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Abstract. Machine learning models deployed in real-world applications
are often evaluated with precision-based metrics such as F1-score or
AUC-PR (Area Under the Curve of Precision Recall). Heavily dependent
on the class prior, such metrics make it difficult to interpret the variation
of a model’s performance over different subpopulations/subperiods in a
dataset. In this paper, we propose a way to calibrate the metrics so that
they can be made invariant to the prior. We conduct a large number of
experiments on balanced and imbalanced data to assess the behavior of
calibrated metrics and show that they improve interpretability and pro-
vide a better control over what is really measured. We describe specific
real-world use-cases where calibration is beneficial such as, for instance,
model monitoring in production, reporting, or fairness evaluation.
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1 Introduction

In real-world machine learning systems, the predictive performance of a model is
often evaluated on multiple datasets, and comparisons are made. These datasets
can correspond to sub-populations in the data, or different periods in time [15].
Choosing the best suited metrics is not a trivial task. Some metrics may prevent
a proper interpretation of the performance differences between the sets [8,14],
especially because different datasets generally not only have a different likelihood
P(x|y) but also a different class prior P(y). A metric dependent on the prior (e.g.
precision) will be affected by both differences indiscernibly [3] but a practitioner
could be interested in isolating the variation of performance due to likelihood
which reflects the intrinsic model’s performance (see illustration in Fig. 1). Take
the example of comparing the performance of a model across time periods: At
time t, we receive data drawn from Pt(x, y) = Pt(x|y)Pt(y) where x are the
features and y the label. Hence the optimal scoring function (i.e. model) for this
dataset is the likelihood ratio [11]:

st(x) :=
Pt(x|y = 1)
Pt(x|y = 0)

(1)

In particular, if Pt(x|y) does not vary with time, neither will st(x). In this case,
even if the prior Pt(y) varies, it is desirable to have a performance metric M(·)
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satisfying M(st,Pt) = M(st+1,Pt+1),∀t so that the model maintains the same
metric value over time. That being said, this does not mean that dependence to
prior is an intrinsically bad behavior. Some applications seek this property as it
reflects a part of the difficulty to classify on a given dataset (e.g. the performance
of the random classifier evaluated with a prior-dependent metric is more or less
high depending on the skew of the dataset).

Fig. 1. Evolution of the AUC-PR of a fraud detection system and of the fraud ratio (π,
i.e. the empirical Pt(y)) over time. Both decrease, but, as the AUC-PR is dependent
on the prior, it does not allow to tell if the performance variation is only due to the
variation of π or if there was a drift in Pt(x|y)

In binary classification, researchers often rely on the AUC-ROC (Area Under
the Curve of Receiver Operating Characteristic) to measure a classifier’s perfor-
mance [6,9]. While this metric has the advantage of being invariant to the class
prior, many real-world applications, especially when data are imbalanced, have
recently begun to favor precision-based metrics such as AUC-PR and F-Score
[12,13]. The reason is that AUC-ROC suffers from giving false positives too lit-
tle importance [5] although the latter strongly deteriorate user experience and
waste human efforts with false alerts. Indeed AUC-ROC considers a tradeoff
between TPR and FPR whereas AUC-PR/F1-score consider a tradeoff between
TPR (Recall) and Precision. With a closer look, the difference boils down to the
fact that it normalizes the number of false positives with respect to the number
of true negatives whereas precision-based metrics normalize it with respect to
the number of true positives. In highly imbalanced scenarios (e.g. fraud/disease
detection), the first is much more likely than the second because negative exam-
ples are in large majority.

