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Abstract. Agglomerative clustering methods have been widely used by
many research communities to cluster their data into hierarchical struc-
tures. These structures ease data exploration and are understandable
even for non-specialists. But these methods necessarily result in a tree,
since, at each agglomeration step, two clusters have to be merged. This
may bias the data analysis process if, for example, a cluster is almost
equally attracted by two others. In this paper we propose a new method
that allows clusters to overlap until a strong cluster attraction is reached,
based on a density criterion. The resulting hierarchical structure, called
a quasi-dendrogram, is represented as a directed acyclic graph and com-
bines the advantages of hierarchies with the precision of a less arbitrary
clustering. We validate our work with extensive experiments on real data
sets and compare it with existing tree-based methods, using a new mea-
sure of similarity between heterogeneous hierarchical structures.

1 Introduction

Agglomerative hierarchical clustering methods are widely used to analyze large
amounts of data. These successful methods construct a dendrogram – a tree
structure – that enables a natural exploration of data which is very suitable
even for non-expert users. Various tools offer intuitive top-down or bottom-up
exploration strategies, zoom-in and zoom-out operations, etc.

Let us consider the following real-life scenario: a social science researcher
would like to understand the structure of specific scientific domains based on a
large corpus of publications, such as dblp or Wiley. A contemporary approach
is to construct a word embedding [23] of the key terms in publications, that is,
to map terms into a high-dimensional space such that terms frequently used in
the same context appear close together in this space (for the sake of simplicity,
we omit interesting issues such as preprocessing, polysemy, etc.). Identifying
for example the denser regions in this space directly leads to insights on the
key terms of Science. Moreover, building a dendrogram of key terms using an
agglomerative method is typically used [9,14] to organize terms into hierarchies.
This dendogram (Fig. 1a) eases data exploration and is understandable even for
non-specialists of data science.

c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 261–273, 2020.
https://doi.org/10.1007/978-3-030-44584-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_21&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_21


262 I. Jeantet et al.

Despite its usefulness, the dendrogram structure might be limiting. Indeed,
any embedding of key terms has a limited precision, and key terms proximity is
a debatable question. For example, in Fig. 1a, we can see that the bioinformatics
key term is almost equally attracted by biology and computing, meaning that
these terms appear frequently together, but in different contexts (e.g. different
scientific conferences). Unfortunately, with classical agglomerative clustering, a
merging decision has to be made, even if the advantage of one cluster on another
is very small. Let us suppose that arbitrarily, biology and bioinformatics are
merged. This may suggest to our analyst (not expert in computer science) that
bioinformatics is part of biology, and its link to computing may only appear at
the root of the dendrogram. Clearly, an interesting part of information is lost in
this process.

In this paper, our goal is to combine the advantages of hierarchies while
avoiding early cluster merge. Going back to the previous example, we would like
to provide two different clusters showing that bioinformatics is closed both to
biology and computing. At a larger level of granularity, these clusters will still
collapse, showing that these terms belong to a broader community. This way,
we deviate from the strict notion of trees, and produce a directed acyclic graph
that we call a quasi-dendrogram (Fig. 1b).
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(a) A classical dendrogram, hiding the
early relationship between bioinformatics
and computing.
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(b) A quasi-dendrogram, preserving
the relationships of bioinformatics.

Fig. 1. Dendrogram and quasi-dendrogram for the structure of Science.

Our contributions are the following:

– We propose an agglomerative clustering method that produces a directed
acyclic graph of clusters instead of a tree, called a quasi-dendrogram,

– We define a density-based merging condition to identify these clusters,
– We introduce a new similarity measure to compare our method with other,

quasi-dendrogram or tree-based ones,
– We show through extensive experiments on real and synthetic data that we

obtain high quality results with respect to classical hierarchical clustering,
with reasonable time and space complexity.

The rest of the paper is organized as follows: Sect. 2 describes our proposed
overlapping hierarchical clustering framework1. Section 3 details our experimen-
1 Source code available at https://gitlab.inria.fr/ijeantet/ohc.

https://gitlab.inria.fr/ijeantet/ohc
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tal evaluation. Section 4 presents the related works, while Sect. 5 concludes the
paper.

