
Even Faster Exact k-Means Clustering

Christian Borgelt1,2(B)

1 Department of Mathematics/Computer Sciences, Paris-Lodron-University
of Salzburg, Hellbrunner Straße 34, 5020 Salzburg, Austria

christian.borgelt@sbg.ac.at
2 Department of Computer and Information Science, University of Konstanz,

Universitätsstraße 10, 78457 Konstanz, Germany
christian@borgelt.net

Abstract. A näıve implementation of k-means clustering requires com-
puting for each of the n data points the distance to each of the k cluster
centers, which can result in fairly slow execution. However, by storing
distance information obtained by earlier computations as well as informa-
tion about distances between cluster centers, the triangle inequality can
be exploited in different ways to reduce the number of needed distance
computations, e.g. [3–5,7,11]. In this paper I present an improvement of
the Exponion method [11] that generally accelerates the computations.
Furthermore, by evaluating several methods on a fairly wide range of
artificial data sets, I derive a kind of map, for which data set parameters
which method (often) yields the lowest execution times.

Keywords: Exact k-means · Triangle inequality · Exponion

1 Introduction

The k-means algorithm [9] is, without doubt, the best known and (among) the
most popular clustering algorithm(s), mainly because of its simplicity. However,
a näıve implementation of the k-means algorithm requires O(nk) distance com-
putations in each update step, where n is the number of data points and k is the
number of clusters. This can be a severe obstacle if clustering is to be carried
out on truly large data sets with hundreds of thousands or even millions of data
points and hundreds to thousands of clusters, especially in high dimensions.

Hence, in our “big data” age, considerable effort was spent on trying to
accelerate the computations, mainly by reducing the number of needed distance
computations. This led to several very clever approaches, including [3–5,7,11].
These methods exploit that for assigning data points to cluster centers knowing
actual distances is not essential (in contrast to e.g. fuzzy c-means clustering [2]).
All one really needs to know is which center is closest. This, however, can some-
times be determined without actually computing (all) distances.

A core idea is to maintain, for each data point, bounds on its distance to
different centers, especially to the closest center. These bounds are updated by

c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 93–105, 2020.
https://doi.org/10.1007/978-3-030-44584-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_8


94 C. Borgelt

exploiting the triangle inequality, and can enable us to ascertain that the center
that was closest before the most recent update step is still closest. Furthermore,
by maintaining additional information, tightening these bounds can sometimes
be done by looking at only a subset of the cluster centers.

In this paper I present an improvement of one of the most sophisticated of
such schemes: the Exponion method [11]. In addition, by comparing my new
approach to other methods on several (artificial) data sets with a wide range of
number of dimensions and number of clusters, I derive a kind of map, for which
data set parameters which method (often) yields the lowest execution times.

2 k-Means Clustering

The k-means algorithm is a very simple, yet effective clustering scheme that
finds a user-specified number k of clusters in a given data set. This data set is
commonly required to consist of points in a metric space. The algorithm starts
by choosing an initial set of k cluster centers, which may näıvely be obtained
by sampling uniformly at random from the given data points. In the subsequent
cluster center optimization phase, two steps are executed alternatingly: (1) each
data point is assigned to the cluster center that is closest to it (that is, closer
than any other cluster center) and (2) the cluster centers are recomputed as
the vector means of the data points assigned to them (to enable these mean
computations, the data points are supposed to live in a metric space).

Using νm(x) to denote the cluster center m-th closest to a point x in the
data space, this update scheme can be written (for n data points x1, . . . , xn) as

∀i; 1 ≤ i ≤ k : ct+1
i =

∑n
j=1 1(νt

1(xj) = cti) · xj
∑n

j=1 1(νt
1(xj) = cti)

,

where the indices t and t + 1 indicate the update step and the function 1(φ)
yields 1 if φ is true and 0 otherwise. Here νt

1(xj) represents the assignment step
and the fraction computes the mean of the data points assigned to center ci.

It can be shown that this update scheme must converge, that is, must reach a
state in which another execution of the update step does not change the cluster
centers anymore [14]. However, there is no guarantee that the obtained result is
optimal in the sense that it yields the smallest sum of squared distances between
the data points and the cluster centers they are assigned to. Rather, it is very
likely that the optimization gets stuck in a local optimum. It has even been
shown that k-means clustering is NP-hard for 2-dimensional data [10].

