
Vouw: Geometric Pattern Mining
Using the MDL Principle

Micky Faas(B) and Matthijs van Leeuwen

LIACS, Leiden University, Leiden, The Netherlands
micky@edukitty.org, m.van.leeuwen@liacs.leidenuniv.nl

Abstract. We introduce geometric pattern mining, the problem of find-
ing recurring local structure in discrete, geometric matrices. It differs
from existing pattern mining problems by identifying complex spatial
relations between elements, resulting in arbitrarily shaped patterns.
After we formalise this new type of pattern mining, we propose an
approach to selecting a set of patterns using the Minimum Description
Length principle. We demonstrate the potential of our approach by intro-
ducing Vouw, a heuristic algorithm for mining exact geometric patterns.
We show that Vouw delivers high-quality results with a synthetic bench-
mark.

1 Introduction

Frequent pattern mining [1] is the well-known subfield of data mining that aims
to find and extract recurring substructures from data, as a form of knowledge
discovery. The generic concept of pattern mining has been instantiated for many
different types of patterns, e.g., for item sets (in Boolean transaction data) and
subgraphs (in graphs/networks). Little research, however, has been done on pat-
tern mining for raster-based data, i.e., geometric matrices in which the row and
column orders are fixed. The exception is geometric tiling [4,11], but that prob-
lem only considers tiles, i.e., rectangular-shaped patterns, in Boolean data.

In this paper we generalise this setting in two important ways. First, we
consider geometric patterns of any shape that are geometrically connected, i.e.,
it must be possible to reach any element from any other element in a pattern by
only traversing elements in that pattern. Second, we consider discrete geometric
data with any number of possible values (which includes the Boolean case). We
call the resulting problem geometric pattern mining.

Figure 1 illustrates an example of geometric pattern mining. Figure 1a shows
a 32 × 24 grayscale ‘geometric matrix’, with each element in [0, 255], apparently
filled with noise. If we take a closer look at all horizontal pairs of elements,
however, we find that the pair (146, 11) is, amongst others, more prevalent than
expected from ‘random noise’ (Fig. 1b). If we would continue to try all combina-
tions of elements that ‘stand out’ from the background noise, we would eventually
find four copies of the letter ‘I’ set in 16 point Garamond Italic (Fig. 1c).

c© The Author(s) 2020
M. R. Berthold et al. (Eds.): IDA 2020, LNCS 12080, pp. 158–170, 2020.
https://doi.org/10.1007/978-3-030-44584-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44584-3_13&domain=pdf
https://doi.org/10.1007/978-3-030-44584-3_13

Vouw: Geometric Pattern Mining Using the MDL Principle 159

Fig. 1. Geometric pattern mining example. Each element is in [0, 255].

The 35 elements that make up a single ‘I’ in the example form what we call
a geometric pattern. Since its four occurrences jointly cover a substantial part
of the matrix, we could use this pattern to describe the matrix more succinctly
than by 768 independent values. That is, we could describe it as the pattern ‘I’
at locations (5, 4), (11, 11), (20, 3), (25, 10) plus 628 independent values, hereby
separating structure from accidental (noise) data. Since the latter description
is shorter, we have compressed the data. At the same time we have learned
something about the data, namely that it contains four I’s. This suggests that
we can use compression as a criterion to find patterns that describe the data.

Approach and Contributions. Our first contribution is that we introduce and
formally define geometric pattern mining, i.e., the problem of finding recurring
local structure in geometric, discrete matrices. Although we restrict the scope
of this paper to two-dimensional data, the generic concept applies to higher
dimensions. Potential applications include the analysis of satellite imagery, tex-
ture recognition, and (pattern-based) clustering.

We distinguish three types of geometric patterns: (1) exact patterns, which
must appear exactly identical in the data to match; (2) fault-tolerant patterns,
which may have noisy occurrences and are therefore better suited to noisy data;
and (3) transformation-equivalent patterns, which are identical after some trans-
formation (such as mirror, inverse, rotate, etc.). Each consecutive type makes
the problem more expressive and hence more complex. In this initial paper we
therefore restrict the scope to the first, exact type.

