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Abstract. Global demand for mobility will grow from 44 trillion to 122
trillion passenger-kilometres by 2050, and freight demand will triple in
that time increasing traffic emissions by 60%. With current innovation
and policy measures we are ‘on course for a 3.2 ◦C temperature rise’,
according to the 2019 UN Emissions Gap Report. Nothing short of revo-
lutionary is required to address this emergency. However, there is hope:
shared mobility and widespread adoption of autonomous vehicles could
cut CO2 emissions by 73% and congestion by 24% if managed by appro-
priate policies. This paper presents a vision and a concept for future dis-
tributed management systems for complex multi-modal transport net-
works that exploit Multi Agent Systems (MAS) to support individual
actors based on data collected from heterogeneous sources like vehicles,
freight items, infrastructures, Global Positioning Systems (GPS); and
simulations of the behaviour of the many different actors involved in the
transport system. Event driven approaches are envisioned to react and
respond to real-time events efficiently. The main objective is to identify
the best optimization strategies to reduce traffic emissions and maximize
the use of the public infrastructures and shared mobility. Motivations,
expected impacts, and challenges are also discussed.
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1 Introduction

Future mobility systems in Europe will be radically different from today’s,
requiring radical innovation in response to the environmental crisis, the growing
demand for transport, and changes in people’s mobility behaviour. The 2011
European Roadmap to a Single European Transport Area [7] issued bench-
marks for future mobility systems, including halving the use of conventionally
fuelled vehicles by 2030, shifting 30% of road freight over 300 km to other modes,
and creating the framework for a European multi-modal transport information,
management and payment system. This laid the groundwork for transformative
change. Innovation in Mobility as a Service, connected and (semi-)automated
transport and optimized traffic shaping is radical in the sense that it will, and
should, in every sense of the way, be disruptive. Today, this innovation is in
full swing. The 2019 International Transport Forum describes nine policy mea-
sures, including congestion charging, parking space reduction, and investment
in mobility as a service, and eleven ‘potentially disruptive developments’, such
as autonomous vehicles and shared mobility. The congestion and environmental
problems which will arise as the result of dramatic increase in mobility demand
cannot be solved solely by in-vehicle technologies or traditional transportation
management systems focused on improving the movement of vehicles. Connected
or not, human-driven or autonomous, fossil fuel or electric powered—all these
vehicles will occupy the road network and will contribute to the congestion
almost the same way, hitting the infrastructure capacity limits shortly. The shift
from personal vehicles to other modes, especially public and shared transport, is
a must and requires demand management systems focused on improving acces-
sibility of mobility for the movement of people and goods.

Unfortunately, many demand management measures, such as congestion pric-
ing, are not welcomed by citizens and are often lost in the political debate due
to lack of understanding of the subject matter by all stakeholders, or weak sup-
porting data evidence. Moreover, new mobility services, i.e. ride hailing services
or micro mobility services, evolve faster than the legislation and challenge public
authorities, decision makers and existing policies. Therefore, there is a need to
establish a new paradigm which will allow for participatory, objective, trans-
parent, and inclusive transportation management systems. The 2050 European
Energy Roadmap recognises that active citizen participation is ‘as critical as
technology’ in creating flexible and sustainable societies [7]. Smart transport
innovation is becoming more ‘citizen-focused’, but often still interprets partic-
ipation as a matter of citizens granting access to data about their everyday
lives to allow better measures to nudge or enforce behaviour change. Account-
ing for people’s capacity for smooth adoption requires much deeper participa-
tion and attention to concerns about the digital ethics of intrusive commercial,
surveillance, and security driven exploitation of citizen data [3,13,27]. In this
context the proposed methodology takes a novel approach that leverage the
shared mobility concept to a new level, shifting the focus from the vehicle to
the system and its actors. The city space, the network infrastructure, i.e. roads,
parking, curbs etc., and the environment, i.e. air quality and noise levels, are
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all common goods and shall be accessed and used by the stakeholders on a fair
sharing basis [20]. If we use fair sharing as the objective of the system, it shall by
design give preference to sustainable solutions, i.e. prefer a bus over a personal
car or electric vehicle over traditional etc. What we propose in this work is a
concept for a distributed, data-driven, intelligent system for future demand and
mobility management that cooperates and interact with things, services, and
human users in one cyber-physical system. Such a system uses fair sharing as
both optimisation objective as well as the objective’s enforcement, working at
scale to satisfy societies’ need for the rapid and radical mobility transformation
that is required to address the climate and environmental crisis. The main idea
is therefore to co-create systemic innovation with citizens for innovative and
inclusive digital travel environments that optimizes the future transport system
in a deep, fine-grained, agile, accountable, and ethical manner based on the fair
sharing principle.

