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Adipocyte Specific Signaling
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Abstract Adipocytes are the most abundant cells within the adipose tissue and are
the cell type responsible for the tissue dynamic metabolic and endocrine activity.
Under energy surplus conditions, the adipocyte is able to suffer hypertrophy in order
to accommodate energy in form of lipids. Simultaneously, new adipocytes are differ-
entiated through a complex and specific process, known as adipogenesis. While this
process seems clear for white adipocytes in white adipose tissue, brown adipocytes
and brownadipose tissue have distinct characteristics and function.Brownadipocytes
are not relatedwith fat accumulation but rather with thermogenesis, a process defined
by a rapidly oxidization of lipids in order to produce heat. Additionally, a class of
beige adipocytes,which are inducible thermogenic adipocytes originating fromwhite
adipose tissue andphenotypically distinct fromboth, have beendescribed thoughhow
these are originated and which are the main functions are still matters of discussion.
Interestingly, the induction of thermogenesis seems to improve insulin resistance,
adiposity and hyperlipidemia. Thus, inducing the browning of white adipocytes to
beige adipocytes is thought to be promising to improve the common metabolic dis-
orders, such as obesity or metabolic syndrome. This chapter focuses on the specific
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signaling and regulatory control of adipocyte functions, particularly adipogenesis
and adipocyte browning. Emerging insights of these processes are herein discussed,
as promising therapeutic targets for obesity and other common metabolic disorders.

Keywords Adipocyte · Adipogenesis · Beige adipocyte · Brown adipocyte ·
Browning · Thermogenesis

Abbreviations

ACTRII Activin type II receptor
ADSC Adipose-derived stem cell
AT Adipose tissue
BAT Brown adipose tissue
C/EBPA CCAAT/enhancer-binding protein alpha
C/EBPB CCAAT/enhancer-binding protein beta
C/EBPD CCAAT/enhancer-binding protein delta
CAMKII Ca2+/calmodulin-dependent kinase II
cAMP Cyclic adenosine monophosphate
DLK1 Delta-like 1 homolog
EBF2 Early B-cell factor 2
EHMT1 Euchromatic histone lysine methyltransferase 1
EN1 Engrailed 1
ERK Extracellular signal-regulated kinase
FABP/aP2 Fatty acid binding protein/adipose protein 2
FGF Fibroblast growth factor
FGF1R FGF type 1 receptor
FZD Frizzled receptor
GLUT Glucose transporter
GPDH Glycerol-3-phosphate dehydrogenase
Hh Hedgehog
hMADSC Human multipotent adipose-derived stem cell
IRF4 Interferon regulatory factor 4
KLF Kruppel-like factors
LEF/TCF Lymphoid-enhancer-binding factor/T-cell-specific transcription factor
LRP5/6 Low-density lipoprotein-receptor-related protein 5 and 6 co-receptors
LXR Liver X receptor
MSC Mesenchymal stem cell
MYF5 Myogenic factor 5
MYH11 Myosin heavy chain 11
PAX7 Paired-box protein 7
PDGFRA Platelet-derived growth factor receptor A
PGC1A Proliferator-activated receptor gamma coactivator 1-alpha
PKA Protein kinase A
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PPARG Peroxisome proliferator-activated receptor gamma
pRb Retinoblastoma protein
PRDM16 Positive regulatory domain containing protein 16
Pref-1 Preadipocyte factor 1
Ptc Patched receptor
RIP140 Receptor-interacting protein 140
RyR2 Ryanodine receptor 2
SCA1 Stem cells antigen 1
SERCA2b Sarco/endoplastmatic reticulum Ca2+-ATPase 2b
Smo Smoothened protein
SRC2 Steroid receptor co-activator 2
TACE Tumor necrosis alpha converting enzyme
TGF Transforming growth factor
TNF-A Tumor necrosis factor alpha
TWIST1 Twist-related protein 1
UCP Uncoupling protein
WAT White adipose tissue
Wnt Wingless-type MMTV integration site
ZFP516 Zinc-finger protein 516

15.1 Introduction

The adipose tissue (AT) is a metabolically active organ that acts as the main energy
repository in the human body and as an endocrine organ able to synthesize several
biologically active molecules that regulate metabolic homeostasis. The AT fulfils
several functions, which may vary among fat depots due to its size, distribution, and
heterogeneity according to the molecular, morphological, and metabolic profiles [1].
In humans, there are two main types of AT, white AT (WAT) and brown AT (BAT),
with relevant differences in morphology and function. In the human body, BAT is
mainly located in the supraclavicular, periadrenal, and paravertebral regions [2] and
its relative proportion decreases since birth into adulthood [3]. Although BAT is
also able to store energy in form of fat, the main activity of the tissue lies in heat
production or thermogenesis [4]. In contrast, WAT contribution for thermogenesis is
nearly irrelevant, but presents much broader physiological functions. Despite WAT
being widely distributed in the human body, 80% of total body fat is located subcuta-
neously, with the main fat depots in the abdominal and femoral-gluteal regions. The
remaining 20% are located around the visceral organs, predominantly in proximity
to abdominal visceral AT, such as mesenteric and omental, and around the kidney in
the retroperitoneal region [5]. By involving organs and infiltrating tissues, the WAT
not only offers mechanical protection, but also plays an important role in the regula-
tion of the body temperature, acting as a thermal insulator [4, 6]. Furthermore, WAT
accomplishes multiple other functions, such as immune, endocrine, and regenerative
[7, 8].
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The AT is mainly constituted by adipocytes. Adipocytes are very unique cells
due to their morphology and functions. Adipocytes are responsible for the dynamic
activity of the AT, conferring metabolic and endocrine activity to the tissue. The
process of cellular differentiation into adipocytes, or adipogenesis, is a specific and
finely regulated process which differs in WAT and BAT. While white adipocytes are
the “classic” adipocytes, whose main function is to accumulate energy in form of
lipids in large lipid droplets, brown adipocytes are rather distinct. Brown adipocytes
are described as being smaller in comparison to white adipocytes, with relatively
abundant cytoplasm, numerous small lipid droplets of different sizes and numerous
mitochondria that produce heat by fatty acids oxidation [4]. More recently, a third
type of adipocytes was identified, being characterized as an intermediatemorphology
between brown and white adipocytes. These adipocytes also have a thermogenic
activity and a high number of mitochondria, thus have been termed as beige or brite
adipocytes. In this chapter, the specific signaling and regulatory control of adipocytes
will be discussed, particularly white and brown adipogenesis, thermogenesis, and the
interchange between the two adipocyte phenotypes with focus onWATbrowning and
beige adipocytes development.