As many geometric patterns can be found in a typical matrix, it is crucial to
find a compact set of patterns that together describe the structure in the data
well. We regard this as a model selection problem, where a model is defined by
a set of patterns. Following our observation above, that geometric patterns can
be used to compress the data, our second contribution is the formalisation of
the model selection problem by using the Minimum Description Length (MDL)
principle [5,8]. Central to MDL is the notion that ‘learning’ can be thought
of as ‘finding regularity’ and that regularity itself is a property of data that
is exploited by compressing said data. This matches very well with the goals of
pattern mining, as a result of which the MDL principle has proven very successful
for MDL-based pattern mining [7,12].

160 M. Faas and M. van Leeuwen

Finally, our third contribution is Vouw, a heuristic algorithm for MDL-based
geometric pattern mining that (1) finds compact yet descriptive sets of patterns,
(2) requires no parameters, and (3) is tolerant to noise in the data (but not
in the occurrences of the patterns). We empirically evaluate Vouw on synthetic
data and demonstrate that it is able to accurately recover planted patterns.

2 Related Work

As the first pattern mining approach using the MDL principle, Krimp [12] was
one of the main sources of inspiration for this paper. Many papers on pattern-
based modelling using MDL have appeared since, both improving search, e.g.,
Slim [10], and extensions to other problems, e.g., Classy [7] for rule-based clas-
sification.

The problem closest to ours is probably that of geometric tiling, as introduced
by Gionis et al. [4] and later also combined with the MDL principle by Tatti
and Vreeken [11]. Geometric tiling, however, is limited to Boolean data and
rectangularly shaped patterns (tiles); we strongly relax both these limitations
(but as of yet do not support patterns based on densities or noisy occurrences).

Campana et al. [2] also use matrix-like data (textures) in a compression-
based similarity measure. Their method, however, has less value for explanatory
analysis as it relies on generic compression algorithms that are essentially a black
box.

Geometric pattern mining is different from graph mining, although the con-
cept of a matrix can be redefined as a grid-like graph where each node has a
fixed degree. This is the approach taken by Deville et al. [3], solving a problem
similar to ours but using an approach akin to bag-of-words instead of the MDL
principle.

3 Geometric Pattern Mining Using MDL

We define geometric pattern mining on bounded, discrete and two-dimensional
raster-based data. We represent this data as an M × N matrix A whose rows
and columns are finite and in a fixed ordering (i.e., reordering rows and columns
semantically alters the matrix). Each element ai,j ∈ S, where row i ∈ [0;N),
column j ∈ [0;M), and S is a finite set of symbols, i.e., the alphabet of A.

According to the MDL principle, the shortest (optimal) description of A
reveals all structure of A in the most succinct way possible. This optimal descrip-
tion is only optimal if we can unambiguously reconstruct A from it and nothing
more—the compression is both minimal and lossless. Figure 2 illustrates how an
example matrix could be succinctly described using patterns: matrix A is decom-
posed into patterns X and Y . A set of such patterns constitutes the model for
a matrix A, denoted HA (or H for short when A is clear from the context). In
order to reconstruct A from this model, we also need a mapping from the HA

back to A. This mapping represents what (two-part) MDL calls the data given
the model HA. In this context we can think of this as a set of all instructions

Vouw: Geometric Pattern Mining Using the MDL Principle 161

required to rebuild A from HA, which we call the instantiation of HA and is
denoted by I in the example. These concepts allow us to express matrix A as
a decomposition into sets of local and global spatial information, which we will
next describe in more detail.

Fig. 2. Example decomposition of A into instantiation I and patterns X, Y .