Precision-based metrics give false positives more importance, but they are
tied to the class prior [2,3]. A new definition of precision and recall into preci-
sion gain and recall gain has been recently proposed to correct several drawbacks
of AUC-PR [7]. But, while the resulting AUC-PR Gain has some advantages
of the AUC-ROC such as the validity of linear interpolation between points,
it remains dependent on the class prior. Our study aims at providing metrics
(i) that are precision-based to tackle problems where the class of interest is highly
under-represented and (ii) that can be made independent of the prior for com-
parison purposes (e.g. monitoring the evolution of the performance of a classifier
across several time periods). To reach this objective, this paper provides: (1) A
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formulation of calibration for precision-based metrics. It compute the value of
precision as if the ratio π of the test set was equal to a reference class ratio π0.
We give theoretical arguments to explain why it allows invariance to the class
prior. We also provide a calibrated version for precision gain and recall gain [7].
(2) An empirical analysis on both synthetic and real-world data to confirm our
claims and show that new metrics are still able to assess the model’s performance
and are easier to interpret. (3) A large scale experiments on 614 datasets using
openML [16] to (a) give more insights on correlations between popular metrics
by analyzing how they rank models, (b) explore the links between the calibrated
metrics and the regular ones.

Not only calibration solves the issue of dependence to the prior but also
allows, with parameter π0, anticipating a different ratio and controlling what
the metric precisely reflects. This new property has several practical interests
(e.g. for development, reporting, analysis) and we discuss them in realistic use-
cases in Sect. 5.

2 Popular Metrics for Binary Classification: Advantages
and Limits

We consider a usual binary classification setting where a model has been trained
and its performance is evaluated on a test dataset of N instances. yi ∈ {0, 1} is
the ground-truth label of the ith instance and is equal to 1 (resp. 0) if the instance
belongs to the positive (resp. negative) class. The model provides si ∈ R, a score
for the ith instance to belong to the positive class. For a given threshold τ ∈ R,
the predicted label is ŷi = 1 if si > τ and 0 otherwise. Predictive performance
is generally measured using the number of true positives (TP =

∑N
i=1 1(ŷi =

1, yi = 1)), true negatives (TN =
∑N

i=1 1(ŷi = 0, yi = 0)), false positives (FP =
∑N

i=1 1(ŷi = 1, yi = 0)), false negatives (FN =
∑N

i=1 1(ŷi = 0, yi = 1)). One can
compute relevant ratios such as the True Positive Rate (TPR) also referred to
as the Recall (Rec = TP

TP+FN ), the False Positive Rate (FPR = FP
TN+FP ) also

referred to as the Fall-out and the Precision (Prec = TP
TP+FP ). As these ratios

are biased towards a specific type of error and can easily be manipulated with the
threshold, more complex metrics have been proposed. In this paper, we discuss
the most popular ones which have been widely adopted in binary classification:
F1-Score, AUC-ROC, AUC-PR and AUC-PR Gain. F1-Score is the harmonic
average between Prec and Rec:

F1 =
2 ∗ Prec ∗ Rec

Prec + Rec
. (2)

The three other metrics consider every threshold τ from the highest si to the
lowest. For each one, they compute TP, FP, TN and FN. Then, they plot one
ratio against another and compute the Area Under the Curve (Fig. 2). AUC-ROC
considers the Receiver Operating Characteristic curve where TPR is plotted
against FPR. AUC-PR considers the Precision vs Recall curve. Finally, in AUC-
PR Gain, the precision gain (PrecG) is plotted against the recall gain (RecG).
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They are defined in [7] as follows (π =
∑N

i=1 yi

N is the positive class ratio and we
always consider that it is the minority class in this paper):

PrecG =
Prec − π

(1 − π)Prec
(3)

RecG =
Rec − π

(1 − π)Rec
(4)

Fig. 2. ROC, PR and PR gain curves for the same model evaluated on an extremely
imbalanced test set from a fraud detection application (π = 0.003, in the top row) and
on a balanced sample (π = 0.5, in the bottom row).

PR Gain enjoys many properties of the ROC that the regular PR analysis does
not (e.g. the validity of linear interpolations or the existence of universal baselines)
[7]. However, AUC-PR Gain becomes hardly usable in extremely imbalanced set-
tings. In particular, we can derive from (3) and (4) that PrecG/RecG will be mostly
close to 1 if π is close to 0 (see top right chart in Fig. 2).