2 Overlapping Hierarchical Clustering

2.1 Intuition and Basic Definitions

In a nutshell, our method obtains clusters in a gradual agglomerative fashion
and in a precise way. At each step, when we increase the neighbourhood of the
clusters by including more interconnections, we consider the points that fall in
this connected neighbourhood and we take the decision to merge some of them
whenever they are connected enough to a cluster using a density criterion λ.
Taking interconnections into account may lead to overlapping clusters.

More precisely, we consider a set V = {X1, . . . , XN} of N points in a n-
dimensional space, i.e. Xi ∈ V ⊂ R

n where n ≥ 1 and |V | = N . In order to
explore this space in an iterative way, we consider points that are close up to a
limit distance δ ≥ 0. We define the δ-neighbourhood graph of V as follows:

Definition 1 (δ-neighbourhood graph). Let V ⊂ R
n be a finite set of data

points and E ⊂ V 2 a set of pair of elements of V , let d be a metric on R
n and let

δ ≥ 0 be a positive number. The δ-neighbourhood graph Gδ(V,E) is a graph with
vertices labelled with the data points in V , and where there is an edge (X,Y ) ∈ E
between X ∈ V and Y ∈ V if and only if d(X,Y ) ≤ δ.

Property 1. If δ = 0 then the δ-neighbourhood graph consists of isolated points
while if δ = δmax, where δmax is the maximum distance between any two nodes
in V then Gδ(V,E) is the complete graph on V .

Varying δ will allow to progressively extend the neighbourhood of the vectors
to form bigger and bigger clusters. Clusters will be formed according to the
density of a region of the graph.

Definition 2 (Density). The density [16] dens(G) of a graph G(V,E) is given
by the ratio of the number of edges of G to the number of edges of G if it were
a complete graph, that is, dens(G) = 2|E|

|V |(|V |−1) . If |V | = 1, dens(G) = 1.

A cluster is simply defined as a subset of the nodes of the graph and its
density is defined as the density of the corresponding subgraph.

2.2 Computing Hierarchies with Overlaps

Our algorithm, called OHC, computes a hierarchy of clusters that we can identify
in the data. We call the generated structure a quasi-dendrogram and it is defined
as follows.

Definition 3 (Quasi-dendrogram). A quasi-dendrogram is a hierarchical
structure, represented as a directed acyclic graph, where the nodes are labelled
with a set of data points, the clusters, such as:
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– The leaves (i.e. the nodes with 0 in-degree) correspond to the singletons, i.e.
contain a unique data point. The level of the leaf nodes is 0.

– There is only one root node (node with 0 out-degree) that corresponds to the
set of all the data points.

– Each node (except the root node) has one or more parent nodes. The parent
relationship corresponds to inclusion of the corresponding clusters.

– The nodes at a level δ represent a set of (potentially overlapping) clusters
that is a cover of all the data points. Also, for each pair of points of a given
cluster, it exists a path between points of this cluster that have a distance less
than δ. In other terms, a node contains a part of a connected subgraph of the
δ-neighbourhood graph.

The OHC method works as presented in Algorithm 1. We first compute the
distance matrix of the data points (I3). We chose the cosine distance, widely use
in NLP. Then we construct and maintain the δ-neighbourhood graph Gδ(V,E),
starting from δ = 0 (I4).

We also initialize the set of clusters, i.e. the leaves of our quasi-dendrogram,
with the individual data points (I4). At each iteration, we increase δ (I6) and
consider the new added links to the graph (I8) and the impacted clusters (I9).
We extend these clusters by integrating the most linked neighbour vertices if
the density does not change more than a given threshold λ (I10–15). We remove
all the clusters included in these extended clusters (I16) and add the new set of
clusters to the hierarchy as a new level (I18). We stop when all the points are in
the same cluster which means that we reached the root of the quasi-dendrogram.

Also to improve the efficiency of this algorithm we use dynamic programming
to avoid to recompute information related to the clusters like their density and
the list of their neighbour vertices. It lead to significant improvements in the
execution time of the algorithm. We will discuss this further in the Sect. 3.3.