3.1 Patterns and Instances

� We define a pattern as an MX × NX submatrix X of the original matrix
A. Elements of this submatrix may be ·, the empty element, which gives us the
ability to cut-out any irregular-shaped part of A. We additionally require the
elements of X to be adjacent (horizontal, vertical or diagonal) to at least one
non-empty element and that no rows and columns are empty.

From this definition, the dimensions MX × NX give the smallest rectangle
around X (the bounding box). We also define the cardinality |X| of X as the
number of non-empty elements. We call a pattern X with |X| = 1 a singleton
pattern, i.e., a pattern containing exactly one element of A.

Each pattern contains a special pivot element: pivot(X) is the first non-
empty element of X. A pivot can be thought of as a fixed point in X which
we can use to position its elements in relation to A. This translation, or offset,
is a tuple q = (i, j) that is on the same domain as an index in A. We realise
this translation by placing all elements of X in an empty M × X size matrix
such that the pivot element is at (i, j). We formalise this in the instantiation
operator ⊗:

� We define the instance X⊗(i, j) as the M ×N matrix containing all elements
of X such that pivot(X) is at index (i, j) and the distances between all elements
are preserved. The resulting matrix contains no additional non-empty elements.

Since this does not yield valid results for arbitrary offsets (i, j), we enforce two
constraints: (1) an instance must be well-defined: placing pivot(X) at index
(i, j) must result in an instance that contains all elements of X, and (2) elements
of instances cannot overlap, i.e., each element of A can be described only once.

� Two pattern instances X ⊗ q and Y ⊗ r, with q �= r are non-overlapping if
|(X ⊗ q) + (Y ⊗ r)| = |X| + |Y |.

From here on we will use the same letter in lower case to denote an arbitrary
instance of a pattern, e.g., x = X ⊗ q when the exact value of q is unimportant.
Since instances are simply patterns projected onto an M × N matrix, we can
reverse ⊗ by removing all completely empty rows and columns:

� Let X ⊗ q be an instance of X, then by definition we say that �(X ⊗ q) = X.

162 M. Faas and M. van Leeuwen

We briefly introduced the instantiation I as a set of ‘instructions’ of where
instances of each pattern should be positioned in order to obtain A. As Fig. 2
suggests, this mapping has the shape of an M × N matrix.

� Given a set of patterns H, the instantiation (matrix) I is an M × N matrix
such that Ii,j ∈ H ∪ {·} for all (i, j), where · denotes the empty element. For all
non-empty Ii,j it holds that Ii,j ⊗ (i, j) is a non-overlapping instance of Ii,j in A.

3.2 The Problem and Its Solution Space

Larger patterns can be naturally constructed by joining (or merging) smaller
patterns in a bottom-up fashion. To limit the considered patterns to those rele-
vant to A, instances can be used as an intermediate step. As Fig. 3 demonstrates,
we can use a simple element-wise matrix addition to sum two instances and use
� to obtain a joined pattern. Here we start by instantiating X and Y with offsets
(1, 0) and (1, 1), respectively. We add the resulting x and y to obtain �z, the
union of X and Y with relative offset (1, 1) − (1, 0) = (0, 1).

Fig. 3. Example of joining patterns X and Y to construct a new pattern Z.

The Sets HA and IA . We define the model class H as the set of all possi-
ble models for all possible inputs. Without any prior knowledge, this would be
the search space. To simplify the search, however, we only consider the more
bounded subset HA of all possible models for A, and IA, the set of all possible
instantiations for these models. To this end we first define H0

A to be the model
with only singleton patterns, i.e., H0

A = S, and denote its corresponding instan-
tiation matrix by I0A. Given that each element of I0A must correspond to exactly
one element of A in H0

A, we see that each Ii,j = ai,j and so we have I0A = A.
Using H0

A and I0A as base cases we can now inductively define IA:

Base case I0A ∈ IA

By induction If I is in IA then take any pair Ii,j , Ik,l ∈ I such that (i, j) ≤ (k, l)
in lexicographical order. Then the set I ′ is also in IA, providing I ′ equals I
except: I ′

i,j := �(
Ii,j ⊗ (i, j) + Ik,l ⊗ (k, l)

)

I ′
k,l := ·

This shows we can add any two instances together, in any order, as they are by
definition always non-overlapping and thus valid in A, and hereby obtain another
element of IA. Eventually this results in just one big instance that is equal to
A. Note that when we take two elements Ii,j , Ik,l ∈ I we force (i, j) ≤ (k, l), not
only to eliminate different routes to the same instance matrix, but also so that
the pivot of the new pattern coincides with Ii,j . We can then leave Ik,l empty.