Fig. 3. Illustration of the impact of π on precision, recall, and the false positive rate.
Instances are ordered from left to right according to their score given by the model.
The threshold is illustrated as a vertical line between the instances: those on the left
(resp. right) are classified as positive (resp. negative)
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As explained in the introduction, precision-based metrics (F1, AUC-PR) are
more adapted than AUC-ROC for problems with class imbalance. On the other
hand, only AUC-ROC is invariant to the positive class ratio. Indeed, FPR and
Rec are both unrelated to the class ratio because they only focus on one class
but it is not the case for Prec. Its dependency on the positive class ratio π
is illustrated in Fig. 3: when comparing a case (i) with a given ratio π and
another case (ii) where a randomly selected half of the positive examples has
been removed, one can visually understand that both recall and false positive
rate are the same but the precision is lower in the second case.

3 Calibrated Metrics

We seek a metric that is based on Prec to tackle problems where data are
imbalanced and the minority (positive) class is the one of interest but we want
it to be invariant w.r.t. the class prior to be able to interpret its variation across
different datasets (e.g. different time periods). To obtain such a metric, we will
modify those based on Prec (AUC-PR, F1-Score and AUC-PR Gain) to make
them independent of the positive class ratio π.

3.1 Calibration

The idea is to fix a reference ratio π0 and to weigh the count of TP or FP in
order to calibrate them to the value that they would have if π was equal to π0.
π0 can be chosen arbitrarily (e.g. 0.5 for balanced) but it is preferable to fix
it according to the task at hand (we analyze the impact of π0 in Sect. 4 and
describe simple guidelines to fix it in Sect. 5).

If the positive class ratio is π0 instead of π, the ratio between negative exam-
ples and positive examples is multiplied by π(1− π0)

π0(1− π) . In this case, we expect the

ratio between false positives and true positives to be multiplied by π(1− π0)
π0(1− π) .

Therefore, we define the calibrated precision Precc as follows:

Precc =
TP

TP + π(1− π0)
π0(1− π)FP

=
1

1 + π(1− π0)
π0(1− π)

FP
TP

(5)

Since 1− π
π is the imbalance ratio N−

N+
where N+ (resp. N−) is the number of

positive (resp. negative) examples, we have: π
1− π

FP
TP = FP/N−

TP/N+
= FPR

TPR which is
independent of π.

Based on the calibrated precision, we can also define the calibrated F1-score,
the calibrated PrecG and the calibrated RecG by replacing Prec by Precc and
π by π0 in Eqs. (2), (3) and (4). Note that calibration does not change precision
gain. Indeed, calibrated precision gain Precc − π0

(1− π0)Precc
can be rewritten as Prec − π

(1− π)Prec

which is equal to the regular precision gain. Also, the interesting properties of
the recall gain were proved independently of the ratio π in [7] which means that
calibration preserves them.
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3.2 Robustness to Variations in π

In order to evaluate the robustness of the new metrics to variations in π, we
create a synthetic dataset where the label is drawn from a Bernoulli distribution
with parameter π and the feature is drawn from Normal distributions:

p(x|y = 1;μ1) = N (x;μ1, 1), p(x|y = 0;μ0) = N (x;μ0, 1) (6)

Fig. 4. Evolution of AUC-PR, AUC-PR Gain, F1-score and their calibrated version
(AUC-PcR, AUC-PcR Gain, F1-scorec) as π decreases. We arbitrarily set π0 = 0.5 for
the calibrated metrics. The curves are obtained by averaging results over 30 runs and
we show the confidence intervals.

