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Abstract. Nonnegative Matrix Factorization (NMF) which was origi-
nally designed for dimensionality reduction has received throughout the
years a tremendous amount of attention for clustering purposes in several
fields such as image processing or text mining. However, despite its math-
ematical elegance and simplicity, NMF has exposed a main issue which
is its strong sensitivity to starting points, resulting in NMF struggling
to converge toward an optimal solution. On another hand, we came to
explore and discovered that even after providing a meaningful initializa-
tion, selecting the solution with the best local minimum was not always
leading to the one having the best clustering quality, but somehow a bet-
ter clustering could be obtained with a solution slightly off in terms of
criterion. Therefore in this paper, we undertake to study the clustering
characteristics and quality of a set of NMF best solutions and provide a
method delivering a better partition using a consensus made of the best
NMF solutions.
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1 Introduction

When dealing with text data, document clustering techniques allow to divide
a set of documents into groups so that documents assigned to the same group
are more similar to each other than to documents assigned to other groups
[12,18,21,22]. In information retrieval, the use of clustering relies on the assump-
tion that if a document is relevant to a query, then other documents in the same
cluster can also be relevant. This hypothesis can be used at different stages
in the information retrieval process, the two most notable being: cluster-based
retrieval to speed up search, and search result clustering to help users navigate
and understand what is in the search results. The document clustering which
still remains a hot topic can be tackled under different approaches. In our con-
tribution we rely on the non-negative matrix factorization for its simplicity and
popularity. We will not propose a new variant of NMF but rather a consensus
approach that will boost its performance.

Unlike supervised learning, the evaluation of clustering algorithms - unsuper-
vised learning - remains a difficult problem. When relying on generative models,
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it is easier to evaluate the performance of a given clustering algorithm based
on the simulated partition. On real data already labeled, many papers evaluate
the performance of clustering algorithms by relying on indices such as Accuracy
(ACC), Normalized Mutual Information (NMI) [25] and Adjusted Rand Index
(ARI) [14]. However, the algorithms commonly used which are of type k-means,
EM [8], Classification EM [6], NMF [15] etc. are iterative and require several ini-
tializations; the resulting partition is the one optimizing the objective function.
Sometimes in these works, we observe comparative studies between methods on
the basis of maximum ACC/NMI/ARI measures obtained after several initializa-
tions and not optimizing the criterion used in the algorithm. Such a comparison
is thereby not accurate, because in fact these measures cannot be calculated in
practice and cannot be used in this way to evaluate the quality of a clustering
algorithm.

A fair comparison can only be made on the basis of objective functions con-
sidered in a clustering purpose; for example, within-cluster inertia, likelihood,
classification likelihood for mixture models, factorization, etc. Nonetheless, in
our experiences, we realized that while the clustering results become better in
terms of ACC/NMI/ARI when the objective function value increases, the best
value is not necessarily associated with the best results. However, by ranking
the objective values, the best partition tends to be among those leading to the
first best scores. We illustrate this behavior in Fig. 4. This remark leads us to
consider an ensemble method that is widely used in supervised learning [11,24]
but a little less in unsupervised learning [25]. If this approach, referred to as con-
sensus clustering, is often used in the context of comparing partitions obtained
with different algorithms, it is less studied considering the same algorithm.

The paper is organized as follows. In Sect. 2, we review the nonnegative
matrix factorization with the Frobenius norm and the Kullback–Leibler diver-
gence. Section 3 is devoted to describe the ensemble method and the popular
used algorithms. In Sect. 4, we perform comparisons on document-term matrices
and propose a strategy to improve document clustering with NMF.

2 Nonnegative Matrix Factorization

Nonnegative Matrix Factorization (NMF) [15], aiming to deliver a lower rank
decomposition of a nonnegative data matrix X has highlighted clustering prop-
erties for which strong connections with K-means or Spectral clustering can be
drawn [16]. However, while several variants arise in order to accommodate its
clustering property [10,29–31], its premier model formulation does not involve a
clustering objective and was originally presented as a dimension reduction algo-
rithm with exclusive nonnegative factors. More specifically in text mining where
NMF produces a meaningful interpretation for document-term matrices in com-
parison with methods like Singular Value Decomposition (SVD) components or
Latent Semantic Analysis (LSA) [7] arising factors with possible negative values.
NMF seeks to approximate a matrix X ∈ R

n×d
+ by the product of two lower rank

matrices Z ∈ R
n×g
+ and W ∈ R

d×g
+ with g(n + d) < ng. This problem can be

formulated as a constrained optimization problem
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F(Z,W ) = min
Z≥0,W ≥0