Vouw: Geometric Pattern Mining Using the MDL Principle 163

The construction of IA also implicitly defines HA. While this may seem
odd—defining models for instantiations instead of the other way around—note
that there is no unambiguous way to find one instantiation for a given model.
Instead we find the following definition by applying the inductive construction:

HA =
{{�(x) | x ∈ I} ∣

∣ I ∈ IA

}
. (1)

So for any instantiation I ∈ IA there is a corresponding set in HA of all patterns
that occur in I. This results in an interesting symbiosis between model and
instantiation: increasing the complexity of one decreases that of the other. This
construction gives a tightly connected lattice as shown in Fig. 4.

3.3 Encoding Models and Instances

From all models in HA we want to select the model that describes A best.
Two-part MDL [5] tells us to choose that model that minimises the sum of
L1(HA) + L2(A|HA), where L1 and L2 are two functions that give the length
of the model and the length of ‘the data given the model’, respectively. In this
context, the data given the model is given by IA, which represents the accidental
information needed to reconstruct the data A from HA.

Fig. 4. Model space lattice for a 2×2 Boolean matrix. The V, W, and Z columns show
which pattern is added in each step, while I depicts the current instantiation.

In order to compute their lengths, we need to decide how to encode HA and
I. As this encoding is of great influence on the outcome, we should adhere to
the conditions that follow from MDL theory: (1) the model and data must be
encoded losslessly; and (2) the encoding should be as concise as possible, i.e., it
should be optimal. Note that for the purpose of model selection we only need
the length functions; we do not need to actually encode the patterns or data.

Code Length Functions. Although the patterns in H and instantiation matrix
I are all matrices, they have different characteristics and thus require different
encodings. For example, the size of I is constant and can be ignored, while the

164 M. Faas and M. van Leeuwen

Table 1. Code length definitions. Each row specifies the code length given by the first
column as the sum of the remaining terms.

Matrix Bounds # Elements Positions Symbols

Lp(X) Pattern log(MN) LN

(
MXNX

|X|
) |X| log(|S|)

L1(H) Model N/A LN (|H|) N/A
∑

X∈H Lp(X)

L2(I) Instantiation Constant log(MN) Implicit Lpp(I)

sizes of the patterns vary and should be encoded. Hence we construct different
length functions1 for the different components of H and I, as listed in Table 1.

When encoding I, we observe that it contains each pattern X ∈ H multiple
times, given by the usage of X. Using the prequential plug-in code [5] to
encode I enables us to omit encoding these usages separately, which would cre-
ate unwanted bias. The prequential plug-in code gives us the following length
function for I. We use ε = 0.5 and elaborate on its derivation in the Appendix2.

Lpp(I | Pplugin) = −
|H|∑

Xi∈h

[
log

Γ (usage(Xi) + ε)
Γ (ε)

]
+ log

Γ (|I| + ε|H|)
Γ (ε|H|) (2)

Each length function has four terms. First we encode the total size of the
matrix. Since we assume MN to be known/constant, we can use this constant to
define the uniform distribution 1

MN , so that log MN encodes an arbitrary index
of A. Next we encode the number of elements that are non-empty. For patterns
this value is encoded together with the third term, namely the positions of the
non-empty elements. We use the previously encoded MXNX in the binominal
function to enumerate the ways we can place the |X| elements onto a grid of
MXNX . This gives us both how many non-empties there are as well as where
they are. Finally the fourth term is the length of the actual symbols that encode
the elements of the matrix. In case we encode single elements of A, we assume
that each unique value in A occurs with equal probability; without other prior
knowledge, using the uniform distribution has minimax regret and is therefore
optimal. For the instance matrix, which encodes symbols to patterns, the pre-
quential code is used as demonstrated before. Note that LN is the universal prior
for the integers [9], which can be used for arbitrary integers and penalises larger
integers.