For several values of π, data points are generated from (6) with μ1 = 2 and
μ0 = 1.8. We consider a large number of points (106) so that the empirical class
ratio π is approximately equal to the Bernouilli parameter π. We empirically
study the evolution of several metrics (F1-score, AUC-PR, AUC-PR Gain and
their calibrated version) for the optimal model (as defined in (1)) as π decreases
from π = 0.5 (balanced) to π = 0.001. We observe that the impact of the class
prior on the regular metrics is important (Fig. 4). It can be a serious issue for
applications where π sometimes vary by one order of magnitude from one day
to another (see [4] for a real world example) as it leads to a significant variation
of the measured performance (see the difference between AUC-PR when π = 0.5
and when π = 0.05) even if the optimal model remains the same. On the contrary,
the calibrated versions remain very robust to changes in the class prior π even
for extreme values. Note that we here experiment with synthetic data to have
a full control over the distribution/prior and make the analysis easier but the
conclusions are exactly the same on real world data.1

1 See appendix in https://figshare.com/articles/Calibrated metrics IDA Supplement-
ary material pdf/11848146.

https://figshare.com/articles/Calibrated_metrics_IDA_Supplement-ary_material_pdf/11848146
https://figshare.com/articles/Calibrated_metrics_IDA_Supplement-ary_material_pdf/11848146
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3.3 Assessment of the Model Quality

Besides the robustness of the calibrated metrics to changes in π, we also want
them to be sensitive to the quality of the model. If this latter decreases regardless
of the π value, we expect all metrics, calibrated ones included, to decrease in
value. Let us consider an experiment where we use the same synthetic dataset as
defined the previous section. However, instead of changing the value of π only,
we change (μ1, μ0) to make the problem harder and harder and thus worsen the
optimal model’s performance. This can be done by reducing the distance between
the two normal distributions in (6), because this would result in more overlapping
between the classes and make it harder to discriminate between them. As a
distance, we consider the KL-divergence that boils down to 1

2 (μ1 − μ0)2.

Fig. 5. Evolution of AUC-PR, AUC-PR Gain, F1-score and their calibrated version as
KL(p1, p0) tends to 0 and as π randomly varies. This curve was obtained by averaging
results over 30 runs.

Figure 5 shows how the values of the metrics evolve as the KL-divergence
gets closer to zero. For each run, we randomly chose the prior π in the interval
[0.001, 0.5]. As expected, all metrics globally decrease as the problem gets harder.
However, we can notice an important difference: the variation in the calibrated
metrics are smooth and monotonic compared to those of the original metrics
which are affected by the random changes in π. In that sense, variations of the
calibrated metrics across the different generated datasets are much easier to
interpret than the original metrics.

4 Link Between Calibrated and Original Metrics

4.1 Meaning of π0

Let us first remark that for test datasets in which π = π0, Precc is equal to the
regular precision Prec since π(1− π0)

π0(1− π) = 1 (this is observable in Fig. 4 with the
intersection of the metrics for π = π0 = 0.5).
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Fig. 6. Comparison between heuristic-based calibrated AUC-PR (red line) and our
closed-form calibrated AUC-PR (blue dots). The red shadow represents the stan-
dard deviation of the heuristic-based calibrated AUC-PR over 1000 runs. (Color figure
online)

If π �= π0, the calibrated metrics essentially have the value that the original
ones would have if the positive class ratio π was equal to π0. To further demon-
strate that, we compare our proposal for calibration (5) with the only proposal
from the past [10] that was designed for the same objective: a heuristic-based
calibration. The approach from [10] consists in randomly undersampling the test
set to make the positive class ratio π equal to a chosen ratio (let us refer to it
as π0 for the analogy) and then computing the regular metrics on the sampled
set. Because of the randomness, sampling may remove more hard examples than
easy examples so the performance can be over-estimated, and vice versa. To
avoid that, the approach performs several runs and computes a mean estima-
tion. In Fig. 6, we compare the results obtained with our formula and with their
heuristic, for several reference ratio π0, on a highly unbalanced (π = 0.0017)
credit card fraud detection dataset available on Kaggle [4].

We can observe that our formula and the heuristic provide really close val-
ues. This can be theoretically explained (See Footnote 1) and confirms that our
formula really computes the value that the original metric would have if the
ratio π in the test set was π0. Note that our closed-form calibration (5) can be
seen as an improvement of the heuristic-based calibration from [10] as it directly
provides the targeted value without running a costly Monte-Carlo simulation.