15.2 White Adipocyte Signaling

15.2.1 White Adipogenesis

Adipose tissue mass accumulation is associated with adipocyte cell hypertrophy and
increased number of white adipocytes. Whenever there is an energy surplus, excess
energy is predominantly accumulated in the form of lipids in white adipocytes, which
hypertrophy as the lipid droplets size increase. This WAT buffering activity is sug-
gested as an adaptive response to energy excess, which protects other tissues from
lipotoxicity [9]. The maintenance of WAT homeostasis includes simultaneous cell
hyperplasia, a phenomena by which adipocyte precursors, or preadipocytes, prolif-
erate and differentiate into mature adipocytes [10]. Thus, this process denominated
adipogenesis culminates with the formation of new adipocyte cells and consists
of a two phase process (Fig. 15.1). The first step towards the differentiation into
the adipocyte lineage consists in the generation of preadipocytes from mesenchy-
mal stem cells (MSCs). The second phase includes the terminal differentiation of
preadipocytes into functional mature adipocytes, including morphologic alterations
and the formation of lipid droplets.

As mature adipocytes are not able to proliferate in vivo, the regeneration and
hyperplasia of the WAT is thought to be dependent on the proliferative capacity of a
pool of precursor cells, the preadipocytes [11]. In general, the term “preadipocyte”
is widely used to describe a progenitor cell that is responsible for the formation of
mature adipocytes [12]. A crucial property of preadipocytes is the ability to prolifer-
ate and differentiate into mature adipocytes in order to maintain the AT homeostasis
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Fig. 15.1 Schematic illustration ofwhite adipogenesis.White adipogenesis is described as two-step
process, starting with the proliferation and commitment of white preadipocytes and culminating
with the terminal differentiation to mature white adipocytes. The differentiation process starts with
the expression of two CCAAT/enhancer-binding proteins (C/EBP), C/EBPB and C/EBPD, which
directly induce the expression of C/EBPA and peroxisome proliferator-activated receptor gamma
(PPARG), themost important transcriptional regulators of adipogenesis. Then, C/EBPAandPPARG
directly induce self-expression in a positive feedback mechanism, activating several downstream
adipocyte-specific genes

throughout the lifespan of a living organism [13]. These cells are also characterized
as a committed cell population destined to proliferate and differentiate only into the
adipose-lineage, althoughmorphologically undistinguished from its progenitors [14,
15]. Preadipocytes are thought to arise fromMSCs andmore specifically from human
adipose-derived stem cells (ADSCs). In fact, ADSCswere first identified in 2002 as a
subpopulation ofmultipotent self-renewing cells isolated fromWAT that aremorpho-
logically and phenotypically similar to the MSCs [16]. Then, ADSCs were isolated,
cultured, and termed human multipotent adipose-derived stem cells (hMADSCs)
[17]. As hMADSCsmaintain the capacity to enter the adipose lineage and to differen-
tiate into cells that present characteristics highly similar to native human adipocytes,
these are considered as a faithful model to study human AT physiology [18–20]. One
of the major focus in adipocyte biology research concerns the identification of dis-
tinct cellular intermediates between ASCs and fully functional adipocytes, although
there is a lack of specific biomarkers to identify and isolate these cells. However,
preadipocytes isolated from different AT present different characteristics in terms of
gene expression profiles, proliferation, differentiation, and consequently signaling
pathways [21]. Furthermore, adipocytes from different fat depots also present differ-
ent functional properties, contributions towards energy homeostasis and thus differ-
ent behaviors during metabolic disease scenarios [22, 23]. However, the molecular
mechanisms underlying these AT regional-dependent differences remain unknown.

The second and last phase of adipogenesis is the terminal differentiation, where
preadipocytes acquire a phenotype of mature adipocytes. Mature white adipocytes
are cells specialized in the synthesis, storage, and mobilization of lipids, which
are accumulated in the lipid droplet. This lipid droplet occupies the majority of
the adipocyte cytoplasm and consequently the nucleus is found at the periphery of
the cell [24]. The terminal differentiation consists of a cascade of transcriptional
events which culminates in the formation of mature adipocytes. It is thought that
the differentiation process starts with the expression of two CCAAT/enhancer-
binding proteins (C/EBP), C/EBPB and C/EBPD, which directly induce the
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expression of C/EBPA and peroxisome proliferator-activated receptor gamma
(PPARG), the most important transcriptional regulators of adipogenesis [25, 26].
Then, C/EBPA and PPARG directly induce its own expression in a positive feedback
mechanism [27] and activate several downstream adipocyte-specific genes that
are necessary for adipocyte function, including fatty acid binding protein/adipose
protein 2 (FABP/aP2), insulin receptor, glucose transporters (GLUTs), acetyl-coA
carboxylase, fatty acid synthase, and glycerol-3-phosphate dehydrogenase (GPDH)
[28]. Although the factors that control proliferation, commitment, and differentiation
of preadipocytes are still poorly characterized, some important regulatory pathways
were already identified (Fig. 15.2) and will be discussed on the subsequent topics.