D(X,ZW �) (1)

where D is a fitting error allowing to measure the quality of the approximation
of X by ZW �, the most popular ones being the Frobenius norm and Kullback-
Leibler (KL) divergence. For a clustering setup, Z will be referred to as the
soft classification matrix while W will be the centers matrix. Despite its mul-
tiple applications benefits, NMF has a recurrent downside which takes place at
its initialization. NMF provides a different solution for every different initial-
isation making it substantially sensitive to starting points as its convergence
directly relies on the characteristics of the given entries. Several publications
have shown interest in finding the best way to start a NMF algorithm by provid-
ing a structured initialization, in some cases obtained from results of clustering
algorithms such as k-means or Spherical K-means [27,28] (especially for applying
NMF on document-term matrices), Nonnegative Singular Value decomposition
(NNDSVD) [4] or SVD based strategies [17]. The optimization procedures for
D respectively equal to the Frobenius norm and the KL divergence, based on
multiplicative update rules are given in Algorithms 1 and 2.

Algorithm 1. (NMF-F).
Input: X , g, Z(0); W (0).
Output: Z and W .
repeat

1. Z ← Z � X W
Z W �W

;

2. W ← W � X �Z
W Z �Z

;
until convergence
5. Normalize Z so as it has unit-length
column vectors.

Algorithm 2. (NMF-KL).
Input: X , g, Z(0); W (0).
Output: Z and W .
repeat

1. Z ← Z � (
X

Z W � W
)/ ∑

j Wjk;

2. W ← W � (
X �

W Z � Z
)/ ∑

i Zik;
until convergence
5. Normalize Z so as it has unit-length
column vectors.

3 Cluster Ensembles (CE)

In machine learning, the idea of utilizing multiple sources of data partitions
firstly occurred with multi-learner systems where the output of several classifier
algorithms where used together in order to improve the accuracy and robustness
of a classification or regression, for which strong performances were acknowl-
edged [24,25]. At this stage, very few approaches have worked toward applying
a similar concept to unsupervised learning algorithms. In this sense, we denote
the work of [5] who tried to combine several clustering partitions according to
the combination of the cluster centers. In the early 2000, [25] were the first to
consider an idea of combining several data partitions however, without accessing
any original sources of information (features) or led computed centers. This app-
roach is referred to as cluster ensembles. At the time, their idea was motivated
by the possibilities of taking advantage of existing information such as a prior
clustering partitions or an expert categorization (all regrouped under the terms
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Knowledge Reuse), which may still be relevant or substantial for a user to con-
sider in a new analysis on the same objects, whether or not the data associated
with these objects may also be different than the ones used to define the prior
partitions. Another motivation was Distributed computing, referring to analyz-
ing different sources of data (which might be complicated to merge together for
instance for privacy reasons) stored in different locations. In our concept, we will
use cluster ensembles to improve the quality of the final partition (as opposed to
selecting a unique one) and therefore extract all the possibilities offered by the
miscellaneous best solutions created by NMF.

In [25], the authors introduced three consensus methods that can produce a
partition. All of them consider the consensus problem on a hypergraph represen-
tation H of the set of partitions Hr. More specifically, each partition Hr equals
a binary classification matrix (with objects in rows and clusters in columns)
where the concatenation of all the set defines the hypergraph H.

– The first one is called Cluster-based Similarity Partitioning Algorithm
(CSPA) and consists in performing a clustering on the hypergraph according
to a similarity measure.

– The second is referred to as HyperGraph Partitioning Algorithm (HGPA)
and aims at optimizing a minimum cut objective.

– The third one is called Meta-CLustering Algorithm (MCLA) and looks for-
ward to identifying and constructing groups of clusters.