4 The Vouw Algorithm

Pattern mining often yields vast search spaces and geometric pattern mining is
no exception. We therefore use a heuristic approach, as is common in MDL-based
approaches [7,10,12]. We devise a greedy algorithm that exploits the inductive

1 We calculate code lengths in bits and therefore all logarithms have base 2.
2 The appendix is available on https://arxiv.org/abs/1911.09587.

https://arxiv.org/abs/1911.09587

Vouw: Geometric Pattern Mining Using the MDL Principle 165

definition of the search space as shown by the lattice in Fig. 4. We start with a
completely underfit model (leftmost in the lattice), where there is one instance for
each matrix element. Next, in each iteration we combine two patterns, resulting
in one or more pairs of instances to be merged (i.e., we move one step right in the
lattice). In each step we merge the pair of patterns that improves compression
most, and we repeat this until no improvement is possible.

4.1 Finding Candidates

The first step is to find the ‘best’ candidate pair of patterns for merging
(Algorithm 1). A candidate is denoted as a tuple (X,Y, δ), where X and Y are pat-
terns and δ is the relative offset of X and Y as they occur in the data. Since we only
need to consider pairs of patterns and offsets that actually occur in the instance
matrix, we can directly enumerate candidates from the instantiation matrix and
never even need to consider the original data.

Algorithm 1 FindCandidates
Input: I
Output: C
1: for all x ∈ I do
2: for all y ∈ POST(x) do
3: X ← �(x), Y ← �(y)
4: δ ← dist(X, Y)
5: if X = Y then
6: if V (x)[e] = 1 continue
7: V (y)[e] ← 1
8: end if
9: C ← C ∪ (X, Y, δ)

10: sup(X, Y, δ) += 1
11: end for
12: end for

Algorithm 2 Vouw
Input: H, I
1: C ← FindCandidates(I)
2: (X, Y, δ) ∈ C : ∀c∈CΔL((X, Y, δ)) ≤ ΔL(c)
3: ΔLbest = ΔL((X, Y, δ))
4: if ΔLbest > 0 then
5: Z ← �(X ⊗ (0, 0) + (Y ⊗ δ))
6: H ← H ∪ {Z}
7: for all xi ∈ I | �(xi) = X do
8: for all y ∈ POST(xi) | �(y) = Y do
9: xi ← Z, y ← ·

10: end for
11: end for
12: end if
13: repeat until ΔLbest < 0

The support of a candidate, written sup(X,Y, δ), tells how often it is found
in the instance matrix. Computing support is not completely trivial, as one can-
didate occurs multiple times in ‘mirrored’ configurations, such as (X,Y, δ) and
(Y,X,−δ), which are equivalent but can still be found separately. Furthermore,
due to the definition of a pattern, many potential candidates cannot be consid-
ered by the simple fact that their elements are not adjacent.

Peripheries. For each instance x we define its periphery : the set of instances
which are positioned such that their union with x produces a valid pattern. This
set is split into anterior ANT(X) and posterior POST(X) peripheries, contain-
ing instances that come before and after x in lexicographical order, respectively.
This enables us to scan the instance matrix once, in lexicographical order. For

166 M. Faas and M. van Leeuwen

each instance x, we only consider the instances POST(x) as candidates, thereby
eliminating any (mirrored) duplicates.