Property 2 (λ = 0). When λ = 0, each level δi of a quasi-dendrogram contains
exactly the cliques (complete subgraphs) of the δi-neighbourhood graph Gδi

.

Property 3 (λ = 1). When λ = 1, each level δi of a quasi-dendrogram contains
exactly the connected subgraphs of the δi-neighbourhood graph Gδi

.

3 Experimental Evaluation

3.1 Experimental Methodology

Tests: The tests we performed were focused on the quality of the hierarchical
structures produced by our algorithm. To measure this quality we used the classi-
cal hierarchy produced by SLINK, an optimal single-linkage clustering algorithm
proposed in Sibson et al. [28], as a baseline. Our goal was to study the behaviour
of the merging criterion parameter λ that we introduced, as long as its influ-
ence on the execution time, to verify if for λ = 1 we experimentally obtain the
same hierarchy as SLINK (Property 3) and hence observe the conservative-
ness of our algorithm. We also compared our method to other agglomerative
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Algorithm 1. Overlapping Hierarchical Clustering (OHC)
1: Input:

– V = {x1, . . . , xN }, N data points.
– λ ≥ 0, a merging density threshold.

2: Output: quasi-dendrogram H.
3: Preprocessing: obtain Δ = (δ1, . . . , δm) the distances between data points in increasing order.
4: Initialization:

– Create the graph G(V, E0 = ∅).
– Set a list of clusters C = [{x1}, . . . , {xN }].
– Add the list of clusters to the level 0 of H.

5: i=1.
6: while #C > 1 and i ≤ m do
7: for each pair (u, v) ∈ V 2 such as d(u, v) = δi do
8: Add (u, v) to Eδi−1 .

9: Determine the impacted clusters Cimp of C containing either u or v.

10: for each impacted cluster Cimpj
∈ Cimp do

11: Look for the points {p1, . . . , pk} that are the most linked to Cimpj
in Gδi

.

12: Compute the density dens(Sj) of the subgraph Sj = Cimpj
∪ {p1, . . . , pk}.

13: if Sj �= Cimpj
and |dens(Sj) − dens(Cimpj

)| ≤ λ then

14: Continue to add the most linked neighbors to Sj the same way if possible.
15: When Sj stops growing remove Cimpj

from the list of clusters C and add Sj to the

list of new clusters Cnew.

16: Remove all cluster of C included in one of the clusters of Cnew.
17: Concatenate Cnew to C.
18: Add the list of clusters to the level δi of H.
19: i=i+1.

20: return H

methods such as the Ward variant [29] and HDBSCAN* [8]. To compare such
structures we needed to create a new similarity measure which is described in
Sect. 3.2.

Datasets: To partially see the scalability of our algorithm but also to avoid
too long running times we had to limit the size of the datasets to few thousand
vectors. To be able to compare the results, we run the tests on datasets of same
size that we fixed to 1000 vectors.

– The first dataset is composed of 1000 randomly generated 2-dimensional
points.

– To test the algorithm on real data and in our motivating scenario, the second
dataset was created from the Wiley collection via their API2. We extracted
the titles and abstracts of the scientific papers and trained a word embedding
model on the data of a given period of time by using the classical SGNS
algorithm from Mikolov et al. [22] following the recommendation of Levy et al.
[20]. We set the vocabulary size to only 1000 key words per year even though
this dataset allows us to extract up to 50000 of them. This word embedding
algorithm created 1000 300-dimensional vectors for each year over 20 years.

Experimental Setting: All our experiments are done on a Intel Xeon 5 Core
1.4 GHz, running MacOS 10.2 on a SSD hard drive. Our code is developed with
2 https://onlinelibrary.wiley.com/library-info/resources/text-and-datamining.

https://onlinelibrary.wiley.com/library-info/resources/text-and-datamining
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Python 3.5 and the visualization part was done on a Jupyter NoteBook. We used
the SLINK and Ward implementations from the scikit-learn python package and
the HDBSCAN* implementation of McInnes et al. [21].