15.2.2 White Adipogenesis Regulation

15.2.2.1 Peroxisome Proliferator-Activated Receptor Gamma (PPARG)

Inducing the expression of PPARG, the major transcriptional regulator of adipoge-
nesis, is sufficient to induce terminal adipocyte differentiation. In fact, it is thought
that it is not possible to induce preadipocytes terminal differentiation in the absence
of PPARG [29]. Moreover, all essential signaling pathways in adipogenesis seems
to converge on the regulation of PPARG expression or activity [30]. There are two
isoforms of PPARG (PPARG1 and PPARG2) that are generated by alternative splic-
ing and both are induced during adipogenesis [31]. The adipogenic activity of both
PPARG isoforms differs and PPARG2 was found to be more efficient in promot-
ing terminal differentiation. Both PPARG1 and PPARG2 were observed to induce
adipocyte differentiation in Pparg knockout fibroblasts, although at higher efficiency
for PPARG2 [32]. Additionally, it was demonstrated that 3T3-L1 cells, a cell line
originally established from primary murine embryonic fibroblasts able to differen-
tiate into adipocytes, would undergo adipocyte differentiation in the presence of
exogenous PPARG2 but not PPARG1 despite the inhibition of Pparg1 and Pparg2
genes by zin-finger proteins [33]. However, studies in animal knockout models
yielded contradictory results, which adds complexity and discussion to the topic.
For an instance, PPARG2 knockout mice were shown to have decreased AT size and
impaired adipogenesis in one study [34],while other authors observed normalAT size
and adipocyte morphology in these mice although insulin resistance was reported
[35]. Thus, while PPARG2 is important for adipogenesis in vivo, is hypothesized
not to be absolutely required when PPARG1 is normally expressed. Additionally,
PPARG is essential for the maintenance of adipocytes differentiated state. Inhibition
of PPARG in mature 3T3-L1 adipocytes led to de-differentiation with loss of lipid
accumulation and reduced expression of adipocyte specific markers [36]. Moreover,
in vivo inducible knockout of Pparg led to apoptosis in differentiated adipocytes and
stimulated new adipocytes generation [37]. These studies highlight the complexity
in PPARG signaling for adipocytes differentiation and physiology.
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Fig. 15.2 Schematic illustration of white adipogenesis regulation. Several factors regulate adipo-
genesis, leading to preadipocytes proliferation and inhibiting terminal differentiation. Upon ceasing
the proliferative stimuli, preadipocytes commit to the terminal differentiation process. Arrows indi-
cate activation or stimulation in the direction of arrowheads. Crossbars indicate suppression or
inhibition. Abbreviations ACTRII—activin type II receptor; C/EBPA—CCAAT/enhancer-binding
protein alpha; C/EBPB—CCAAT/enhancer-binding protein beta; C/EBPD—CCAAT/enhancer-
binding protein delta; DLK1—delta-like 1 homolog; ERK—extracellular signal-regulated kinase;
FGF-1—fibroblast growth factor 1; FGF1R—fibroblast growth factor 1 receptor; FGF-2—fibrob-
last growth factor 2; FZD—frizzled receptor; HH—hedgehog; LRP5/6—low-density lipoprotein-
receptor-related protein 5 and 6 co-receptors; PPARG—peroxisome proliferator-activated receptor
gamma; PTC—patched receptor; Smo—smoothened protein; TACE—tumor necrosis alpha con-
verting enzyme; TGF-B—transforming growth factor beta; TGFBR—transforming growth factor
beta receptor; TNF-A—tumor necrosis factor alpha; Wnt—wingless-type MMTV integration site;
B-Cat—Beta-catenin

15.2.2.2 CCAAT/Enhancer-Binding Protein (C/EBP) Family

The C/EBP family is constituted by important regulators of adipocyte differentia-
tion. Indeed, the C/EBP family participates in a signaling cascade where C/EBPB
and C/EBPD induce the expression of C/EBPA and thus terminal differentiation
of adipocytes. Although C/EBPB and C/EBPD can compensate each other in case
of loss or inhibition, there is evidence that both factors are not absolutely needed
for adipogenesis. A study with knockout mice for C/EBPB or C/EBPD shown that



416 D. F. Carrageta et al.

lack of these factors reduces AT size. In addition, double-knockout for C/EBPB and
C/EBPD led to a greater reduction of the AT mass. However, the levels of C/ebpa
and Pparg mRNA in adipocytes from double-knockout mice remain normal, which
raised the hypothesis that absence of C/EBPB or C/EBPD could result only in abnor-
mal lipogenesis and not adipogenesis inhibition [38]. These findings point out that
C/EBPB andC/EBPDmay not be essential for adipogenesis in vivo as other signaling
pathways can produce similar effects. On the other hand, C/EBPA is known to have
a much more important role in adipogenesis. For instance, inducing C/EBPA in vitro
is sufficient to trigger differentiation of preadipocytes into mature adipocytes [39].
Moreover, mice where the C/ebpa locus was replaced by C/ebpb present reduced
AT size [40], while knockout mice for C/ebpa depict an almost absence of WAT
[39]. Besides, the expression of C/EBPA in differentiated adipocytes is also impor-
tant for insulin sensitivity [41]. In this study, it is proposed that C/EBPA triggers
the expression of GLUT4 and insulin-dependent glucose transport. In the absence
of C/EBPA, GLUT4 is not expressed and cells are rendered insensitive to insulin.
Nonetheless, C/EBPA needs the presence of PPARG to efficiently promote adipo-
genesis since the expression of C/EBPA in knockout fibroblasts for Pparg cannot
induce adipocyte differentiation [42]. In addition, C/EBPB needs PPARG to induce
the expression of C/EBPA and start the terminal differentiation pathway [43]. Hence,
C/EBPs family members, with especial focus in C/EBPA, are indeed important but
PPARG expression is crucial for adipogenesis.