Self-overlap. Self-overlap happens for candidates of the form (X,X, δ). In this
case, too many or too few copies may be counted. Take for example a straight
line of five instances of X. There are four unique pairs of two X’s, but only two
can be merged at a time, in three different ways. Therefore, when considering
candidates of the form (X,X, δ), we also compute an overlap coefficient. This
coefficient e is given by e = (2NX +1)δi + δj +NX , which essentially transforms
δ into a one-dimensional coordinate space of all possible ways that X could be
arranged after and adjacent to itself. For each instance x1 a vector of bits V (x)
is used to remember if we have already encountered a combination x1, x2 with
coefficient e, such that we do not count a combination x2, x3 with an equal e.
This eliminates the problem of incorrect counting due to self-overlap.

4.2 Gain Computation

After candidate search we have a set of candidates C and their respective sup-
ports. The next step is to select the candidate that gives the best gain: the
improvement in compression by merging the candidate pair of patterns. For
each candidate c = (X,Y, δ) the gain ΔL(A′, c) is comprised of two parts: (1)
the negative gain of adding the union pattern Z to the model H, resulting in
H ′, and (2) the gain of replacing all instances x, y with relative offset δ by Z in
I, resulting in I ′. We use length functions L1, L2 to derive an equation for gain:

ΔL(A′, c) =
(
L1(H ′) + L2(I ′)

)
−

(
L1(H) + L2(I)

)

= LN (|H|) − LN (|H| + 1) − Lp(Z) +
(
L2(I ′) − L2(I)

) (3)

As we can see, the terms with L1 are simplified to −Lp(Z) and the model’s
length because L1 is simply a summation of individual pattern lengths. The
equation of L2 requires the recomputation of the entire instance matrix’ length,
which is expensive considering we need to perform it for every candidate, every
iteration. However, we can rework the function Lpp in Eq. (2) by observing that
we can isolate the logarithms and generalise them into

logG(a, b) = log
Γ (a + bε)

Γ (bε)
= log Γ (a + bε) − log Γ (bε), (4)

which can be used to rework the second part of Eq. (3) in such way that the gain
equation can be computed in constant time complexity.

L2(I ′) − L2(I) = logG(U(X), 1) + logG(U(Y), 1)
− logG(U(X) − U(Z), 1) − logG(U(Y) − U(Z), 1)
− logG(U(Z), 1) + logG(|I|, |H|) − logG(|I ′|, |H ′|)

(5)

Notice that in some cases the usages of X and Y are equal to that of Z, which
means additional gain is created by removing X and Y from the model.

Vouw: Geometric Pattern Mining Using the MDL Principle 167

4.3 Mining a Set of Patterns

In the second part of the algorithm, listed in Algorithm 2, we select the candi-
date (X,Y, δ) with the largest gain and merge X and Y to form Z, as explained
in Sect. 3.2. We linearly traverse I to replace all instances x and y with relative
offset δ by instances of Z. (X,Y, δ) was constructed by looking in the posterior
periphery of all x to find Y and δ, which means that Y always comes after X in
lexicographical order. The pivot of a pattern is the first element in lexicograph-
ical order, therefore pivot(Z) = pivot(X). This means that we can replace all
matching x with an instance of Z and all matching y with ·.

4.4 Improvements

Local Search. To improve the efficiency of finding large patterns without sac-
rificing the underlying idea of the original heuristics, we add an optional local
search. Observe that without local search, Vouw generates a large pattern X

Fig. 5. Synthetic patterns are added to a matrix filled with noise. The difference
between the ground truth and the matrix reconstructed by the algorithm is used to
compute precision and recall.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

C
om

pr
es
si
on

Signal-to-noise Ratio

256
512

1024
2048

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

R
ec
al
l

Prevalence per Pattern

128
256
512

1024

Fig. 6. The influence of SNR in the ground truth (left) and prevalence on recall (right)

168 M. Faas and M. van Leeuwen

by adding small elements to an incrementally growing pattern, resulting in a
behaviour that requires up to |X| − 1 steps. To speed this up, we can try to
‘predict’ which elements will be added to X and add them immediately. After
selecting candidate (X,Y, δ) and merging X and Y into Z, for all m resulting
instances zi ∈ z0, . . . , zm−1 we try to find pattern W and offset δ such that

∀i∈0...m∃w ∈ ANT(zi) ∪ POST(zi) · �(w) = W ∧ dist(zi, w) = δ. (6)

This yields zero or more candidates (Z,W, δ), which are then treated as any
set of candidates: candidates with the highest gain are iteratively merged until
no candidates with positive gain exist. This essentially means that we run the
baseline algorithm only on the peripheries of all zi, with the condition that the
support of the candidates is equal to that of Z.