3.2 A Hierarchy Similarity Measure

As there is no ground truth on the hierarchy of the data we used, we need a sim-
ilarity measure to compare the hierarchical structures produced by hierarchical
clustering algorithms. The goal is not only to compare the topology but also the
content of the nodes of the structure. However up to our knowledge there is very
little in the literature about hierarchy comparison especially when the structure
is similar to a DAG or a quasi-dendrogram. Fowlkes and Mallows [19] defined a
similarity measure per level and the new similarity function we propose is based
on the same principle. First we construct a similarity between two given levels
of the hierarchies, and then we extend it to the global structures by exploring
all the existing levels.

Level Similarity: Given two hierarchies h1 and h2 and a cardinality i, we
assume that it is possible to identify a set l1 (resp. l2) of i clusters for a given
level of hierarchy h1 (resp. h2). Then, to measure the similarity between l1 and
l2, we take the maximal Jaccard similarity among one cluster of l1 and every
clusters of l2. The average of these similarities, one for each cluster of l1, will
give us the similarity between the two sets. If we consider the similarity matrix
of h1 and h2 with a cluster of l1 for each row, a cluster of l2 for each column and
the Jaccard similarity between each pair of clusters at the respective coordinates
in the matrix, we can compute the similarity between l1 and l2 by taking the
average of the maximal value for each row. Hence, the similarity function between
two sets of clusters l1, l2 is defined as:

siml(l1, l2) = mean{max{J(c1, c2) | c2 ∈ l2}|c1 ∈ l1} (1)

where J is the Jaccard similarity function.
However, taking the maximal value of each row shows how the clusters of

the first set are represented in the second. If we take the maximal value of
each column we will see the opposite, i.e. how the second set is represented in
the first set. Hence with this definition the similarity might not be symmetrical
so we propose this corrected similarity measure that shows how both sets are
represented in the other one:

sim∗
l (l1, l2) = mean(siml(l1, l2), siml(l2, l1)) (2)

Complete Similarity: Now that we can compare two levels of the hierarchical
structures, we can simply average the similarity for each corresponding levels
of the same size. For classical dendograms, each level has a distinct number of
clusters so identification of levels is easy. Conversely, our quasi-dendrograms may
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have several distinct levels (pseudo-levels) with the same number of clusters. If so,
we need to find the best similarity between these pseudo-levels. For a given level
(i.e. number of clusters), we want to build a matching M that maps each pseudo-
level l11, l

2
1, ... of h1 to at least one pseudo-level l12, l

2
2, ...of h2 and conversely (see

Fig. 2). This matching M should maximize the similarity between pseudo-levels
while preserving their hierarchical relationship. That is, for a, b, c, d representing
the height of pseudo-levels in the hierarchies, if (la1 , lc2) ∈ M and (lb1, l

d
2) ∈ M ,

then (b ≥ a → d ≥ c) or (b < a → d < c) (no “crossings” in M , such as
((l2311 , l3032 ) with (l2301 , l3042 )).

304

303

302

301

300

299

h2

231

230

h1

1

2

3

sim=0.81

0.82

0.79

0.83

0.78

0.84

0.88

0.87

Fig. 2. Computing the similarity
between two quasi-dendograms h1

and h2 for levels having the same
number of clusters.

To produce this mapping, our sim-
ple algorithm is the following. We initial-
ize M and two pointers with the two
highest pseudo-levels ((l2311 , l3042 ), step 1
of Fig. 2). At each step, for each hier-
archy, we consider current pointers and
their children, and compute all their sim-
ilarities (step 2). We then add pseudo-
levels with maximal similarity to M (here,
(l2301 , l3032 )). Whenever a child is chosen,
the respective pointer advances, and at
each step, at least one pointer advances.
Once pseudo-levels have been consumed
on one side, ending with l, we can fin-
ish the process by adding (lf , l) to M
for all remaining pseudo-level l′ on the
other side (here, l = l2301 . On our
example, the final matching is M =
{(l2311 , l3042 ), (l2301 , l3032 ), (l2301 , l3022 ), (l2301 , l3012 ),
(l2301 , l3002 ), (l2301 , l2992 )}.