15.2.2.3 Fibroblasts Growth Factors (FGF)

One of the most important signaling pathways regulating adipogenesis concerns
the autocrine/paracrine role of fibroblast growth factors (FGF). Undifferentiated
hMADSCs with reduced FGF-2 secretion were observed to proliferate more slowly
[44]. On the other hand, hMADSCs supplemented with FGF-2 would recover and
proliferate much faster illustrating that this signaling pathway is essential for pro-
liferation in these cells. FGF-2 has a high affinity for FGF type 1 receptor (FGF1R),
which activates extracellular signal-regulated kinase (ERK) 1/2 pathway, leading
to cellular proliferation [45]. In fact, hMADSCs treated with a specific FGF1R
inhibitor presented a reduced differentiation potential [44, 46]. These findings sug-
gested that FGF-2 is secreted by hMADSCs in order to regulate their proliferative
potential through FGF1R/ERK signaling pathway. Additionally, FGF-2 plays a role
in preadipocytes differentiation. FGF-2 effects were reported to be dose-dependent,
where FGF-2 can function as either a positive or negative adipogenic factor [47].
FGF-2 at concentrations lower than 2 ng/ml promoted differentiation of hMADSCs,
while concentrations higher than 10 ng/ml inhibited the differentiation. These effects
are also mediated by the FGF1R/ERK signaling pathway, where high concentrations
of FGF-2 are able to sustain ERK phosphorylation and lead PPARG phosphoryla-
tion, consequently blocking terminal differentiation. Furthermore, FGF-2 levels in
WAT of diet induced obese mice were observed to be lower than those from normal
diet mice, indicating that FGF-2 expression levels could have a reverse correlation
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with the fat tissues size. Thus, FGF-2 was hypothesized to play a protective role in
obesity and metabolic disease. These findings are further supported by another study
conducted in AT of morbidly obese patients who underwent bariatric surgery or lean
controls who underwent cholecystectomy [48]. ASCs were obtained from WAT of
these individuals and the worse metabolic scenarios were accompanied by a reduced
ASCs proliferation rate and decreased FGF-2 secretion. Together, these results
suggest that FGF-2 and WAT hyperplasia play a protective role against metabolic
syndrome. However, not only FGF-2 but also FGF-1 plays a role in adipogenesis
[46]. In fact, FGF-1 seems to be involved in the regulation of FGF-2. FGF-1 treated
hMADSCs were reported to have reduced FGF-2 levels by 80%. Moreover, FGF-2
knockout hMADSCs presented decreased proliferation and increased adipogenic
genes expression [49]. Thus, while FGF-2 seems to be essential for preadipocytes
proliferation, FGF-1 seems to downregulate its secretion, promoting differentiation.
For instance, obese individuals also present increased expression of FGF-1 in WAT,
which supports the hypothesis of a protective role for FGF-1/2 [50]. Interestingly, in
obese individuals were subjected to weigh loss FGF-1 levels were reported to remain
high, which may constitute a permanent alteration due to obesity. Nevertheless,
further studies are needed to test that hypothesis.

15.2.2.4 Activin A and Transforming Growth Factor Beta (TGF-B)
Family

Activin A is a member of the transforming growth factor beta (TGF-B) family
and is also secreted by undifferentiated hMADSCs. In fact, activin A was pro-
posed as a biomarker of undifferentiated hMADSCs [51]. Similarly to FGF-2,
activin A secretion promotes hMADSCs proliferation and blocks differentiation in
an autocrine/paracrine fashion. Activin A effects are mediated via activin type II
receptor, which activates Smad2 in order to increase cellular proliferation and inhibit
C/EBPB[52]. Thus,while activinAsecretion is increased, hMADSCswill proliferate
but will not differentiate whereas activin A inhibition leads to hMADSCs differentia-
tion. Interestingly, increased levels of activin A were also found in theWAT of obese
individuals [51]. When expressed in high levels, activin A was also reported to act as
a profibrotic agent, stimulating the transformation of preadipocytes into myofibrob-
lasts [53, 54]. In fact, AT fibrosis in the context of human obesity limits adipocyte
hypertrophy, with beneficial effects on systemic metabolism [55]. Therefore, activin
A acts together with FGF-1/2 to constitute a complex and finely regulated signaling
pathway in adipogenesis. However, themechanisms that regulate the increased secre-
tion of FGF-2 and activinA by preadipocytes and subsequent inhibitionwith terminal
differentiation still need to be clarified. There is some evidence that WATmicroenvi-
ronment is the main responsible for this modulation and that not only preadipocytes
and adipocytes regulate adipogenesis. For instance, macrophages isolated from the
AT of obese individuals are reported to produce factors that stimulated the expres-
sion of FGF-2 and activin A in hMADSCs [51]. Indeed, tumor necrosis factor alpha
(TNF-A) is one of the factors secreted by macrophages reported to increase FGF-2
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and activin A expression in hMADSCs [20]. Obesity and AT mass accumulation are
linked with inflammation and macrophages infiltration [56]. Thus, macrophages are
thought to be essential for adipogenesis and WAT homeostasis.

Besides activin A, other members of the TGF-B family are reported to regulate
adipogenesis. In fact, TGF-B itself is mostly inhibitory [57]. Studies using 3T3 cell
lines (fibroblast cell line) showed that TGF-B increases preadipocyte proliferation,
while inhibiting differentiation throughSmad3 signaling [58].However, other studies
reported that this inhibitory effect is restricted to the first 40 h due to TFG-B type
I and II receptors downregulation during differentiation [58, 59]. The activation of
the Smad3 pathway is similar to Smad2, decreasing the expression of PPARG and
C/EBPAdue to the physical inhibition of C/EBPB andC/EBPD [60]. Besides, Smad3
signaling also involves up-regulation of Wnt signaling pathway factors [61], which
will be addressed in further detail in the next section.