Furthermore, the quality of the obtained result can depend heavily on the
choice of the initial centers. A poor choice can lead to inferior results due to a
local optimum. However, improvements of näıvely sampling uniformly at random
from the data points are easily found, for example the Maximin method [8] and
the k-means++ procedure [1], which has become the de facto standard.



Even Faster Exact k-Means Clustering 95

3 Bounds-Based Exact k-Means Clustering

Some approaches to accelerate the k-means algorithm rely on approximations,
which may lead to different results, e.g. [6,12,13]. Here, however, I focus on
methods to accelerate exact k-means clustering, that is, methods that, starting
from the same initialization, produce the same result as a näıve implementation.

Fig. 1. Using the triangle inequality to update the distance bounds for a data point xj .

The core idea of these methods is to compute for each update step the dis-
tance each center moved, that is, the distance between the new and the old
location of the center. Applying the triangle inequality one can then derive how
close or how far away an updated center can be from a data point in the worst
possible case. For this we distinguish between the center closest (before the
update) to a data point xj on the one hand and all other centers on the other.

k Distance Bounds. The first approach along these lines was developed in [5]
and maintains one distance bound for each of the k cluster centers.

For the center closest to a data point xj an upper bound ut
j on its distance

is updated as shown in Fig. 1(a): If we know before the update that the distance
between xj and its closest center ctj1 = νt

1(xj) is (at most) ut
j , and the update

moved the center ctj1 to the new location ct∗j1, then the distance d(xj , c
t∗
j1) between

the data point and the new location of this center1 cannot be greater than
ut+1
j = ut

j + d(ctj1, c
t∗
j1). This bound is actually reached if before the update the

bound was tight and the center ctj1 moves away from the data point xj on the
straight line through xj and ctj1 (that is, if the triangle is “flat”).

For all other centers, that is, centers that are not closest to the point xj ,
lower bounds �ji, i = 2, . . . , k, are updated as shown in Fig. 1(b): If we know
before the update that the distance between xj and a center ctji = νt

i (xj), is (at
least) �tji, and the update moved the center ctji to the new location ct∗ji , then the
distance d(xj , c

t∗
ji) between the data point and the new location of this center

cannot be less than �t+1
ji = �tji − d(ctji, c

t∗
ji). This bound is actually reached if

before the update the bound was tight and the center ctji moves towards the
data point xj on the straight line through xj and ctji (“flat” triangle).

1 Note that it may be ct∗j1 �= ct+1
j1 (although equality is not ruled out either), because

the update may have changed which cluster center is closest to the data point xj .



96 C. Borgelt

These bounds are easily exploited to avoid distance computations for a data
point xj : If we find that ut+1

j < �t+1
j = mink

i=2 �t+1
ji , that is, if the upper bound

on the distance to the center that was closest before the update (in step t) is less
than the smallest lower bound on the distances to any other center, the center
that was closest before the update must still be closest after the update (that is,
in step t + 1). Intuitively: even if the worst possible case happens, namely if the
formerly closest center moves straight away from the data point and the other
centers move straight towards it, no other center can have been brought closer
than the one that was already closest before the update.

And even if this test fails, one first computes the actual distance between
the data point xj and ct∗j1. That is, one tightens the bound ut+1

j to the actual
distance and then reevaluates the test. If it succeeds now, the center that was
closest before the update must still be closest. Only if the test fails also with
the tightened bound, the distances between the data point and the remaining
cluster centers have to be computed in order to find the closest center and to
reinitialize the bounds (all of which are tight after such a computation).

This scheme leads to considerable acceleration, because the cost of computing
the distances between the new and the old locations of the cluster centers as
well as the cost of updating the bounds is usually outweighed by the distance
computations that are saved in those cases in which the test succeeds.

2 Distance Bounds. A disadvantage of the scheme just described is that
k bound updates are needed for each data point. In order to reduce this cost,
in [7] only two bounds are kept per data point: ut

j and �tj , that is, all non-closest
centers are captured by a single lower bound. This bound is updated according to
�t+1
j = �tj − maxk

i=2 d(ctji, c
t∗
ji). Even though this leads to worse lower bounds for

the non-closest centers (since they are all treated as if they moved by the max-
imum of the distances any one of them moved), the fact that only two bounds
have to be updated leads to faster execution, at least in many cases.

