Src/PTK2 signaling pathway in keloid pathogene-
sis, proposes that their production can be modulated by 
using siRNA based regulation, and this strategy seems 
promising candidate for keloid therapeutics.

8.9  Microarray Analysis

Various advanced molecular biology techniques such as 
PCR, cDNA approaches, cloning, whole genome 
sequencing provides the huge platform to investigate the 
differentially regulated genes in term of microarray 
analysis from variety of biological samples [70]. 
Functional genomic provides a tool to probe and moni-
tor the genetic interactions [27]. Complex pattern of 
genotypic differences and respective multiple fibrosis-
related pathways in keloid fibroblasts have been studied 
by microarray approach. Comparative Affymetrix- 
based microarray analysis was carried out on keloid 
fibroblast RNA. Approximately 500 genes were found 
differentially regulated out of total the total 38,000 
genes observed. Interestingly, study also revealed that 
increase in expression of various IGF-binding protein 
and related protein in comparison with set of protein 
related to Wnt signaling pathway, who exhibited 
decrease in expression [91]. Total 2,215 differentially 
expressed genes (DEGs) have been found in compara-
tive analysis of after and before normal wound, and sur-
prisingly total 3,161 DEGs have been identified in 
keloid- prone individuals. Among those genes, only 513 
genes were related to normal individuals, total set of 
1,449 genes were found specifically related to keloid phe-
notype. Moreover, hierarchical distribution of differen-
tially expressed keloid- specific genes resulted into two 
distinct clusters. Further probing into keloid-specific 
pathways revealed 24 pathways linked with differentially 
activated genes. Most importantly, some other vital sig-
naling pathways like NOTCH, MAPKs, TLRs and insu-
lin regulation, have also been found altered during 
post-wounding analysis in keloid prone individuals. 
Furthermore, Genetic association network analysis 
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revealed, divergent gene expression profile of key genes 
that contribute in cytokines signaling pathways [79, 83].

8.10  Epigenetics

Study of inheritable characteristics of genome that 
doesn’t affect the genetic sequences but only gene func-
tion, comes under the term of epigenetics. It is also 
known to contribute significantly in regulation of vari-
ous gene expressions. Recently, there is further extension 
to this terminology that is epigenetic modification, 
which is currently being applied to get comprehension 
of molecular aspects of keloid pathology. This study 
revealed that there are some evidences pointing the 
involvement of epigenetic changes/modifications trig-
gering the constant activation of fibroblasts in keloid 
[30]. These epigenetic alterations include changes in 
microRNAs, DNA methylation as well as histone modi-
fications. These three event are well known crucial events 
that involve in early cellular growth, differentiation and 
development, hence these aspects of molecular features 
have also been included as an important candidate for 
investigations to understand their role/associations in 
keloid pathology [28]. Recent studies are coming up 
with findings about the epigenetic mechanisms that may 
contribute in keloid formation [42].

8.10.1  Methylation

DNA methylation is the well-known aspect of epigene-
tic modification [103]. It has been hypothesized that 
DNA methylation is responsible to maintain the myofi-
broblats transformation of fibroblasts during the pro-
cess of fibrosis in wound healing events, this modification 
set the basis for deviation from normal wound-healing 
mechanism. Gene expression profile acquired by myofi-
broblasts is significantly differ from fibroblasts [81, 97]. 
Therefore it is crucial to understand respective epigene-
tic modifications that resulted in acquiring highly dif-
ferentiated gene expression profile in my myofibroblasts 
that will help to trace the respective network leading to 
fibrotic phenotype in keloids [77]. Previous research 
study found that keloid fibroblasts showed alternations 
in DNA methylation [84]. Involvement and significance 
of epigenetic modification in keloid pathology has been 
revealed in recent study, that showed reversal of expres-
sion profile in TGF-β1, phosphor-smad2, 3 (down-regu-
lation) and smad7 (up-regulation) by the treatment of 
5-aza-dC (5-aza-2 deoxycytidine), which is an inhibitor 
of DNA methyltransferase [118].

Expression of DNA methyltransferase 1 (DNMT1) 
was found 100% elevated in keloid as compared to the 
fibroblast (8%) from normal skin samples [32], suggesting 

its involvement in keloid scar formation. Furthermore, 
different DNA methylation patterns have also been stud-
ied in keloid vs normal cells and tissue and analyzed via 
large scale genome profiling using advanced approach 
(Infinium Human Methylation 450 BeadChip), results 
explained that 152 unique genes showed total 192 dif-
ferent methylation patterns in promoter region CpGs. 
Moreover respective gene network analysis, revealed four 
common hierarchical regulatory networks, consisting of 
four key regulators, (i) PENK (ii) PRKG2, (iii) pryox-
amide (iv) tributyrin, and total 19 intermediate regula-
tory molecules. This analysis highlighted the involvement 
of regulatory networks in keloid phenotype development 
[36, 45] and with the development of this study approach 
in recent research since last five years, methylome of 
keloid have been characterized as most hypo-methylated 
rather than hyper-methylated [45].