Bonemorphogenetic proteins (BMPs), are another subtype of growth factormem-
bers of the TGF-B family, which also regulate ASCs adipogenesis in an autocrine
and dose-dependent manner. For instance, BMP4 is probably the most notorious
member of the BMP family in terms of proadipogenic effects [57]. BMP4 activates
Smad1/5/8 and positively regulates PPARG expression, whereas BMP4 inhibition
leads to reduced lipid droplets size [62]. Moreover, BMP4 has a role in preadipocytes
proliferation.While in high doses significantly reduces cell proliferation, in lowdoses
reduces the number of apoptotic cells and increases proliferation [63]. Interestingly,
BMP4 promotes differentiation of brown preadipocytes intowhite adipocytes, reduc-
ing the expression of brown-specific proteins. In addition, obese individuals with
type 2 diabetes mellitus present higher levels of BMP4 [64]. These studies highlight
a possible role for BMP in adipocytes physiology and diseasemechanisms associated
with diabetes and obesity, but further studies are needed to unveil the mechanisms
controlled by this pathway.

15.2.2.5 Wingless-Type MMTV Integration Site (Wnt) Family

Wingless-type MMTV integration site (Wnt) family members are highly conserved
signaling glycoproteins with autocrine/paracrine action, known to for regulating
tissue homeostasis and remodeling [25]. Wnts exhibit two distinct signaling path-
ways, denominated “canonical” and “noncanonical”. The canonical pathway is linked
with the transcriptional factor Beta-catenin. In sum, Wnts binds to frizzled recep-
tors (FZD) and low-density lipoprotein-receptor-related protein-5 or protein-6 co-
receptors (LRP5/6) blocking the ubiquitination and proteasomal degradation of Beta-
catenin, which in turn is hypophosphorylated and translocated to the nucleus to bind
lymphoid-enhancer-binding factor/T-cell-specific transcription factor (LEF/TCF)
and induce the expression of Wnt target genes [65]. The Wnt canonical signal-
ing pathway has an antiadipogenic activity. In support of this hypothesis, are the
repeated observations showing that Wnt pathway blocking leads to spontaneous
adipocyte differentiation [66–68]. Furthermore, LRP5/6 activation inhibits terminal
differentiation, whereas LRP5/6 inactivation exerts the opposite effect [69–71]. In
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fact, Wnt1 represses terminal differentiation through downregulation of PPARG and
C/EBPA [66]. In addition, Wnt10b, previously known asWnt12, is also described as
an important antiadipogenic factor and an adipogenic switch in adipogenesis.Wnt10b
is another member of the Wnt family whose gene is clustered with Wnt. Wnt10b is
highly expressed in preadipocytes, which also stabilizes Beta-catenin and inhibits
terminal differentiation. In addition, Wnt10b inhibition also promoted preadipocyte
differentiation [72]. Thus, Wnt canonical signaling pathway is hypothesized to be
an important molecular switch regulating adipogenesis, which is suppressed until
the pathway is no longer activated. In fact, PPARG and Beta-catenin are mutual
antagonists. The activation of PPARG decreases Beta-catenin levels due to its degra-
dation through proteasomal complexes [73]. Therefore, once preadipocytes receive
the trigger to initiate the PPARG positive feedback mechanism, become committed
to terminal differentiation. On the other hand, the noncanonical pathway is related
with intracellular Ca2+ release, which activates the phosphatase calcineurin and the
Ca2+-sensitive kinases Ca2+/calmodulin-dependent kinase II (CAMKII) and protein
kinaseC [74]. Contrastingly, the noncanonical pathway can either promote adipogen-
esis through antagonism of the canonical pathway or inhibit adipogenesis in a similar
fashion to the canonical pathway. For instance,Wnt5b increases during adipogenesis
and promotes terminal differentiation through inhibition of Beta-catenin [75]. How-
ever, Wnt5a is reported to inhibit terminal differentiation by activating Beta-catenin
and suppressing the activity of PPARG, thus inducing terminal differentiation, via a
pathway unrelated to Ca2+ [76]. Altogether, these findings illustrate the complexity
of the signaling intrinsic to adipogenesis and further studies are needed.

15.2.2.6 Delta-Like 1 Homolog (DLK1/Pref-1)

Delta-like 1 homolog (DLK1), also known as preadipocyte factor 1 (Pref-1), is a
transmembrane glycoprotein that can be cleaved by tumor necrosis alpha converting
enzyme (TACE), originating a biologically active soluble form [77, 78]. DLK1 is
highly expressed by proliferating preadipocytes and is suppressed during differenti-
ation [79]. In fact, several studies reported that high DLK1 levels in preadipocytes
inhibits differentiation [80–82] while reduced levels enhances differentiation [83].
More recently, DLK1 knockout mice were shown to have enhanced preadipocyte
proliferation, which was associated with a reduced membrane-bound form of DLK1
whereas a soluble form of DLK1 had no effect on preadipocyte proliferation but in
the terminal differentiation process [84]. Thus, it was hypothesized that the mem-
brane form and soluble form of DLK1 are likely to have distinct functions and targets
[85]. Although DLK1 is considered essential for adipogenic regulation, these results
remain controversial since DLK1 interaction molecules remain to be identified.
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15.2.2.7 Hedgehog (Hh) Pathway

Hedgehog (Hh) signaling pathway also plays a role in adipogenesis. Hh binds to
the Patched receptor (Ptc), which cease the suppressor effect on smoothened protein
(Smo) [86, 87]. Smo activates a signaling cascade that results in the stabilization of
the transcription factors Gli1 and Gli2, inducing the transcription of Hh target genes
[88]. Moreover, Hh signaling pathway seems to interact with the ERK pathway [89]
thus suggesting an association with the aforementioned pathways. In fact, Hh basal
levels are needed for human MSCs proliferation [90]. Additionally, Smo inhibition
by cyclopamine, thus inhibiting the Hh signaling, decreased human MSC prolifer-
ation and led to cell cycle arrest, which was associated with a decrease in cyclin A
expression and consequently an increase in the active form of retinoblastoma pro-
tein (pRb) expression. Conversely, the ability to differentiate human MSCs was not
affected, although another study observed that Hh decreases during the differenti-
ation step and that Smo activation impaired preadipocytes terminal differentiation
through downregulation of PPARGandC/EBPA [91].More recently, Hhwas demon-
strated to inhibit not only adipocyte differentiation but also lipogenesis in adipocytes
in vitro, which in turn improved the metabolic condition of diet-induced obese mice
[92].