YinYang Algorithm. Instead of having either one distance bound for each cen-
ter (k bounds) or capturing all non-closest centers by a single bound (2 bounds),
one may consider a hybrid approach that maintains lower bounds for subsets of
the non-closest centers. This improves the quality of bounds over the 2 bounds
approach, because bounds are updated only by the maximum distance a center
in the corresponding group moved (instead of the global maximum). On the
other hand, (considerably) fewer than k bounds have to be updated.

This is the idea of the YinYang algorithm [4], which forms the groups of
centers by clustering the initial centers with k-means clustering. The number of
groups is chosen as k/10 in [4], but other factors may be tried. The groups found
initially are maintained, that is, there is no re-clustering after an update.

However, apart from fewer bounds (compared to k bounds) and better bounds
(compared to 2 bounds), grouping the centers has yet another advantage: If the
bounds test fails, even with a tightened bound ut

j , the groups and their bounds
may be used to limit the centers for which a distance recomputation is needed.
Because if the test succeeds for some group, one can infer that the closest center



Even Faster Exact k-Means Clustering 97

Fig. 2. If 2ut+1
j < d(ct∗j1, ν

t+1
2 (ct∗j1)), then the center ct∗j1 must still be closest to the data

point xj , due to the triangle inequality.

Fig. 3. Annular algorithm [3]: If even after the upper bound uj for the distance from
data point xj to its (updated) formerly closest center ct∗j1 has been made tight, the lower
bound �j for distances to other centers is still lower, it is necessary to recompute the
two closest centers. Exploiting information about the distance between ct∗j1 and another
center ν2(c

t∗
j1) closest to it, these two centers are searched in a (hyper-)annulus around

the origin (dot in the bottom left corner) with ct∗j1 in the middle and thickness 2θj ,
where θj = 2uj + δj and δj = d(ct∗i1 , ν2(c

t∗
j1)). (Color figure online)

cannot be in that group. Only centers in groups, for which the group-specific
test fails, need to be considered for recomputation.

Cluster to Cluster Distances. The described bounds test can be improved
by not only computing the distance each center moved, but also the distances
between (updated) centers, to find for each center another center that is closest to
it [5]. With my notation I can denote such a center as νt+1

2 (ct∗j1), that is, the center
that is second closest2 to the point ct∗j1. Knowing the distances d(ct∗j1, ν

t+1
2 (ct∗j1)),

one can test whether 2ut+1
l < d(ct∗j1, ν

t+1
2 (ct∗j1)). If this is the case, the center that

was closest to the data point xj before the update must still be closest after, as

2 Note that νt+1
1 (ct∗j1) = ct∗j1, because a center is certainly the center closest to itself.



98 C. Borgelt

is illustrated in Fig. 2 for the worst possible case (namely xj , ct∗ji and νt+1
2 (ct∗j1)

lie on a straight line with ct∗ji and νt+1
2 (ct∗j1) on opposite sides of xj).

Note that this second test can be used with k as well as with 2 bounds.
However, it should also be noted that, although it can lead to an acceleration,
if used in isolation it may also make an algorithm slower, because of the O(k2)
distance computations needed to find the k distances d(ct+1

i , νt+1
2 (ct+1

i )).

Annular Algorithm. With the YinYang algorithm an idea appeared on the
scene that is at the focus of all following methods: try to limit the centers that
need to be considered in the recomputations if the tests fail even with a tightened
bound ut+1

j . Especially, if one uses the 2 bounds approach, significant gains may
be obtained: all we need to achieve in this case is to find ct+1

i1 = νt+1
1 (xj) and

ct+1
i2 = νt+1

2 (xj), that is, the two centers closest to xj , because these are all that
is needed for the assignment step as well as for the (tight) bounds ut+1

j and �t+1
j .