List of hyper-methylated genes includes CACNB2, 
ACTR3C, PAQR4, SLCO2B1, C1orf109, LRRC61, 
AHDC1, FYCO1, CMKLR1 and CCDC34 as com-
pared to hypo-methylated group of genes, which are 
GHDC, DENND1C, MX2, ANKRD11, SCML4, 
GALNT3, IFFO1, WIPF1, PPP1R13L and CFH. 
Recently, further analysis was carried out using bioinfor-
matics approach by applying Ingenuity Pathway Analysis 
(IPA) software on data set, obtained from keloid sam-
ples, revealed some key pathways shows significant asso-
ciation with keloids. These pathways include (i) histidine 
degradation VI (ii) metastasis signaling pathway of 
colorectal cancer (iii) phospholipase C signaling (iv) P2Y 
purinergic receptor signaling and (v) Gai signaling path-
way [44]. Keloid fibroblasts having multiple genes with 
differential methylation, exhibited significant difference 
in expression profile of genes related to fibrosis such as 
IGFBP5 (IGF/IGF-binding protein 5), JAG1 (Jagged 1), 
SFRP1 (secreted frizzled-related protein1), MMP3 
(matrix mettallopeptidase 3), CTGF (connective tissue 
growth factor) and DPT (dermatopontin) [84]. These 
finding support the statement about the involvement of 
DNA methylation in keloid formation, but needs further 
extension of research studies to explore respective key 
changes/modification that leads subsequent stages of 
development resulted in keloid pathogenesis [36, 44, 45].

8.10.2  Histone Modifications

Histone modifications include changes in distal N-amino 
acids specifically, phosphorylation at Threonine or 
Serine, ubiquitination at Arginine or Lysine and acetyla-
tion at Lysine amino acid. There are some enzyme such 
as histone deacetylases (HDACs) and acetyltransferases 
(HATs), which are involve in these modifications, and 
result in altered gene expression profile [7]. Interestingly, 
it has been noted that histone deacetylases over expressed 
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in keloid tissue. This over expression pattern has also 
been observed under TGF-β1 induced stimulation in 
normal fibroblasts and murine Swiss 3T3 fibroblasts 
[34]. In vitro research study showed that treating the 
keloid fibroblasts with HDAC inhibitor resulted in 
decreased production of collagen [92]. Inhibition of his-
tone acetyltransferases caused anti-fibrotic affects, 
increased expression of p300 (which is a cofactor, essen-
tial for acetylase activity) in fibroblasts (isolated from 
scleroderma patients samples) [37].

These studies suggest that both DNA methylation and 
histone modification are crucial to cause differential gene 
expression profile, exhibited by keloid fibroblasts, further-
more, as such, any sustainable modification responsible to 
deliver epigenetic changes, can leads towards phenotypic 
alteration of keloid fibroblasts. This scenario recommend-
ing that inhibitors of histone modification can be an 
important candidate to consider with therapeutic point of 
view for management of keloid pathology [5, 80, 84].

8.11  Mutations

Role of mutations was investigated in a study conducted in 
keloid cases from a Caucasian population (95 cases). 
Large scale genome wide analysis in the exon (1–7) and 
promoter regions showed presence of some novel muta-
tions in Caucasian population [13]. But up till now, none 
of the gene mutations have been found associated with 
keloid cases [88]. One in vitro study reported a p53 muta-
tion that was found in keloid fibroblasts from cultured 
cells [26], that may suggest the role of acquired inheritable 
gene changes in keloid cells [88].

8.12  Copy Number Variation

Copy number variations (CNVs) are known to be asso-
ciated with various human disorders including skin dis-
eases. Research study conducted in keloid cases from 
Caucasian population revealed that CNVs found at 
11q11, 8p23.1, 19p13.1, 22q13.1, 17q12, and 2q14.3, 
specifically 6p21.32 (that contain HLA-DRB5 region) 
are associated with keloid pathology [89].

8.13  FISH (Fluorescence In Situ 
Hybridization)

Keloid derived fibroblasts exhibited differential pheno-
typic and genotypic expression as compared to neigh-
boring normal skin fibroblasts. Real-time RT-PCR and 
proteomics tools (2-DAGE, immunoblot analysis, and 
immunohistochemistry) have been used to investigate 
these differentially expressed specific set of  genes and 

proteins in keloid derived fibroblasts. Proteomic analy-
sis revealed that there are sixteen different spots which 
differentiate keloid fibroblasts from normal fibroblasts, 
among all, Hsp70 was most up-regulated protein in 
keloid derived fibroblasts. These results were also vali-
dated by immunohistochemical and western blot anal-
ysis conducted on keloid vs normal skin tissue. This 
study indicated that Hsp70 overexpression may be 
associated with keloid pathology and its inhibition can 
be studied for therapeutic purpose  [52].

8.14  Conclusions

Keloids are benign dermal tumors that develop as a 
result of a dysregulated cutaneous wound-healing pro-
cess. Several research findings support the idea that 
there is an association between various genetic elements 
such as linkage, autosomal-dominant, oligo-genic or 
additive inheritance in families and keloid development, 
predominantly in people of African and Asian descent. 
In addition to that, differential gene expression studies 
in families and keloid fibroblasts indicate heterogeneous 
genetic events, revealing complexity of underlying 
genetic basis of keloids. Therefore, it’s quite obvious 
that single gene phenomena is not a possible causative 
factor for keloid formation. To address this complexity, 
a likely scenario may involve the understanding of 
genetic pathway interactions including environmental 
factors, healing mechanisms, wound matrix degrada-
tion, and immunologic response.

Take-Home Messages

1. Keloid is a complex skin pathology with varied 
susceptibilities and ethnicities. This disease is a 
clinical challenge because it lacks effective treat-
ment and often recurs after excision.

2. Well-defined comprehensive mode of  inheritance 
is still not known because of  insufficient genetic 
investigations.

3. HLA system represents the highest level of  diver-
sity of  any functional genetic association with 
keloid disease. 

4. Recent advanced approaches like high-throughput 
microarray facilitating the genetics and epigenetic 
investigations may be helpful in understanding the 
underlying complex basis of keloid formation.

5. There could be a possibility to identifying poten-
tial candidate set of  genetic markers for diagnos-
tic or prognostic purpose.

6. There is need to uncover the specific biological 
mechanism and respective signaling networks of 
keloid fibroblasts.

 A. Sadiq et al.
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