15.2.2.8 Zinc-Finger Proteins

Zinc-finger proteins are crucial molecules involved in adipogenesis regulation.
Kruppel-like factors (KLF) familymembers are zinc-finger proteins, known for play-
ing numerous roles in the regulation of apoptosis, proliferation, and differentiation
[93]. In fact, several members of the KLF family are described as adipogenic regu-
lators. KLF15 is known to promote differentiation and the expression of adipocyte-
related genes in preadipocytes, such as GLUT4 [94, 95]. KLF4 stimulates the
expression of C/EBPB [96], while KLF5 is induced during terminal differentiation
by C/EBPB and C/EBPD, which in turn induces the expression of PPARG [97]. Like
KLF5, KLF9 binds directly to the PPARG promoter besides also activating PPARG
indirectly by binding to C/EBPA [98]. In addition, KLF6 promotes adipogenesis by
inhibiting DLK1 [99]. However, some KLFs depict antiadipogenic effects, such as
KLF2 that suppresses PPARGexpression [100, 101]. Thus, a shift inKLFs expression
during terminal differentiation is hypothesized to occur, with KLF2 downregulation
that is replaced by the other proadipogenic family members [97]. Similarly to KLFs,
GATA zinc fingers found in the GATA-family transcription factors are also known to
modulate adipogenesis. GATA2 and GATA3 are expressed in preadipocytes and both
inhibit PPARG and C/EBPs expression. In addition, GATA2 and GATA3 expression
decreases during terminal differentiation [102, 103]. There is evidence that GATA3
expression is induced by the Wnt/Beta-catenin pathway [104], however the detailed
mechanisms underlying this pathway regulation in preadipocytes are still unknown.
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15.3 Brown Adipocyte Signaling

15.3.1 Brown Adipogenesis

Brown adipocytes are the main cellular constituent of BAT. Brown adipocytes are
morphologically distinct fromwhite adipocytes, as besides depicting a “brown” color
that derives from the large number of mitochondria present in the cell cytoplasm,
also present a high number of small lipid droplets. The size of brown adipocytes
lipid droplets allows to increase the droplet surface area, which was hypothesized to
promote the high rate of metabolite exchange with the mitochondria that is necessary
for the thermogenic activity [105].Brownadipocytes arise frombrownpreadipocytes,
although the pathways underlying brown preadipocytes differentiation are not fully
understood. In dedicated BAT depots, brown preadipocytes are known to originate
from cells residing in the dermomyotome and express specific transcription factors,
including paired-box protein 7 (PAX7), engrailed 1 (EN1), and myogenic factor 5
(MYF5) [106]. Yet, different brown adipocytes subpopulations were described in
different BAT depots, which despite not expressing all these factors are still able to
differentiate into mature brown adipocytes. Indeed, both brown and white adipocytes
from different fat depots were shown to exhibit different gene expression profiles and
functional characteristics [107].

In a similar process as depicted bywhite adipocytes, brown adipocytes can expand
in size through lipid accumulation leading to hypertrophy or increase in cell number
leading to BAT hyperplasia. However, the main stimulus for brown adipocyte expan-
sion is not energy surplus as for white adipocytes but is instead regulated by the needs
to maintain body temperature. In thermoneutral conditions sympathetic stimuli are
reduced, thus decreasing brown adipocytes thermogenic activity and increasing lipid
accumulation. Several lipid droplets are then combined into a single lipid droplet,
leading the brown adipocyte into a hypertrophic state [107]. On the other hand, in a
cold environment, thermogenesis is activated and both brown adipocytes cells and
BAT sizes decrease. In conditions of persistent cold environment exposure, brown
adipogenesis is induced [108, 109]. Therefore, brown adipogenesis and thermogenic
activity are highly dependent on the cold stimulus.

15.3.1.1 Brown Adipogenesis Regulation

In general, brownandwhite adipogenesis share the same signaling cascade, highlight-
ing PPARG and C/EBP family members’ role in adipocytes and lipids metabolism.
However, some brown adipocyte-specific transcription factors have been identi-
fied (Fig. 15.3). Positive regulatory domain containing protein 16 (PRDM16) is
described as a transcriptional factor that acts as the main switch of brown adipo-
genesis. PRDM16 is not only part of a transcriptional complex with C/EBPB and
PPARG [110, 111], but has also the ability to induce uncoupling protein 1 (UCP1)
and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1A)
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Fig. 15.3 Schematic illustration of brown adipogenesis regulation and thermogenesis. Brown adi-
pogenesis is triggeredwith the expressionofPRDM16, leading to the thermogenic phenotype and the
expression of UCP1. Abbreviations: C/EBPB—CCAAT/enhancer-binding protein beta; cAMP—
cyclic adenosine monophosphate; EBF2—early B-cell factor 2; EN1—engrailed 1; IRF4—inter-
feron regulatory factor 4; MYF5—myogenic factor 5; PAX7—paired-box protein 7; PGC1A—
proliferator-activated receptor gamma coactivator 1 alpha; PKA—protein kinase A; PPARG—per-
oxisome proliferator-activated receptor gamma; PRDM16—Positive regulatory domain containing
protein 16; UCP1—uncoupling protein 1; ZFP516—zinc-finger protein 516

expression, resulting in the consequent thermogenic phenotype of brown adipocytes
[112, 113]. Moreover, genetic deletion of euchromatic histone lysine methyltrans-
ferase 1 (EHMT1), an essential component of PRDM16 complex, decreases brown
adipocytes terminal differentiation [114]. Conversely, PRDM16 deletion in brown
preadipocytes was found not to affect brown terminal differentiation, which suggests
the existence of compensatory pathways [115]. These pathways could be mediated
by other PRDM family members, which can induce brown adipogenesis in vivo.
One of these members is PRDM3, a PRDM family member that presents a high
homology with PRDM16 and forms a complex with EHMT1 and C/EBPB to induce
PPARG expression [116]. Thus, EHMT1 is highlighted as a crucial enzymatic reg-
ulator of brown adipogenesis. Additionally, early B-cell factor 2 (EBF2) is a tran-
scription factor essential for brown adipogenesis. EBF2 is highly and specifically
expressed in brown preadipocytes and adipocytes [117, 118]. EBF2 suppresses the
expression of several transcription factors, ensuring preadipocytes commitment to
the brown adipocyte terminal differentiation [119]. Zinc-finger protein 516 (ZFP516)
expression is also reported to induce PRDM16 and brown adipogenesis [120, 121].