4.2 Do the Calibrated Metrics Rank Models in the Same Order
as the Original Metrics?

Calibration results in evaluating the metric for a different prior. In this section,
we analyze how this impacts the task of selectioning the best model for a given
dataset. To do this, we empirically analyze the correlation of several metrics
in terms of model ordering. We use OpenML [16] to select the 602 supervised
binary classification datasets on which at least 30 models have been evaluated
with a 10-fold cross-validation. For each one, we randomly choose 30 models,
fetch their predictions, and evaluate their performance with the metrics. This
leaves us with 614 × 30 = 18, 420 different values for each metric. To analyze
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whether they rank the models in the same order, we compute the Spearman
rank correlation coefficient between them for the 30 models for each of the 614
problems.2 Most datasets roughly have balanced classes (π > 0.2 in more than
90% of the datasets). Therefore, to also specifically analyze the imbalance case,
we run the same experiment with only the subset of 4 highly imbalanced datasets
(π < 0.01). The compared metrics are AUC-ROC, AUC-PR, AUC-PR Gain
and the best F1-score over all possible thresholds. We also add the calibrated
version of the last three. In order to understand the impact of π0, we use two
different values: the arbitrary π0 = 0.5 and another value π0 ≈ π (for the first
experiment with all datasets, π0 ≈ π corresponds to π0 = 1.01π and for the
second experiment where π is very small, we go further and π0 ≈ π corresponds
to π0 = 10π which remains closer to π than 0.5). The obtained correlation
matrices are shown in Fig. 7. Each individual cell corresponds to the average
Spearman correlation over all datasets between the row metric and the column
metric.
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Fig. 7. Spearman rank correlation matrices between 10 metrics over 614 datasets for
the left figure and the 4 highly imbalanced datasets for the right figure.

A general observation is that most metrics are less correlated with each other
when classes are unbalanced (right matrix in Fig. 7). We also note that the best
F1-score is more correlated to AUC-PR than to AUC-ROC or AUC-PR Gain. In
the balanced case (left matrix in Fig. 7), we can see that metrics defined as area
under curves are generally more correlated with each other than with the thresh-
old sensitive classification metric F1-score. Let us now analyze the impact of cal-
ibration. As expected, in general, when π0 ≈ π, calibrated metrics have a behav-
ior really close to that of the original metrics because π(1− π0)

π0(1− π) ≈ 1 and therefore

2 The implementation of the paper experiments can be found at https://github.com/
wissam-sib/calibrated metrics.

https://github.com/wissam-sib/calibrated_metrics
https://github.com/wissam-sib/calibrated_metrics
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Precc ≈ Prec. In the balanced case (left), since π is close to 0.5, calibrated metrics
withπ0 = 0.5 are also highly correlatedwith the originalmetrics. In the imbalanced
case (on the right matrix of Fig. 7), when π0 is arbitrarily set to 0.5 the calibrated
metrics seem to have a low correlation with the original ones. In fact, they are less
correlated with them than with AUC-ROC. And this makes sense given the rela-
tive weights that each of the metric applies to FP and TP. The original precision
gives the same weight to TP and FP , although false positives are 1− π

π times more
likely to occur (1− π

π > 100 if π < 0.01). The calibrated precision with the arbi-
trary value π0 = 0.5 boils down to TP

TP+ π
(1− π)FP

and gives a weight 1− π
π times

smaller to false positives which counterbalances their higher likelihood. ROC, like
the calibrated metrics with π0 = 0.5, gives 1− π

π less weight to FP because it is com-
puted from FPR and TPR which are linked to TP and FP with the relationship

π
1− π

FP
TP = FPR

TPR .
To sum up the results, we first emphasize that the choice of the metrics to

rank classifiers when datasets are rather balanced seems to be much less sensitive
than in the extremely imbalanced case. In the balanced case the least correlated
metrics have an average rank correlation of 0.81. For the imbalanced datasets,
on the other hand, many metrics have low correlations which means that they
often disagree on the best model. The choice of the metric is therefore very
important here. Our experiment also seems to reflect that rank correlations are
mainly a matter of how much weight is given to each type of error. Choosing
these “weights” generally depends on the application at hand. An this should be
remembered when using calibration. To preserve the nature of a given metrics,
π0 has to be fixed to a value close to π and not arbitrarily. The user still has the
choice to fix it to another value if his purpose is to specifically place the results
into a different reference with a different prior.