Reusing Candidates. We can improve performance by reusing the candidate
set and slightly changing the search heuristic of the algorithm. The Best-*
heuristic selects multiple candidates on each iteration, as opposed to the baseline
Best-1 heuristic that only selects a single candidate with the highest gain. Best-*
selects candidates in descending order of gain until no candidates with positive
gain are left. Furthermore we only consider candidates that are all disjoint,
because when we merge candidate (X,Y, δ), remaining candidates with X and/or
Y have unknown support and therefore unknown gain.

5 Experiments

To asses Vouw’s practical performance we primarily use Ril, a synthetic dataset
generator developed for this purpose. Ril utilises random walks to populate a
matrix with patterns of a given size and prevalence, up to a specified density,
while filling the remainder of the matrix with noise. Both the pattern elements
and the noise are picked from the same uniform random distribution on the
interval [0, 255]. The signal-to-noise ratio (SNR) of the data is defined as the
number of pattern elements over the matrix size MN . The objective of the
experiment is to assess whether Vouw recovers all of the signal (the patterns)
and none of the noise. Figure 5 gives an example of the generated data and how
it is evaluated. A more extensive description can be found in the Appendix (see
footnote 2).

Implementation. The implementation3 used consists of the Vouw algorithm
(written in vanilla C/C++), a GUI, and the synthetic benchmark Ril. Experi-
ments were performed on an Intel Xeon-E2630v3 with 512 GB RAM.

Evaluation. Completely random data (noise) is unlikely to be compressed. The
SNR tells us how much of the data is noise and thus conveniently gives us an
upper bound of how much compression could be achieved. We use the ground
truth SNR versus the resulting compression ratio as a benchmark to tell us how
close we are to finding all the structure in the ground truth.
3 https://github.com/mickymuis/libvouw.

https://github.com/mickymuis/libvouw

Vouw: Geometric Pattern Mining Using the MDL Principle 169

In addition, we also compare the ground truth matrix to the obtained model
and instantiation. As singleton patterns do not yield any compression over the
baseline model, we reconstruct the matrix omitting any singleton patterns. Ignor-
ing the actual values, this gives us a Boolean matrix with ‘positives’ (pattern
occurrence = signal) and ‘negatives’ (no pattern = noise). By comparing each ele-
ment in this matrix with the corresponding element in the ground truth matrix,
precision and recall can be calculated and evaluated.

Figure 6 (left) shows the influence of ground truth SNR on compression ratio
for different matrix sizes. Compression ratio and SNR are clearly strongly cor-
related. Figure 6 (right) shows that patterns with a low prevalence (i.e., number
of planted occurrences) have a lower probability of being ‘detected’ by the algo-
rithm as they are more likely to be accidental/noise. Increasing the matrix size
also increases this threshold. In Table 2 we look at the influence of the two
improvements upon the baseline algorithm as described in Sect. 4.4. In terms
of quality, local search can improve the results quite substantially while Best-*
notably lowers precision. Both improve speed by an order of magnitude.

Table 2. Performance measurements for the baseline algorithm and its optimisations.