15.3.2 Thermogenesis

Brown adipocytes are able to rapidly exhibit a high oxidative respiration and sub-
strate oxidation capacity due to the high thermogenic potential and UCP1 expres-
sion, a protein that acts as a respiration uncoupler. UCP1 is only found in significant
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amounts in the mitochondria of thermogenic adipocytes and is described as iden-
tical to mitochondrial ADP/ATP carriers [122]. The mechanism of thermogenesis
was first proposed by Mitchell and later developed by Nicholls [123]. Briefly, mito-
chondrial respiratory chain complexes I, III, and IV act as proton pumps, generating
a proton gradient where protons are transported from the mitochondria matrix to
the intermembrane space. ATP-synthase consume the protons in order to produce
ATP from the phosphorylation of ADP, in an endothermic reaction. However, in the
presence of an uncoupler protein such as UCP1, which is an inner mitochondrial
membrane protein that acts as a proton channel, protons re-entry the mitochondrial
matrix from the intermembrane space, collapsing the proton gradient and activating
the respiratory chain to compensate the decreased membrane potential. Since the
ATP-synthase is no longer able to consume protons in order to produce ATP from
ADP, the energy derived from oxidation is then dissipated as heat.

Brown adipocytes are known to produce heat in a process denominated non-
shivering thermogenesis. In general, thermogenesis occurs by stimulation of the
sympathetic nervous system in response to cold exposure. Whenever there are no
requirements to produce extra heat, brown adipocytes remain quiescent and UCP1
is inhibited by purine nucleotides [124]. In fact, inactive brown adipocytes are mor-
phologically similar to white adipocytes, but still preserving the specific genetic
and metabolic identity [125]. On the other hand, upon cold stress, norepinephrine is
released activating the beta-3 adrenergic receptors and increasing cyclic adenosine
monophosphate (cAMP), which results in cAMP-driven protein kinase A (PKA) sig-
naling activation. This signaling pathway culminates in lipolysis, the process where
triacylglycerol stored in lipid droplets is hydrolyzed in free fatty acids and glycerol,
and increased expression of PGC1A and UCP1 [126, 127]. PGC1A has a crucial
role in thermogenesis regulation in brown adipocytes, although interestingly the
knockout of PGC1A in brown preadipocytes does not affect brown adipogenesis
[128, 129]. PGC1A is highly expressed upon cold stress and PRDM16 induction by
cAMP signaling, which results in thermogenic genes activation, such as UCP1 [113].
In addition, cAMP signaling also activates interferon regulatory factor 4 (IRF4),
which interacts with PGC1A to form a complex and induces the expression of UCP1
[130]. However, some proteins were identified as inhibitors of PGC1A expression
or activity. Receptor-interacting protein 140 (RIP140), together with liver X recep-
tor (LXR) are able to suppress the effects of PGC1A [131, 132]. Steroid receptor
co-activator 2 (SRC2) and twist-related protein 1 (TWIST1) also suppress PGC1A
effects [133, 134].

Conversely, recent studies have shown that as long as exogenous free fatty acids are
available these may directly increase UCP1 expression, thus brown adipocytes might
not be fully dependent of brown adipocytes lipolysis [127, 135, 136]. In addition,
brown adipocytes are able to perform lipogenesis, where free fatty acids are synthe-
sized from circulating glucose [137], besides the ability to also use acyl-carnitines
to sustain thermogenesis [138]. Interestingly, upon cold exposure, brown adipocytes
depict both catabolic and anabolic reactions by performing thermogenesis and lipo-
genesis. Due to this paradoxical activity, it is hypothesized that lipogenesis may have
other metabolic implications since several intermediates may also act as signaling
agents [107, 139].
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15.4 White Adipose Tissue Browning and Beige Adipocytes

15.4.1 Beige Adipocytes Development

Studies with 18F-fluodeoxyglucose PET-CT imaging allowed to identify several
metabolic and thermogenic active adipose depots in the abdominal and subcutaneous
regions in adult human individuals. These studies led to the conclusion that WAT
was not completely white [140–142]. Indeed, a second type of UCP1-expressing
and thermogenic adipocytes were found in WAT. These adipocytes were named
brite (brown-like in white) or beige adipocytes. The morphology of beige adipocytes
is somewhat intermediary between white and brown adipocytes and can be found
within WAT depots mainly upon cold exposure [106]. Thus, when the formation of
beige adipocytes is induced, the phenomenon of WAT browning can be observed.
Interestingly, each WAT depot has a different susceptibility to browning. While sub-
cutaneous WAT seems to possess a high capacity to undergo a browning process
upon cold exposure, the same does not occur in visceral WAT [143]. Even when
WAT browning is artificially induced, visceral WAT is not able to reach the brown-
ing ability of subcutaneous WAT, which further highlights the molecular differences
between fat depots.