One such approach is the Annular algorithm [3]. For its description, as gen-
erally in the following, I drop the time step indices t + 1 in order to simplify
the notation. The Annular algorithm relies on the following idea: if the tests
described above fail with a tightened bound uj , we cannot infer that ct∗ji is still
the center closest to xj . But we know that the closest center must lie in (hyper-)
ball with radius uj around xj (darkest circle in Fig. 3). Any center outside this
(hyper-)ball cannot be closest to xj , because ct∗ji is closer. Furthermore, if we
know the distance to another center closest to ct∗ji , that is, ν2(ct∗j1), we know that
even in the worst possible case (which is depicted in Fig. 3: xj , ct∗ji and ν2(ct∗j1)
lie on a straight line), the two closest centers must lie in a (hyper-)ball with
radius uj + δj around xj , where δj = d(ct∗i1, ν2(c

t∗
j1)) (medium circle in Fig. 3),

because we already know two centers that are this close, namely ct∗ji and ν2(ct∗j1).
Therefore, if we know the distances of the centers from the origin, we can easily
restrict the recomputations to those centers that lie in a (hyper-)annulus (hence
the name of this algorithm) around the origin with ct∗j1 in the middle and thick-
ness 2θj , where θj = 2uj + δj with δj = d(ct∗i1, ν2(c

t∗
j1)) (see Fig. 3, light gray ring

section, origin in the bottom left corner; note that the green line is perpendicular
to the red/blue lines only by accident/for drawing convenience).

Exponion Algorithm. The Exponion algorithm [11] improves over the Annular
algorithm by switching from annuli around the origin to (hyper-)balls around
the (updated) formerly closest center ct∗j1. Again we know that the center closest
to xj must lie in a (hyper-)ball with radius uj around xj (darkest circle in Fig. 4)
and that the two closest centers must lie in a (hyper-)ball with radius uj + δj
around xj , where δj = d(ct∗i1, ν2(c

t∗
j1)) (medium circle in Fig. 4). Therefore, if

we know the pairwise distances between the (updated) centers, we can easily
restrict the recomputations to those centers that lie in the (hyper-)ball with
radius rj = 2uj + δj around ct∗j1 (lightest circle in Fig. 4).

The Exponion algorithm also relies on a scheme with which it is avoided
having to sort, for each cluster center, the lists of the other centers by their
distance. For this concentric annuli, one set centered at a each center, are created,
with each annulus further out containing twice as many centers as the preceding



Even Faster Exact k-Means Clustering 99

Fig. 4. Exponion algorithm [11]: If even after the upper bound uj for the distance from
a data point xj to its (updated) formerly closest center ct∗j1 has been made tight, the
lower bound �j for distance to other centers is still lower, it is necessary to recompute
the two closest centers. Exploiting information about the distance between ct∗j1 and
another center ν2(c

t∗
j1) closest to it, these two centers are searched in a (hyper-)sphere

around center ct∗j1 with radius rj = 2uj + δj where δj = d(ct∗j1, ν2(c
t∗
j1)). (Color figure

online)

one. Clearly this creates an onion-like structure, with an exponentially increasing
number of centers in each layer (hence the name of the algorithm).

However, avoiding the sorting comes at a price, namely that more centers may
have to be checked (although at most twice as many [11]) for finding the two
closest centers and thus additional distance computations ensue. In my imple-
mentation I avoided this complication and simply relied on sorting the distances,
since the gains achievable by concentric annuli over sorting are somewhat unclear
(in [11] no comparisons of sorting versus concentric annuli are provided).

Shallot Algorithm. The Shallot algorithm is the main contribution of this
paper. It starts with the same considerations as the Exponion algorithm, but
adds two improvements. In the first place, not only the closest center cj1 and
the two bounds uj and �j are maintained for each data point (as for Exponion),
but also the second closest center cj2. This comes at practically no cost (apart
from having to store an additional integer per data point), because the second
closest center has to be determined anyway in order to set the bound �j .