Finally, from (2) we define the similarity between two hierarchies as

sim(h1, h2) = mean{sim∗
l (l1, l2)|(l1, l2) ∈ (h1, h2) & (l1, l2) ∈ M}. (3)

3.3 Experimental Results

Expressiveness: With this small following example we would like to present
the expressiveness of our algorithm compared to classical hierarchical clustering
algorithms such as SLINK. On the hand-built example shown in Fig. 3a we can
clearly distinguish two groups of points, {A,B,C,D,E} and {G,H, I, J,K} and
two points that we can consider as noise, F and L. Due to the chaining effect we
expect that the SLINK algorithm will regroup the 2 sets of points early in the
hierarchy while we would like to prevent it by allowing some cluster overlaps.

Figure 3b shows the dendrogram computed by SLINK and we can see as
expected that when F merges with the cluster formed by {A,B,C,D,E} the
next step is to merge this new cluster with {G,H, I, J,K}.

On the contrary in Fig. 4 that presents the hierarchy built with our method
for a specific merging criterion, we can see an example of diamond shape that
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Fig. 3. A hand-built example (a) and its SLINK dendrogram (b).

is specific to our quasi-dendrogram. For simplicity the view here slightly differs
from the quasi-dendrogram definition as we used dashed arrows to represent
the provenance of some elements of a cluster instead of going further down in
hierarchy to have a perfect inclusion and respect the lattice-like structure. The
merge between the clusters {A,B,C,D,E} and {G,H, I, J,K} is delayed to
the very last moment and the point F will belong to these 2 clusters instead
of forcing them to merge. Also depending on the merging criterion we obtain
different hierarchical structures by merging earlier of later some clusters.

Fig. 4. OHC quasi-dendrogram obtained from the
hand-built example in Fig. 3a for λ = 0.2.

Merging Criterion: As we
can see in Fig. 5b when the
merging criterion increases
we obtain a hierarchy more
and more similar to the
one produced by the classi-
cal SLINK algorithm until
we obtain exactly the same
for a merging criterion of 1.
Knowing this fact it is also
normal to have a similar-
ity between OHC and Ward
(resp. HDBSCAN* ) hierar-
chies converging to the sim-
ilarity between SLINK and
Ward (resp. HDBSCAN* )
hierarchies. However we can
notice that the OHC and
Ward hierarchies are the
most similar for a merging
criterion smaller than 1.
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Fig. 5. Study of the merging criterion.

Execution Time: We observe that when the merging criterion increases the
execution time decreases. It is due to the fact that when the merging criterion
increases we are more likely to completely merge clusters so we reach faster the
top of the hierarchy. It means less levels and less overlapping clusters so less
computation. However in this case we have the same drawback of chaining effect
as the single-linkage clustering that we wanted to avoid. Even if it was not the
objective of this work we set λ = 0.1, as it is an interesting value according
to the study of the merging criterion (Fig. 5a), to observe the evolution of the
execution time (Fig. 5a). The trend gives a function in O(n2.45) so to speed
up the process and scale up our algorithm is it possible to precompute a set of
possibly overlapping clusters over a given δ-neighbourhood graph with a classical
method, for instance CLIQUE, and build the OHC hierarchy on top of that.

4 Related Work

Our goal is to group together data points represented as vectors in R
n. For our

motivating application domain of understanding the structure of scientific fields,
it is important to construct structures (i) that are hierarchical, (ii) that allow
overlaps between the identified groups of vectors and (iii) which groups (clusters)
are related to dense areas of the data. There are a number of other application
domains where obtaining a structure with these properties is important. In the
following, we relate our work to relevant literature.