Furthermore, in [25] the authors proposed an objective function to charac-
terize the cluster ensembles problem and therefore allowing a selection of the
best consensus algorithm among the three to deliver its ensemble partition. Let
Λ = {λ(q)|q ∈ {1, . . . , r}} be a given set of r partitions λ(q) represented as labels
vectors. The ensemble criterion denoted as λ(k−opt) is called the optimal combine
clustering and aims at maximizing the Average Normalized Mutual Information
(ANMI). It is defined as follows:

λ(k−opt) = argmax
˜λ

r∑

q=1

NMI(λ̃, λ(q)) (2)

The ANMI is simply the average of the normalized mutual information of a
labels vector λ̃ with all labels vectors λ(q) in Λ:

ANMI(Λ, λ̃) =
1
r

r∑

q=1

NMI(λ̃, λ(q)) (3)

To cast with cases where the vector labels λ(q) have missing values, the authors
have proposed a generalized expression of (2) not substantially different that
viewers can refer to in the original paper [25].
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4 Experiments

We conduct several experiences leading to emphasise the behavior of NMF
regarding a clustering task compared to a dedicated clustering algorithm such
as Spherical K-means referred to as S-Kmeans [9] which was introduced for clus-
tering large sets of sparse text data (or directional data) and remains appealing
for its low computational cost beside its good performances. It was also retained
along side the random starting points (generated according to an uniform distri-
bution U(0, 1)×mean(X)) as initialization for NMF. We use two error measures
frequently employed for NMF: the Frobenius norm (which will be referred to as
NMF-F) and the Kullback-Leibler divergence (NMF-KL). Eventually, we compute
the consensus partition by using the Cluster Ensemble Python package1 which
utilizes the consensus methods defined earlier [25].

4.1 Datasets

We apply NMF on 5 bench-marking document-term matrices for which the
detailed characteristics are available in Table 1 where nz indicates the percentage
of values other than 0 and the balance coefficient is defined as the ratio of the
number of documents in the smallest class to the number of documents in the
largest class. These datasets highlight several varieties of challenging situations
such as the amount of clusters, the dimensions, the clusters balance, the degree
of mixture of the different groups and the sparsity. We normalized each data
matrix with TF-IDF and their respective documents-vectors to unit L2-norm to
remove the bias introduced by their length.

Table 1. Datasets description: # denotes the cardinality

Datasets Characteristics

#Documents #Words #Clusters nz(%) Balance

CSTR 475 1000 4 3.40 0.399

CLASSIC4 7095 5896 4 0.59 0.323

RCV1 6387 16921 4 0.25 0.080

NG5 4905 10167 5 0.92 0.943

NG20 18846 14390 20 0.59 0.628

4.2 NMF Raw Performances and Initialization

The results obtained by NMF-F and NMF-KL according to S-Kmeans and the
random starting points are available in Table 2. The clustering quality of the

1 https://pypi.org/project/Cluster Ensembles/.

https://pypi.org/project/Cluster_Ensembles/
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S-Kmeans partitions given as entry to both algorithms are also displayed. We
make use of two relevant measures to quantify and assess the clustering qual-
ity of each algorithm. The first one is the NMI [25] which quantifies how much
information the clustering partition shares with the true partition, the second
is the ARI [14], sensitive to the clusters proportions and measures the degree of
agreement between the clustering and the true partition. To replicate a relevant
user experience achieving an unsupervised task, we refer to the criterion of each
algorithm in order to select the 10 first best solutions (out of 30 runs) and report
their average NMI and ARI with the true partition.

One can clearly see that NMF-F and NMF-KL do not react similarly to the
different initializations. While NMF-F substantially benefits from the S-kmeans
initialization on every datasets compared to the random initialization, NMF-KL
does not seem to accommodate S-kmeans entries. In fact, S-Kmeans as starting
values seems to worsen NMF-KL solutions, especially on CLASSIC4 and NG5.
For this reason, we will avoid this initialization strategy for NMF-KL in the future
although it improves on RCV1. Also, NMF-KL with a random initialization pro-
vides much better results than the other algorithms on almost all datasets.

Table 2. Mean and standard deviation of NMI and ARI computed over the 10 best
solutions.

Datasets Metrics Skmeans NMF-F (Random) NMF-F (Skmeans) NMF-KL (Random) NMF-KL (Skmeans)