If a recomputation is necessary, because the tests fail even for a tightened uj ,
it is not automatically assumed that ct∗j1 is the best center z for a (hyper-)ball
to search. As it is plausible that the formerly second closest center ct∗j2 may now
be closer to xj than ct∗j1, the center ct∗j2 is processed first among the centers ct∗ji ,



100 C. Borgelt

i = 2, . . . , k. If it turns out that it is actually closer to xj than ct∗j1, then ct∗j2 is
chosen as the center z of the (hyper-)ball to check. In this case the (hyper-)ball
will be smaller (since we found that d(xj , c

t∗
j2) < d(xj , c

t∗
j1)). For the following,

let p denote the other (updated) center that was not chosen as the center z.
The second improvement may be understood best by viewing the chosen

center z of the (hyper-)ball as the initial candidate c∗
j1 for the closest center in

step t + 1. Hence we initialize uj = d(xj , z). For the initial candidate c∗
j2 for the

second closest center in step t + 1 we have two choices, namely p and ν2(z). We
choose c∗

j2 = p if uj +d(xj , p) < 2ul+δj and c∗
j2 = ν2(z) otherwise, and initialize

�j = uj +d(xj , p) or �j = 2uj +δj accordingly, thus minimizing the radius, which
then can be written, regardless of the choice taken, as rj = uj + �j .

While traversing the centers in the constructed (hyper-)ball, better candi-
dates may be obtained. If this happens, the radius of the (hyper-)ball may be
reduced, thus potentially reducing the number of centers to be processed. This
idea is illustrated in Fig. 5. Let u◦

j be the initial value of uj when the (hyper-)
ball center was chosen, but before the search is started, that is u◦

j = d(xj , z).
If a new closest center (candidate) c∗

j1 is found (see Fig. 5(a)), we can update
uj = d(xj , c

∗
j1) and �j = d(xj , c

∗
j2) = u◦

j . Hence we can shrink the radius to
rj = 2u◦

j = u◦
j + �j . If then an even closer center is found (see Fig. 5(b)), the

radius may be shrunk further as uj and �j are updated again. As should be clear
from these examples, the radius is always rj = u◦

j + �j .

Fig. 5. Shallot algorithm: If a center closer to the data point than the two currently
closest centers is found, the radius of the (hyper-)ball to be searched can be shrunk.

A shallot is a type of onion, smaller than, for example, a bulb onion. I chose
this name to indicate that the (hyper-)ball that is searched for the two closest
centers tends to be smaller than for the Exponion algorithm. The reference to an
onion may appear misguided, because I rely on sorting the list of other centers
by their distance for each cluster center, rather than using concentric annuli.
However, an onion reference may also be justified by the fact that my algorithm
may shrink the (hyper-)ball radius during the traversal of centers in the (hyper-)
ball, as this also creates a layered structure of (hyper-)balls.



Even Faster Exact k-Means Clustering 101

4 Experiments

In order to evaluate the performance of the different exact k-means algorithms
I generated a large number of artificial data sets. Standard benchmark data sets
proved to be too small to measure performance differences reliably and would also
not have permitted drawing “performance maps” (see below). I fixed the number
of data points in these data sets at n = 100 000. Anything smaller renders the
time measurements too unreliable, anything larger requires an unpleasantly long
time to run all benchmarks. Thus I varied only the dimensionality m of the
data space, namely as m ∈ {2, 3, 4, 5, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50}, and
the number k of clusters, from 20 to 300 in steps of 20. For each parameter
combination I generated 10 data sets, with clusters that are (roughly, due to
random deviations) equally populated with data points and that may vary in
size by a factor of at most ten per dimension. All clusters were modeled as
isotropic normal (or Gaussian) distributions. Each data set was then processed
10 times with different initializations. All optimization algorithms started from
the same initializations, thus making the comparison as fair as possible.

The clustering program is written in C (however, there is also a Python ver-
sion, see the link to the source code below). All implementations of the different
algorithms are entirely my own and use the same code to read the data and to
write the clustering results. This adds to the fairness of the comparison, as in
this way any differences in execution time can only result from differences of
the actual algorithms. The test systems was an Intel Core 2 Quad Q9650@3GHz
with 8 GB of RAM running Ubuntu Linux 18.04 64bit.

Fig. 6. Map of the algorithms that produced the best execution times over number of
dimensions (horizontal) and number of clusters (vertical), showing fairly clear regions
of algorithm superiority. Enjoyably, the Shallot algorithm that was developed in this
paper yields the best results for the largest number of parameter combinations.