Hierarchical Clustering: There exist two kinds of hierarchical clustering.
Divisive methods follow a top-down strategy while agglomerative techniques
compute the hierarchy in a bottom-up fashion. It produces the well known den-
drogram structure [1]. One of the oldest methods is the single-linkage clustering
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that first appeared in the work of Florek et al. [18]. It had many improvements
over the years until an optimal algorithm named SLINK proposed by Sibson
[28]. However the commonly cited drawback of the single-linkage clustering is
that it is not robust to noise and suffers from chaining effects (spurious points
merging clusters prematurely). It led to the invention of many variants with their
advantages and disadvantages. In the NLP world we have for instance the Brown
clustering [7] and its generalized version [13]. The drawback of choosing the num-
ber of clusters beforehand present in the original Brown clustering is corrected
in the generalized version. Researchers also tried to address directly the chaining
effect problem with approaches through defining new objective functions such as
the Robust Hierarchical Clustering [4,11]. However these variants do not allow
any overlaps in the clusters. Other variants tried to allow this fuzzy clustering
in the hierarchy such as SOHC [10], a hierarchical clustering based on a spatial
overlapping metric but with a fixed number of clusters, or HCOSM [26], that
use an overlap similarity measure to merge clusters and then compute a hierar-
chy from an already determined set of clusters. Generalization of dendrogram to
more complex structures like Pyramidal Clustering [15] and Weak Hierarchies
[5] were also proposed. We can find examples to prove that our method produces
even more general hierarchical structures that include the weak hierarchies.

Density-Based Clustering: Another important class of work is the density-
based clustering. Here, clusters are defined as regions in the data that have a
higher density. The data points in the sparse areas that are required to separate
clusters are considered as noise or border points. One of the most widely-used
algorithms of this category is DBSCAN defined by Ester et al. [17]. This method
connects data points that satisfy a specific density-based criterion: the minimum
number of other data points within a given radius must be above a predefined
threshold. The main advantage of this method is that it allows detecting clus-
ters of arbitrary shapes. More recently improved versions of DBSCAN were
proposed such as HDBSCAN* [8]. This new variant not only improved notions
from DBSCAN and OPTICS [3] but also proposed a procedure to extract a
simplified cluster tree from the reachability relation which allows determining a
hierarchy of the clusters but again with no overlapping.

Overlapping Clustering: Fuzzy clustering methods [6] allow that certain data
points belong to multiple clusters with a different level of confidence. In this
way, the boundary of clusters is fuzzy and we can talk about overlaps of these
clusters. In our definition it is a different notion, a data point either does or does
not belong to a specific cluster and might also belong to multiple clusters. While
HDBSCAN is closely related to connected components of certain level sets, the
clusters do not overlap (since overlap would imply the connectivity).

Community Detection in Networks: A number of algorithmic methods have
been proposed to identify communities. The first kind of methods produces a
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partition where a vertex can belong to one and only one community. Following
the modularity function of Newman and Girvan [24], numerous quality functions
have been proposed to evaluate the goodness of a partition with a fundamental
drawback, the now proved existence of a resolution limit. The second kind of
methods, such as CLIQUE [2], k-clique [25], DBLC [31] or NMF [30], aims
at finding sets of vertices that respect an edge density criterion which allows
overlaps but can lead to incomplete cover of the network. Similarly to HCOSM,
the method EAGLE [27] builds a dendrogram over the set of predetermined
clusters, here the maximal cliques of the network so overlaps appear only at
the leaf level. Coscia et al. [12] have proposed an algorithm to reconstruct a
hierarchical and overlapping community structure of a network, by hierarchically
merging local ego neighbourhoods.

5 Conclusion and Future Work

We propose an overlapping hierarchical clustering framework. We construct a
quasi-dendrogram hierarchical structure to represent the clusters that is how-
ever not necessarily a tree (of specific shape) but a directed acyclic graph. In
this way, at each level, we represent a set of possibly overlapping clusters. We
experimentally evaluated our method using several datasets and also our new
similarity measure that hence proved its usefulness. If the clusters present in
the data show no overlaps, the obtained clusters are identical to the clusters we
can compute using agglomerative clustering methods. In case of overlapping and
nested clusters, however, our method results in a richer representation that can
contain relevant information about the structure of the clusters of the underlying
dataset. As a future work we plan to identify interesting clusters on the basis
of the concept of stability. Such methods give promising results in the context
of hierarchical density-based clustering [21], but the presences of overlaps in the
clusters requires specific considerations.
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