2 State of the Art and Background

The Multi Agent System, which is proposed in our approach, requires investi-
gations of cause-and-effect relations to understand how “actions” propagate in
complex agent systems. Studying the impact of agents’ behaviours could reveal
measures to assist artificial intelligent (AI) based agents to explore their con-
figuration spaces. These requirements will be addressed through experiments
on the interaction of many time-aware AI based agents in simulated complex
systems with real data. Existing models of multi-agent reinforcement learning
(MARL) [9,16] are the starting point for how AI based agents can be trained
together in simulated environments and learn and improve from the interactions
with others. Various MARL training set-ups can be explored for our simulation
platform including common-pool resources [23] and distributed computational
architectures [6], to learn in very large complex systems, and mechanisms such
as imitation and hierarchical learning to learn over long time frames [17]. MARL
methods for optimising complex multi-actor systems will be supplemented with
methods such as evolutionary optimisation [2], fuzzy logic [22], and swarm intel-
ligence [1].

Cloud computing offers the ability to do cross-Cloud training of machine
learning models and predictions [18], and the MELODIC1 platform optimizes
the use of Cloud resources for machine learning, including ‘edge’ devices based
on a utility based approach [12]. Also, it uses new Cloud computing models
like ‘serverless’ computing to achieve the highest possible efficiency for the use
of resources, especially for demanding computational tasks. Hence, MELODIC
allows the system to exploit elastic computing platforms to run scalable simula-
tions in parallel in order to evaluate alternative strategies for selecting the opti-
mal schedule of controls and recommendations that maximize specific key perfor-
mance indexes of the complex traffic system. In particular, the high-performance
capabilities of the computing infrastructure will be exploited using the real-time
1 https://melodic.cloud/.

https://melodic.cloud/
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monitored data for evaluating any deviation of the current scenario from the
predicted scenario. By exploiting Cloud resources, the MAS will have access
to practically unlimited scalability of the training and simulation environment,
which will enable dynamic, detailed simulations and continuously deliver an
understanding of the current state of the traffic system to vehicle agents. The
proposed approach will exploit multi agent event-based simulation techniques
in real time, to predict the effect of decision making on future evolution of the
system [4,10].

3 Concept

The proposed distributed traffic management will be a central part of tomorrow’s
mobility environment where control must exploit all available data, including
the fact that some vehicles are already parts of route optimizing systems, while
incorporating information from other participants that are hardly connected at
all. The system must minimally disturb the individual mobility experience while
achieving the best possible collective flow. This implies that much information
must be inferred and deduced from secondary sources. One reasonable assump-
tion is that all participants, including vehicles but also railway networks, fleet
logistics, cyclists, scooters, and pedestrians, are connected to a mobile phone net-
work allowing cell size positioning or triangulation. In the near future, 5G will
allow more accurate positioning, as will the increased accuracy of new satellite
navigation systems like Galileo [11]. This will support more fine-grained situa-
tion awareness and allow better guidance of participants equipped with these
systems, and indirectly provide information about the traffic situation.

The control system must be fully distributed incorporating many indepen-
dent actors: the drivers, the vehicles, the crossroads, the city and road authori-
ties, the citizens, and freight items and goods to be transported. Each of these
actors will be modelled as one or more software agents pursuing their goals while
interacting collaboratively with other agents to ensure the best possible flow for
everyone and the best possible use of available road infrastructure. Society and
its need for mobility must be understood in order to give a meaning to the con-
cept ‘best possible’ and to ensure that the road transport remains sustainable
for the future.

Further on this basis, a distributed traffic management system consisting of
collaborating software control agents can be developed. Each agent, like the ones
representing a driver, a car, a crossing, a packet, a device, etc., will preferably
be running on the device it represents. For instance, a driver agent will run in
the driver’s smartphone. Its role will be to guide the driver through the traffic in
a collaborative way so that all agents collectively optimize the total traffic flow
in real-time. An ‘edge’ device like the smartphone however, cannot do too heavy
computations and the agent cannot communicate too much with its peers. Thus,
‘edge’ agents must be pre-trained to assess the current state of the system with
as little input as possible and provide an optimized output demanding as little
processing power as possible. More demanding computations must be done in
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distributed Cloud computing centres, or even in the core Cloud high performance
computing (HPC) centres.