CSTR NMI 0.76± 0.007 0.65± 0.002 0.73± 0.04 0.73± 0.03 0.76± 0.006

ARI 0.80± 0.007 0.55± 0.002 0.75± 0.10 0.77± 0.04 0.80± 0.006

CLASSIC4 NMI 0.60± 0.001 0.53± 0.003 0.59± 0.002 0.71± 0.02 0.61± 0.03

ARI 0.47± 0.0009 0.45± 0.003 0.47± 0.002 0.65± 0.06 0.47± 0.004

RCV1 NMI 0.38± 0.0003 0.35± 0.0005 0.38± 0.0002 0.47± 0.02 0.53± 0.002

ARI 0.18± 0.0004 0.13± 0.0008 0.18± 0.0003 0.42± 0.02 0.46± 0.02

NG5 NMI 0.72± 0.02 0.56± 1.0e−05 0.72± 0.02 0.80± 0.03 0.79± 0.003

ARI 0.60± 0.01 0.33± 2.5e−05 0.60± 0.01 0.82± 0.04 0.76± 0.005

NG20 NMI 0.49± 0.02 0.41± 0.01 0.49± 0.02 0.48± 0.02 0.51± 0.01

ARI 0.30± 0.02 0.23± 0.01 0.30± 0.02 0.34± 0.02 0.32± 0.02

We reported in Figs. 1, 2, 3 and 4 the clustering quality of the algorithm’s
solutions ranked from the best one in terms of criterion to the poorest one. The
respective criterion of each algorithm is normalized to belong to [0, 1].

When one does have the real partition, a common practice to evaluate the
clustering result, one relies on the best solution obtained by optimizing the
objective function. Figures 1 and 3 highlight a critical behavior of NMF-F which
tends to produce solutions with the lowest minima that do not fulfil the best
clustering partitions, sometimes with a substantial gap (see CSTR, RCV1, NG5
in Fig. 1). Moreover, a surprising lesser but still similar behavior is delivered by
S-Kmeans which compared to NMF, optimizes a clustering objective by definition.
The results are displayed in Fig. 2. In reality, this behavior can be observed with
several types of what we refer to clustering algorithms hosting an optimization
procedure. Initializing NMF-F randomly as shown in Fig. 3 seems to lighten this
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CSTR CLASSIC4 RCV1

NG5 NG20

Fig. 1. NMF-F: NMI/ARI behaviour according to the objective function F (initializa-
tions by S-Kmeans)

effect (on CSTR, Classic4 and RCV1). On another hand, NMF-KL which to this
day remains recognized as a relevant method for document clustering [13] seems
to consistently deliver solutions with the lowest criteria aligned with the goodness
of their clustering, sustaining the use of NMF for clustering purposes. Further-
more, compared to all, NMF-KL is the only method emphasizing a wide variety
of solutions and therefore seems to explore way more possibilities than NMF-F
or S-Kmeans. Its better behavior might almost comfort the idea of selecting the
best partition in terms of criterion as the one to keep. However, it still fails on
RCV1 which is the toughest dataset to partition mainly because of its scant
density. Eventually, it remains concerning to select the best partition just based
on the fact that, even with NMF-KL, the solution among the best ones providing
the best clustering, is not necessarily the first one (see on CSTR, CLASSIC4
and NG5).

In addition, while the best solutions possibly share a similar amount of infor-
mation with the true partition, they could be fairly distinct from each other,
making their use appealing to deduce an even more exhaustive solution. Figure 5
shows results of pairwise NMI and ARI between the top 10 partitions (criterion-
wise) of each algorithm. NMF-KL’s best solutions appear to be fairly different
among each other.
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CSTR CLASSIC4 RCV1

NG5 NG20

Fig. 2. S-Kmeans: NMI/ARI behaviour according to the objective function F (Random
initializations)

CSTR CLASSIC4 RCV1

NG5 NG20

Fig. 3. NMF-F: NMI/ARI behaviour according to the objective function F (Random
initializations)
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CSTR CLASSIC4 RCV1

NG5 NG20

Fig. 4. NMF-KL: NMI/ARI behaviour according to the objective function F (Random
initializations)

Average pairwise NMI Average pairwise ARI

Fig. 5. Average pairwise NMI & ARI between top 10 solutions

4.3 Consensus Clustering

Following the previous statement, we went ahead and computed a cluster ensem-
ble (CE) for NMF-F and NMF-KL according to their best initialization strategy as
well as for S-Kmeans due to its pertinence for initializing NMF-F and the method
being widely known as relevant for document clustering. The results are reported
in Table 3. It appears that the consensus obtained with the top 10 results of each
method generally outperforms the best solution. This result is even stronger for
NMF-KL where the ensemble clustering increases the NMI and ARI by respec-
tively 11 and 13 points on NG20. Note that NG20 is the dataset where the
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average pairwise NMI and ARI between the 10 top partitions are the lowest,
meaning the most different (see Fig. 5). Furthermore, it is interesting to note
that these performances are obtained from solutions giving an average NMI and
ARI smaller than the best solution itself.