102 C. Borgelt

Fig. 7. Relative comparison between the Shallot algorithm and the Exponion algo-
rithm. The left diagram refers to the number of distance computations, the right dia-
gram to execution time. Blue means that Shallot is better, red that Exponion is better.
(Color figure online)

The results of these experiments are visualized in Figs. 6, 7 and 8. Figure 6
shows on a grid spanned by the number of dimensions (horizontal axis) and the
number of clusters inducted into the data set (vertical axis) which algorithm
performed best (in terms of execution time) for each combination. Clearly, the
Shallot algorithm wins most parameter combinations. Only for larger numbers
of dimensions and larger numbers of clusters the YinYang algorithm is superior.

In order to get deeper insights, Fig. 7 shows on the same grid a comparison
of the number of distance computations (left) and the execution times (right)
of the Shallot algorithm and the Exponion algorithm. The relative performance

Fig. 8. Variation of the execution times over number of dimensions (horizontal) and
number of clusters (vertical). The left diagram refers to the Shallot algorithm, the right
diagram to the Exponion algorithm. The larger variation for fewer clusters and fewer
dimensions may explain the speckled look of Figs. 6 and 7.



Even Faster Exact k-Means Clustering 103

Fig. 9. Relative comparison between the Shallot algorithm and the YinYang algorithm
using the cluster to cluster distance test (pure YinYang is very similar, though). The left
diagram refers to the number of distance computations, the right diagram to execution
time. Blue means that Shallot is better, red that YinYang is better. (Color figure
online)

is color-coded: saturated blue means that the Shallot algorithm needed only
half the distance computations or half the execution time of the Exponion algo-
rithm, saturated red means that it needed 1.5 times the distance computations
or execution time compared to the Exponion algorithm.

W.r.t. distance computations there is no question who is the winner: the
Shallot algorithm wins all parameter combinations, some with a considerable
margin. W.r.t. execution times, there is also a clear region towards more dimen-
sions and more clusters, but for fewer clusters and fewer dimensions the diagram
looks a bit speckled. This is a somewhat strange result, as a smaller number of
distance computations should lead to lower execution times, because the effort
spent on organizing the search, which is also carried out in exactly the same
situations, is hardly different between the Shallot and the Exponion algorithm.

The reason for this speckled look could be that the benchmarks were carried
out with heavy parallelization (in order to minimize the total time), which may
have distorted the measurements. As a test of this hypothesis, Fig. 8 shows the
standard deviation of the execution times relative to their mean. White means
no variation, fully saturated blue indicates a standard deviation half as large as
the mean value. The left diagram refers to the Shallot, the right diagram to the
Exponion algorithm. Clearly, for a smaller number of dimensions and especially
for a smaller number of clusters the execution times vary more (this may be,
at least in part, due to the generally lower execution times for these parameter
combinations). It is plausible to assume that this variability is the explanation
for the speckled look of the diagrams in Fig. 6 and in Fig. 7 on the right.

Finally, Fig. 9 shows, again on the same grid, a comparison of the number
of distance computations (left) and the execution times (right) of the Shallot



104 C. Borgelt

algorithm and the YinYang algorithm (using the test based on cluster to cluster
distances, although a pure YinYang algorithm performs very similarly). The
relative performance is color-coded in the same way as in Fig. 7. Clearly, the
smaller number of distance computations explains why the YinYang algorithm
is superior for more clusters and more dimensions.

The reason is likely that grouping the centers leads to better bounds. This
hypothesis is confirmed by the fact that the Elkan algorithm (k distance bounds)
always needs the fewest distance computations (not shown as a grid) and loses
on execution time only due to having to update so many distance bounds.

5 Conclusion

In this paper I introduced the Shallot algorithm, which adds two improvements
to the Exponion algorithm [11], both of which can potentially shrink the (hyper-)
ball that has to be searched for the two closest centers if recomputation becomes
necessary. This leads to a measurable, sometimes even fairly large speedup com-
pared to the Exponion algorithm due to fewer distance computations. How-
ever, for high-dimensional data and large numbers of clusters the YinYang algo-
rithm [4] (with or without the cluster to cluster distance test) is superior to both
algorithms. Yet, since clustering in high dimensions is problematic anyway due
to the curse of dimensionality, it may be claimed reasonably confidently that the
Shallot algorithm is the best choice for standard clustering tasks.