The agents must not just react to real-time measurements of the traffic flow,
as their joint response will be lagging behind. The agents must rely on predicted
measurements for the foreseeable future and react to the anticipated traffic state.
Thus, historical traffic flow data and the derived understanding of mobility pat-
terns and driver objectives will be the basis for training the agents and the
predictors for the measurement time series. A data collection architecture is
required to allow for the vast amount of information to be stored and provided
to the AI algorithms for training and, later, deployment of the agents controlling
the system. Additionally, the learning phase of the AI algorithms is to take place
in a distributed manner, using mechanisms like federated learning in the training
process2. Machine and deep learning algorithms have reached the point where
situation awareness and deduction are possible with sufficient training data in
specific scenarios [15,19]. Furthermore, automated and continuous learning of
new scenarios dramatically improves the performance of such systems and their
ability to act on unknown critical events. AI algorithms will be used on a broad
basis containing a multitude of granular models; being trained to deduce situ-
ational awareness for a multitude of specific singular scenarios. This will allow
for the distributed training and propagation of learned knowledge to the other
learning agents in the network. Specifically, the purpose and aim here is to allow
the machine- and deep learning approaches to train on a distributed data set
and subsequently bundle and propagate the learned models.

If the infrastructure and demand for mobility of tomorrow would be like
it is today, this training would be enough for deploying the agents in a real
traffic management system. However, there will be new policies for urban mobil-
ity: for instance, a main thoroughfare should be turned into a pedestrian street
in the evenings. How can the politicians estimate the effect of such a decision
before making the move? Conflicting policy goals easily lead to multi-objective
optimization to provide effective multi-modal transport management and recom-
mendations, balancing priorities in different policy indicators. This can include
energy, pollutants, etc.; and there will be different scenarios in which the prior-
ities may be different, e.g. disaster management, considering human safety and
security. It is therefore proposed that the trained agents will be embedded in
a simulator creating a reality where the agents will make decisions and adjust
behaviour and the effects of their joint decisions on the traffic flow can be studied.
The agents will use reinforcement learning to update their historically trained
models during the simulation and as such once the simulation converges to a
new stable state, it will be possible to evaluate the effect of the policy decision.
If that is as desired by the politicians, then the new policy and regulation can
come into effect. In the real word, the modified and re-trained agents can then be
deployed to the respective devices of the system actors and thereafter guide the

2 Federated learning: Collaborative machine learning without centralized training
data. https://ai.googleblog.com/2017/04/federated-learning-collaborative.html.

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
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actors optimally based on the new regulations. The operation of the envisioned
traffic management system is depicted in Fig. 1.

Fig. 1. The operational flow of the proposed traffic management system

Doing embedded simulation where the real software agents are acting will
ensure that there will be no difference between simulated behaviour and real-
world behaviour. Conducting such simulations at scale is very challenging as
simulations today are normally based on simplified models of the reality and it
is a research challenge to achieve timely simulations of city-scale systems. The
simulation tool is proposed to extend the simulator that is being developed in
the GreenCharge3 project. In particular, the original functionalities, which aim
at optimizing the charge schedule of electric vehicles exploiting the capabilities
and the decentralized renewable energy sources of a smart neighbourhood, will
be complemented to cope with the mobility needs in a future multi-modal net-
work. Parallel simulation must be used to find the best optimization strategies
that maximize the key performance indices of the tested policies. Monitored
information must be used to measure real values of key performance indexes
and to evaluate the deviation between the simulated and actual values, where
such comparison is possible.

4 Research Challenges

4.1 Data Quality

Current availability and the quality of data do not allow cities to plan for,
and implement, the rapid and systemic mobility transformation that is needed.
Regional, national, and international scales of transport emissions, e.g. through
tourism and freight, complicate matters further. The data that is available is
extremely patchy and of low quality, and not real-time. Even with the addition
of data from live services, such as telecommunications mobility data or Google
timeline data, or data from active mobility apps such as Strava4 — even if this

3 https://www.greencharge2020.eu/.
4 https://www.strava.com/.

https://www.greencharge2020.eu/
https://www.strava.com/
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was ethically and legally possible — would not provide sufficiently fine-grained
data, because that data, too, is patchy and lacks quality in other ways. For
example, Google timeline data collects data from those users who have consented
to it, which often excludes the poor, disadvantaged, ethnic minorities, women,
children, and the elderly. Moreover, the data is inaccurate, because it does not
represent modes of transport accurately, assuming people are on a bus journey
when they are out for a jog, for example [5,24,25]. With simulated data, accurate,
flexible, and live evaluation of systemic mobility dynamics can allow authorities
to drive radical innovation in more informed, productive, and sustainable ways.