Table 3. Mean and standard deviation, first best result and CE consensus computed
over the 10 best solutions.

Datasets Metrics NMF-F (Skmeans) Skmeans NMF-KL (Random)

Mean± SD (best) CE Mean± SD (best) CE Mean± SD (best) CE

CSTR NMI 0.73± 0.04 (0.65) (0.76) 0.76± 0.007 (0.77) (0.77) 0.73± 0.03 (0.76) (0.80)

ARI 0.75± 0.10 (0.56) (0.80) 0.80± 0.007 (0.80) (0.80) 0.77± 0.04 (0.81) (0.83)

CLASSIC4 NMI 0.59± 0.002 (0.59) (0.59) 0.60± 0.001 (0.59) (0.60) 0.71± 0.02 (0.72) (0.74)

ARI 0.47± 0.002 (0.47) (0.47) 0.47± 0.0009 (0.47) (0.47) 0.65± 0.06 (0.65) (0.72)

RCV1 NMI 0.38± 0.0002 (0.38) (0.35) 0.38± 0.0003 (0.38) (0.35) 0.47± 0.02 (0.47) (0.52)

ARI 0.18± 0.0003 (0.18) (0.26) 0.18± 0.0004 (0.18) (0.26) 0.42± 0.02 (0.43) (0.46)

NG5 NMI 0.72± 0.02 (0.74) (0.76) 0.72± 0.02 (0.73) (0.75) 0.80± 0.03 (0.83) (0.86)

ARI 0.60± 0.01 (0.61) (0.60) 0.60± 0.01 (0.60) (0.64) 0.82± 0.04 (0.85) (0.88)

NG20 NMI 0.49± 0.02 (0.51) (0.50) 0.49± 0.02 (0.51) (0.50) 0.48± 0.02 (0.50) (0.61)

ARI 0.30± 0.02 (0.32) (0.34) 0.30± 0.02 (0.32) (0.34) 0.34± 0.02 (0.36) (0.49)

4.4 Consensus Multinomial

Following the cluster-based consensus approach which implies a similarity-
based clustering algorithm, we decided to make use of a model-based cluster-
ing to go and try to obtain a better final partition than the one delivered by
cluster ensembles. In [26], the authors have used the Multinomial mixture app-
roach to propose a consensus function. In model-based clustering, it is assumed
that the data are generated by a mixture of underlying probability distributions,
where each component k of the mixture represents a cluster.

Let Λ ∈ N
n×r
0 be the data matrix of labels vectors from the top r solutions.

Our data being categorical, we used a Multinomial Mixture Model (MMM) in
order to partition the elements λi. Categorical data being a generalization of
binary data; assuming a perfect scenario where there is no partition with an
empty cluster, a disjunctive matrix M ∈ {0, 1}n×rg is usually used instead of Λ

with value m
(h)
iq where h ∈ {1, . . . , g} is a cluster label. Therefore, the data values

m
(h)
iq are assumed to be generated from a Multinomial distribution of parameter

M(m(h)
iq ;α(h)

kq ) where α
(h)
kq is the probability that an element mi in the group

k takes the category h for the partition/variable λq. The density probability
function of the model can be stated as:

f(M ;θ) =
n∏

i=1

g∑

k=1

πk

r,g∏

q,h

(α(h)
kq )m

(h)
iq (4)

where θ = (π,α) are the parameters of the model with π = (π1, . . . , πk) being
the proportions and α the vector of the components parameters.
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Table 4. MMM consensus results over the 10 best solutions

Datasets Metrics NMF-KL (Random)

Mean±SD (best) CE MMM

CSTR NMI 0.73 ± 0.03 (0.76) (0.80) (0.77)

ARI 0.77 ± 0.04 (0.81) (0.83) (0.82)

CLASSIC4 NMI 0.71 ± 0.02 (0.72) (0.74) (0.77)

ARI 0.65 ± 0.06 (0.65) (0.72) (0.75)

RCV1 NMI 0.47 ± 0.02 (0.47) (0.52) (0.52)

ARI 0.42 ± 0.02 (0.43) (0.46) (0.46)

NG5 NMI 0.80 ± 0.03 (0.83) (0.86) (0.86)

ARI 0.82 ± 0.04 (0.85) (0.88) (0.89)