Software. My implementation of the described methods (C and Python), with
which I conducted the experiments, can be obtained under the MIT License at

http://www.borgelt.net/cluster.html.

Complete Results. A table with the complete experimental results I obtained
can be retrieved as a simple text table at

http://www.borgelt.net/docs/clsbench.txt.

More maps comparing the performance of the algorithms can be found at
http://www.borgelt.net/docs/clsbench.pdf.

References

1. Arthur, D., Vassilvitskii, S.: k-Means++: the advantages of careful seeding. In: Pro-
ceedings of 18th Annual SIAM Symposium on Discrete Algorithms, SODA 2007,
New Orleans, LA, pp. 1027–1035. Society for Industrial and Applied Mathematics,
Philadelphia (2007)

2. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum Press, New York (1981)

3. Drake, J.: Faster k-means clustering, Master’s thesis, Baylor University, Waco, TX,
USA (2013)

4. Ding, Y., Zhao, Y., Shen, Y., Musuvathi, M., Mytkowicz, T.: YinYang k-means: a
drop-in replacement of the classic k-means with consistent speedup. In: Proceedings
of 32nd International Conference on Machine Learning, ICML 2015, Lille, France,
JMLR Workshop and Conference Proceedings, vol. 37, pp. 579–587 (2015)

http://www.borgelt.net/cluster.html
http://www.borgelt.net/docs/clsbench.txt
http://www.borgelt.net/docs/clsbench.pdf


Even Faster Exact k-Means Clustering 105

5. Elkan, C.: Using the triangle inequality to accelerate k-means. In: Proceedings 20th
International Conference on Machine Learning, ICML 2003, Washington, DC, pp.
147–153. AAAI Press, Menlo Park (2003)

6. Frahling, G., Sohler, C.: A fast k-means implementation using coresets. In: Pro-
ceedings of 22nd Annual Symposium on Computational Geometry, SCG 2006,
Sedona, AZ, pp. 135–143. ACM Press, New York (2006)

7. Hamerly, G.: Making k-means even faster. In: Proceedings of SIAM International
Conference on Data Mining, SDM 2010, Columbus, OH, pp. 130–140. Society for
Industrial and Applied Mathematics, Philadelphia (2010)

8. Hathaway, R.J., Bezdek, J.C., Huband, J.M.: Maximin initialization for clus-
ter analysis. In: Mart́ınez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.)
CIARP 2006. LNCS, vol. 4225, pp. 14–26. Springer, Heidelberg (2006). https://
doi.org/10.1007/11892755 2

9. Lloyd, S.P.: Least square quantization in PCM. IEEE Trans. Inf. Theory 28, 129–
137 (1982)

10. Mahajan, M., Nimbhorkar, P., Varadarajan, K.: The planar k-means problem is
NP-hard. Theor. Comput. Sci. 442, 13–21 (2009)

11. Newling, J., Fleuret, F.: Fast k-means with accurate bounds. In: Proceedings of
33rd International Conference on Machine Learning, ICML 2016, New York, NY,
JMLR Workshop and Conference Proceedings, vol. 48, pp. 936–944 (2016)

12. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large
vocabularies and fast spatial matching. In: Proceedings of IEEE International Con-
ference on Computer Vision and Pattern Recognition, CVPR 2007, Minneapolis,
MN. IEEE Press, Piscataway (2007)

13. Sculley, D.: Web-scale k-means clustering. In: Proceedings of 19th International
Conference on World Wide Web, WWW 2010, Raleigh, NC, pp. 1177–1178. ACM
Press, New York (2010)

14. Selim, S.Z., Ismail, M.A.: k-means-type algorithms: a generalized convergence the-
orem and characterization of local optimality. IEEE Trans. Pattern Anal. Mach.
Intell. 1(6), 81–87 (1984)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/11892755_2
https://doi.org/10.1007/11892755_2
http://creativecommons.org/licenses/by/4.0/

	Even Faster Exact k-Means Clustering
	1 Introduction
	2 k-Means Clustering
	3 Bounds-Based Exact k-Means Clustering
	4 Experiments
	5 Conclusion
	References