5 Guidelines and Use-Cases

Calibration could benefit ML practitioners when analyzing the performance of a
model across different datasets/time periods. Without being exhaustive, we give
four use-cases where it is beneficial (setting π0 depends on the target use-case):

Comparing the Performance of a Model on Two Populations/Classes:
Consider a practitioner who wants to predict patients with a disease and evalu-
ate the performance of his model on subpopulations of the dataset (e.g. children,
adults and elderly people). If the prior is different from one population to another
(e.g. elderly people are more likely to have the disease), precision will be affected,
i.e. population with a higher disease ratio will be more likely to have a higher
precision. In this case, the calibrated precision can be used to obtain the preci-
sion of each population set to the same reference prior (for instance, π0 can be
chosen as the average prior over all populations). This would provide an addi-
tional balanced point of view and make the analysis richer to draw more precise
conclusions and perhaps study fairness [1].
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Model Performance Monitoring in an Industrial Context: In systems
where a model’s performance is monitored over time with precision-based met-
rics like F1-score, using calibration in addition to the regular metrics makes it
easier to understand the evolution especially when the class prior can evolve (cf.
application in Fig. 1). For instance, it can be useful to analyze the drift (i.e. dis-
tinguish between variations linked to π or P (X|y)) and design adapted solutions;
either updating the threshold or completely retraining the model. To avoid dena-
turing too much the F1-score, here π0 has to be fixed based on realistic values
(e.g. average π in historical data).

Establishing Agreements with Clients: As shown in previous sections, π0

can be interpreted as the ratio to which we refer to compute the metric. This
can be useful to establish a guarantee, in an agreement, that will be robust
to uncontrollable events. Indeed, if we take the case of fraud detection, the
real positive class ratio π can vary extremely from one day to another and on
particular events (e.g. fraudster attacks, holidays) which significantly affects the
measured metrics (see Fig. 4). Here, after having both parties to agree beforehand
on a reasonable value for π0 (based on their business knowledge), calibration will
always compute the performance relative to this ratio and not the real π and
thus be easier to guarantee.

Anticipating the Deployment of a Model in Production: Imagine one
collects a sample of data to develop an algorithm and reaches an acceptable AUC-
PR for production. If the prior in the collected data is different from reality,
the non-calibrated metric might have given either a pessimistic or optimistic
estimation of the post-deployment performance. This can be extremely harmful
if the production has strict constraints. Here, if the practitioner uses calibration
with π0 equal to the minimal prior envisioned for the application at hand, he/she
would be able to anticipate the worst case scenario.

6 Conclusion

In this paper, we provided a formula of calibration, empirical results, and guide-
lines to make the values of metrics across different datasets more interpretable.
Calibrated metrics are a generalization of the original ones. They rely on a refer-
ence π0 and compute the value that we would obtain if the positive class ratio π
in the evaluated test set was equal to π0. If the user chooses π0 = π, this does not
change anything and he retrieves the regular metrics. But, with different choices,
the metrics can serve several purposes such as obtaining robustness to variation
in the class prior across datasets, or anticipation. They are useful in both aca-
demic and industrial applications as explained in the previous section: they help
drawing more accurate comparisons between subpopulations, or study incremen-
tal learning on streams by providing a point of view agnostic to virtual concept
drift [17]. They can be used to provide more controllable performance indicators
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(easier to guarantee and report), help preparing deployment in production, and
prevent false conclusions about the evolution of a deployed model. However, π0

has to be chosen with caution as it controls the relative weights given to FP and
TP and, consequently, can affect the selection of the best classifier.
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