NG20 NMI 0.48 ± 0.02 (0.50) (0.61) (0.63)

ARI 0.34 ± 0.02 (0.36) (0.49) (0.50)

The Rmixmod package2 is used to achieve our analysis. We employ the
default settings to compute the clustering, allowing the selection between 10 par-
simonious models according to the Bayesian information Criterion (BIC) [23].
With CSTR, the model mainly selected is the one keeping the proportions πk

free with the model also independent from the variables (labels vectors), mean-
ing M(m(h)

iq ;αk). CSTR is the dataset with the highest pairwise NMI and ARI
therefore with the most similar best solutions. On CLASSIC4 and RCV1 where
the pairwise NMI & ARI are a little bit lower, it is the model with free propor-
tions and parameters α depending on distinct components and labels vectors
(M(m(h)

iq ;α(h)
kq )) which is mainly chosen. On NG5 where the best solutions are

fairly similar (high pairwise NMI & ARI), it is the model depending on the
components and the labels vectors which has been retained. However, the pro-
portions here were kept equal. For NG20 where the best solutions were fairly
distinct, the model selected is the one depending on the components and the
variables. As previously, the proportions πk are kept equal. Following the char-
acteristics in Table 1, it is notable to see that the datasets where the proportions
are kept equal are actually those with the more balanced real clusters propor-
tions. The results of the obtained consensus are displayed in Table 4 which only
retains prior results of NMF-KL top 10 solutions and CE consensus, as they were
the best overall. Apart from CSTR, we can see that MMM does a better job at
computing a better partition from the top 10 solutions than CE.

5 Conclusion

In this paper, by using cluster ensembles, we have proposed a simple method to
obtain a better clustering for the scope of NMF algorithms on text data. From its

2 https://cran.r-project.org/web/packages/Rmixmod/Rmixmod.pdf.

https://cran.r-project.org/web/packages/Rmixmod/Rmixmod.pdf
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gathering nature, this process should also alleviate the uncertainty based around
the overall quality of the final partition compared to other selection practices
such as keeping an unique solution according to the best criterion. Furthermore,
we have shown that it was possible to improve the consensus quality through the
use of finite mixture models, allowing more powerful underlying settings than
cluster-based consensus involving plain similarities or distances. A future work
will be to investigate the use of cluster ensembles for other recent clustering
algorithms [1–3,19,20].

References

1. Ailem, M., Salah, A., Nadif, M.: Non-negative matrix factorization meets word
embedding. In: SIGIR, pp. 1081–1084 (2017)

2. Allab, K., Labiod, L., Nadif, M.: A semi-NMF-PCA unified framework for data
clustering. IEEE Trans. Knowl. Data Eng. 29(1), 2–16 (2016)

3. Allab, K., Labiod, L., Nadif, M.: Simultaneous spectral data embedding and clus-
tering. IEEE Trans. Neural Netw. Learn. Syst. 29(12), 6396–6401 (2018)

4. Boutsidis, C., Gallopoulos, E.: SVD based initialization: a head start for nonneg-
ative matrix factorization. Pattern Recogn. 41(4), 1350–1362 (2008)

5. Bradley, P.S., Fayyad, U.M.: Refining initial points for k-means clustering. In:
ICML, vol. 98, pp. 91–99. Citeseer (1998)

6. Celeux, G., Govaert, G.: A classification EM algorithm for clustering and two
stochastic versions. Comput. Stat. Data Anal. 14(3), 315–332 (1992)

7. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Index-
ing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)

8. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–22
(1977)

9. Dhillon, I.S., Modha, D.S.: Concept decompositions for large sparse text data using
clustering. Mach. Learn. 42(1–2), 143–175 (2001)

10. Ding, C., Li, T., Peng, W., Park, H.: Orthogonal nonnegative matrix t-
factorizations for clustering. In: SIGKDD, pp. 126–135. ACM (2006)

11. Ghosh, J.: Multiclassifier systems: back to the future. In: Roli, F., Kittler, J. (eds.)
MCS 2002. LNCS, vol. 2364, pp. 1–15. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45428-4 1

12. Govaert, G., Nadif, M.: Mutual information, phi-squared and model-based co-
clustering for contingency tables. Adv. Data Anal. Classif. 12(3), 455–488 (2016).
https://doi.org/10.1007/s11634-016-0274-6