The origin of beige adipocytes could be explained by two different theories,
although not mutually exclusive (Fig. 15.4). The first line of thought hypothesized
that beige adipocytes arise from a precursor cell pool through beige adipogenesis
[144]. Beige adipocytes are reported to originate from a preadipocyte population
expressing platelet-derived growth factor receptor A (PDGFRA) and stem cells
antigen 1 (SCA1) or from smooth muscle-like precursors expressing myosin heavy

Fig. 15.4 Schematic illustration of beige adipocytes differentiation. Upon cold exposure, beige
adipocytes differentiate from beige preadipocytes or through transdifferentiation of mature white
adipocytes. Beige adipocytes express PRDM16 and present a brown phenotypewith heat production
through thermogenesis. However when the cold stimulus ceases, beige adipocytes are able to return
to a white adipocyte phenotype. Abbreviations MYH11—myosin heavy chain 11; A—platelet-
derived growth factor receptor A; PRDM16—PR domain containing protein 16; SCA1—stem cells
antigen 1; UCP1—uncoupling protein 1
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chain 11 (MYH11) [106]. On the other hand, another theory defends that beige
adipocytes are originated in conditions of thermogenic needs from pre-existing
mature adipocytes that undergo a trans-differentiation process, known as adipocyte
browning [145, 146]. The expression of PRDM16 in preadipocytes upon cold
exposure triggers the beige-linked genes expression and beige adipocytes devel-
opment while suppressing WAT-selective genes [112]. In fact, both hypotheses
are possible, but the regulation of the mechanisms leading to each specific route
are still unclear. In addition, beige adipocytes were shown to share some activity
and differentiation regulation with brown adipocytes, although whether there are
beige-specific transcription factors remains to be elucidated. In support of both
theories, beige adipocyte differentiation can be induced in experimental conditions
using two different approaches. The first method consists in animal models exposure
to severely low temperatures (4–6 °C), which is thought to be the closest approach
to physiological conditions. Low temperature exposure induces UCP1-expressing
beige adipocytes in WAT either by beige adipogenesis [147] or through browning of
mature white adipocytes [145]. The second method consists in using beta-3 adrener-
gic agonists to stimulate white adipocytes, whichmimics the effects of cold exposure
and induces the process of adipocyte browning [148]. Interestingly, treatment with
beta-3 adrenergic agonists only functions in mature white adipocytes in vitro as
inhibition of this pathway in vivo does not prevents the browning induced by cold
stimulus, which suggests that browning induction may be dependent on multiple
signaling pathways. Indeed, several other conditions were reported to induce beige
adipocytes development, such as physical exercise, cancer cachexia, and peripheral
tissue injury [149, 150]. Thus, beige adipocytes development seems to be stimulated
not only as a thermogenic need, but also to contribute to energy homeostasis.

A distinctive characteristic of beige adipocytes is that the thermogenic ability is
inducible and reversible depending on the environmental conditions, as when the
cold stress ceases, beige adipocytes are slowly replaced by white adipocytes both
in vitro and in vivo [108, 151]. These findings suggest that beige adipocytes are only
maintained during the presence of the stimuli and upon its withdrawal, these revert
to the white adipocytes’ phenotype. This short-termmaintenance and beige-to-white
adipocyte conversion or “adipocytewhitening”was attributed to the loss ofmitochon-
drial biogenesis and activity upon the withdrawal of external stimuli [149]. It was
hypothesized that adipocyte whitening is linked with mitophagy, a selective form of
autophagy responsible for mitochondria degradation. The blockade of themitophagy
pathway prevents adipocyte whitening even upon external stimuli removal and thus
leads to the prolongation of the thermogenic activity of beige adipocytes. Moreover,
this thermogenic activity was associated with higher energy expenditure and protec-
tion against diet-induced obesity [151]. As autophagy pathways are dysregulated in
AT of obese and diabetic patients [152] and adipocyte whitening seems to be faster
in obese subjects [151], detailed understanding of these pathways could be highly
relevant for the development of new pharmacological targets for obesity treatment.
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15.4.2 Unconventional Thermogenesis of Beige Adipocytes

UCP1 has been described as the main thermogenic protein in AT thermogenesis.
However, it was reported that UCP1 knockout mice exposed to cold still exhibited
higher respiration rates in WAT [153]. Moreover, chronic treatment with beta-3
adrenergic receptor agonists in the same animal model also increased the respiration
of WAT [154]. Therefore, this implies the existence of UCP1-independent thermo-
genic pathways. In fact, a specific UCP1-independent thermogenic pathway in beige
adipocytes was noticed [155]. This novel and unconventional pathway involves
ATP-dependent Ca2+ cycling by sarco/endoplasmatic reticulum Ca2+-ATPase 2b
(SERCA2b) and ryanodine receptor 2 (RyR2). This specific thermogenic pathway
is only possible in beige adipocytes due to the high capacity of ATP generation by
glycolysis and tricarboxylic acid metabolism. These findings also led the authors to
state that this novel pathway could be a potential pharmacological target to improve
metabolic health in the elderly population, known to possess a low number of
UCP1-positive adipocytes.

15.5 Conclusions and Future Perspectives

White, brown, and beige adipocyte differentiation and function are regulated by
unique and complex signaling processes. Although some pathways were already
identified, the search for factors that regulate adipogenesis just reached the light
of the day. While the C/EBP family and PPARG are the main regulators of both
white and brown adipogenesis, other transcription factors and signaling proteins
that regulate in a direct way and/or upstream/downstream the terminal differenti-
ation signaling cascade are still missing in the big signaling puzzle. In this sense,
the new technology of CRISPR-Cas9 may be revolutionary for genetic studies and
further extend the knowledge on key adipocyte regulators. Moreover, emerging evi-
dence also highlights the role of miRNAs signaling and epigenetic regulation during
adipogenesis and metabolic dysregulation scenarios. Compelling data concerning
adipocyte-selective miRNAs that modulate adipocyte proliferation and differentia-
tion [156, 157] point out a considerable new trend in adipocyte biology research.
Additionally, the high cellular heterogeneity among adipocytes from different or
even within fat depots makes it imperative to characterize their origin and distinct
signaling pathways. Nonetheless, WAT browning and inducible thermogenesis is a
compelling treatment approach for metabolic diseases such as obesity and type 2
diabetes. A better understanding of the pathways concerning beige adipogenesis and
adipocyte browning may point out to promising novel drugs. Given the increasing
prevalence and the high health and economic impact of obesity and obesity related
disorders, new insights concerning beige adipogenesis and adipocyte browning must
be set as a priority in the years to come.
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