Size SNR Precision/Recall Average time

None Local Best-* Both None Local Best-* Both

256 .05 .98/.98 .99/.99 .93/.98 .95/.99 29 s 1 s 2 s 1 s

.3 .99/.8 .99/.88 .96/.82 .99/.89 2 m 32 s 9 s 5 s 5 s

512 .05 .98/.97 .99/.99 .87/.97 .93/.98 5 m 26 s 8 s 20 s 6 s

.3 .97/.93 .99/.99 .94/.91 .97/.90 26 m 52 s 2 m 32 s 24 s 65 s

1024 .05 .97/.98 .99/.99 .84/.98 .92/.96 21 m 34 s 44 s 37 s 34 s

.3 .98/.98 .99/.99 .93/.96 .98/.97 116 m 4s 7m 31 s 1 m 49 s 3 m 31 s

6 Conclusions

We introduced geometric pattern mining, the problem of finding recurring struc-
tures in discrete, geometric matrices, or raster-based data. Further, we presented
Vouw, a heuristic algorithm for finding sets of geometric patterns that are good
descriptions according to the MDL principle. It is capable of accurately recover-
ing patterns from synthetic data, and the resulting compression ratios are on par
with the expectations based on the density of the data. For the future, we think
that extensions to fault-tolerant patterns and clustering have large potential.

References

1. Aggarwal, C.C., Han, J.: Frequent Pattern Mining. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-07821-2

2. Bilson, J.L.C., Keogh, E.J.: A compression-based distance measure for texture.
Statistical Analysis and Data Mining 3(6), 381–398 (2010)

https://doi.org/10.1007/978-3-319-07821-2

170 M. Faas and M. van Leeuwen

3. Deville, R., Fromont, E., Jeudy, B., Solnon, C.: GriMa: a grid mining algorithm
for bag-of-grid-based classification. In: Robles-Kelly, A., Loog, M., Biggio, B.,
Escolano, F., Wilson, R. (eds.) S+SSPR 2016. LNCS, vol. 10029, pp. 132–142.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49055-7 12

4. Gionis, A., Mannila, H., Seppänen, J.K.: Geometric and combinatorial tiles in 0–1
data. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD
2004. LNCS (LNAI), vol. 3202, pp. 173–184. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30116-5 18

5. Grünwald, P.D.: The Minimum Description Length Principle. MIT press, Cam-
bridge (2007)

6. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions. TCS, vol. 3. Springer, New York (2008). https://doi.org/10.1007/978-0-387-
49820-1

7. Proença, H.M., van Leeuwen, M.: Interpretable multiclass classification by MDL-
based rule lists. Inf. Sci. 12, 1372–1393 (2020)

8. Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471
(1978)

9. Rissanen, J.: A universal prior for integers and estimation by minimum description
length. Ann. Stat. 11, 416–431 (1983)

10. Smets, K., Vreeken, J.: Slim: directly mining descriptive patterns. In: Proceedings
of the 2012 SIAM International Conference on Data Mining, SIAM, pp. 236–247
(2012)

11. Tatti, N., Vreeken, J.: Discovering descriptive tile trees - by mining optimal geo-
metric subtiles. In: Proceedings of ECML PKDD 2012, pp. 9–24 (2012)

12. Vreeken, J., van Leeuwen, M., Siebes, A.: KRIMP: mining itemsets that compress.
Data Min. Knowl. Disc. 23(1), 169–214 (2011)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-49055-7_12
https://doi.org/10.1007/978-3-540-30116-5_18
https://doi.org/10.1007/978-3-540-30116-5_18
https://doi.org/10.1007/978-0-387-49820-1
https://doi.org/10.1007/978-0-387-49820-1
http://creativecommons.org/licenses/by/4.0/

	Vouw: Geometric Pattern Mining Using the MDL Principle
	1 Introduction
	2 Related Work
	3 Geometric Pattern Mining Using MDL
	3.1 Patterns and Instances
	3.2 The Problem and Its Solution Space
	3.3 Encoding Models and Instances

	4 The Vouw Algorithm
	4.1 Finding Candidates
	4.2 Gain Computation
	4.3 Mining a Set of Patterns
	4.4 Improvements

	5 Experiments
	6 Conclusions
	References