13. Hosseini-Asl, E., Zurada, J.M.: Nonnegative matrix factorization for document
clustering: a survey. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz,
R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8468, pp.
726–737. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07176-3 63

14. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)
15. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In:

Advances in Neural Information Processing Systems, pp. 556–562 (2001)
16. Li, T., Ding, C.: The relationships among various nonnegative matrix factorization

methods for clustering. In: ICDM, pp. 362–371 (2006)
17. Qiao, H.: New SVD based initialization strategy for non-negative matrix factor-

ization. Pattern Recogn. Lett. 63, 71–77 (2015)

https://doi.org/10.1007/3-540-45428-4_1
https://doi.org/10.1007/3-540-45428-4_1
https://doi.org/10.1007/s11634-016-0274-6
https://doi.org/10.1007/978-3-319-07176-3_63


A Consensus Approach to Improve NMF Document Clustering 183

18. Role, F., Morbieu, S., Nadif, M.: Coclust: a Python package for co-clustering. J.
Stat. Softw. 88, 1–29 (2019)

19. Salah, A., Ailem, M., Nadif, M.: A way to boost SEMI-NMF for document clus-
tering. In: CIKM, pp. 2275–2278 (2017)

20. Salah, A., Ailem, M., Nadif, M.: Word co-occurrence regularized non-negative
matrix tri-factorization for text data co-clustering. In: AAAI, pp. 3992–3999 (2018)

21. Salah, A., Nadif, M.: Model-based von Mises-Fisher co-clustering with a conscience.
In: Proceedings of the 2017 SIAM International Conference on Data Mining, pp.
246–254. SIAM (2017)

22. Salah, A., Nadif, M.: Directional co-clustering. Adv. Data Anal. Classif. 13(3),
591–620 (2018). https://doi.org/10.1007/s11634-018-0323-4

23. Schwarz, G., et al.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464
(1978)

24. Sharkey, A.J.: Multi-net systems. In: Sharkey, A.J.C. (ed.) Combining Artificial
Neural Nets, pp. 1–30. Springer, London (1999). https://doi.org/10.1007/978-1-
4471-0793-4 1

25. Strehl, A., Ghosh, J.: Cluster ensembles-a knowledge reuse framework for combin-
ing multiple partitions. J. Mach. Learn. Res. 3(Dec), 583–617 (2002)

26. Topchy, A., Jain, A.K., Punch, W.: A mixture model for clustering ensembles. In:
SDM, pp. 379–390. SIAM (2004)

27. Wild, S., Curry, J., Dougherty, A.: Improving non-negative matrix factorizations
through structured initialization. Pattern Recogn. 37(11), 2217–2232 (2004)

28. Wild, S., Wild, W.S., Curry, J., Dougherty, A., Betterton, M.: Seeding non-negative
matrix factorizations with the spherical k-means clustering. Ph.D. thesis, Univer-
sity of Colorado (2003)

29. Yang, Z., Oja, E.: Linear and nonlinear projective nonnegative matrix factorization.
IEEE Trans. Neural Netw. 21(5), 734–749 (2010)

30. Yoo, J., Choi, S.: Orthogonal nonnegative matrix factorization: multiplicative
updates on stiefel manifolds. In: Fyfe, C., Kim, D., Lee, S.-Y., Yin, H. (eds.)
IDEAL 2008. LNCS, vol. 5326, pp. 140–147. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-88906-9 18

31. Yuan, Z., Oja, E.: Projective nonnegative matrix factorization for image compres-
sion and feature extraction. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.)
SCIA 2005. LNCS, vol. 3540, pp. 333–342. Springer, Heidelberg (2005). https://
doi.org/10.1007/11499145 35

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/s11634-018-0323-4
https://doi.org/10.1007/978-1-4471-0793-4_1
https://doi.org/10.1007/978-1-4471-0793-4_1
https://doi.org/10.1007/978-3-540-88906-9_18
https://doi.org/10.1007/978-3-540-88906-9_18
https://doi.org/10.1007/11499145_35
https://doi.org/10.1007/11499145_35
http://creativecommons.org/licenses/by/4.0/

	A Consensus Approach to Improve NMF Document Clustering
	1 Introduction
	2 Nonnegative Matrix Factorization
	3 Cluster Ensembles (CE)
	4 Experiments
	4.1 Datasets
	4.2 NMF Raw Performances and Initialization
	4.3 Consensus Clustering
	4.4 Consensus Multinomial

	5 Conclusion
	References