4.2 Collaborative Multi-agent Control

Intelligent agents in complex systems-of-systems are individual entities, but they
also interact with each other. These agents will need to counteract or mitigate
the actions made by others in the system and this situation is extremely hard to
model at scale. Given that each agent will pursue its own goals and objectives, it
is a self-optimizing mathematical program: each agent will always try to find the
state that optimally satisfies its goals given the current context dependent con-
straints for its operation; however, the actions of other agents will influence these
constraints. Reciprocally, responses to changing constraints may again influence
other agents over time. It is difficult to predict how globally imposed policies
will affect the stability and performance of such a system.

The challenge here is to try to understand how constraints and global policies
affect the performance of agents in such a distributed constraint optimization
problem [8]. Coordination is a known problem in multi-agent systems [14] and
the approach taken here is based on deep reinforcement learning [26]. Cause-and-
effect relations must be investigated to understand how “actions” propagate in
such systems. Studying the impact of “out-of-the-rules” behaviours, shock-waves
that push the whole agent system out of its stable state, could reveal measures
to assist deep reinforcement learning based agents to explore their full configu-
ration spaces. We seek to understand such processes in the context of time, both
forwards, predicting the results of interventions and backwards in explaining the
emergence of unexpected behaviours. This could help identify attractors towards
stable and performing behaviour. Understanding such processes would point to
new measures to optimise for high performance.

4.3 Data Acquisition and Prediction

Given the fact that, today, nearly everyone has a mobile phone everywhere they
go, anonymous connection data from mobile operators can bring a representative
picture about real mobility in a city or in entire metropolitan region. Given the
widespread use, there is less age, gender, ethnicity, or other social group exclusion
bias. However, due to the anonymous nature of the data it is not possible extract
information about social groups. Also, the source data from telecommunications
operators has certain time-space granularity limits given by the size of the cells
and time density of probing. Still, using advanced big data analytical techniques,
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a representative aggregated model of mobility for the entire metropolitan region
composed of series of trips may be generated. Long term observation of the
origin-destination matrix allows to extract typical behaviour of travel flows and
the deviations from the typical patterns.

Using the agent modelling with agents being calibrated for current mobility
practices and where static agents represent current human mobility practices for
identifying current modal split, or dynamically, where conditional definition of
preferences of interconnected agents represent the people of the future using the
proposed Multi Agent System, the connection data from mobile operators will
give a structured data framework within which a Multi Agent System may search
for potential individual mobility optimizations. The system must be able to col-
lect information from various sources, such as vehicles, networks, positioning sys-
tems, management platforms, humans, etc. In-vehicle systems will utilise various
sensors and transportation service providers e.g. public authorities, may publish
static information, i.e. service schedule, and, if available, dynamic data, i.e. live
positioning, about their services and fleets via open application programming
interfaces (APIs). To that end, specific connectors must be developed to be able
to deal with distributed communications, standardised and non-standardised
data sources, and transform them into interoperable information and instruc-
tions following cross-domain accepted standards, e.g. SAREF4CITY5 ontology
using the NGSI-LD API of the FIWARE6 architecture. Once the information
is standardised, it must be stored in polyglot repositories, that is, specialised
data storage systems as relational, time series, graphs, documents, depending
on the final usage, and allow for demand and event prediction as well as scenario
simulation and optimisation.

4.4 System Simulations

A MAS represents an effective modelling alternative, compared to analytical
modelling, for simulating complex real-world or virtual systems which could be
decomposed in interacting individuals [21]. The goal is to emulate the software
platform in a simulated environment in order to exploit discrete events-based
simulation for accelerating the execution of the MAS, dropping the waiting time
between subsequent events. This approach will allow us to introduce, on one
side, diversity in scalable scenarios and parallel or multiple simulations and, on
the other side, to model likely reactions when the predictive control is enforced
in simulation.

5 Conclusion

The proposed fair sharing paradigm promotes and accelerates the transition to
sustainable mobility. The fair sharing paradigm could promote clean and shared
5 https://ec.europa.eu/digital-single-market/en/news/saref4city-validation-

workshop.
6 https://www.fiware.org/.

https://ec.europa.eu/digital-single-market/en/news/saref4city-validation-workshop
https://ec.europa.eu/digital-single-market/en/news/saref4city-validation-workshop
https://www.fiware.org/
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mobility services though substantially reducing road network occupancy, jams,
bottlenecks, and pollutant emissions.

The global optimisation that can be achieved by the envisioned system, the
exchange of information between the actors and global context awareness will
support integration of different transport modes. Route calculation algorithms
consider, and try to avoid, predicted traffic situations or crowded areas, routes,
or infrastructures, i.e. train stations, airports, etc. The MAS algorithms can
consider different parameters and constraints, including pollutant emissions; and
by using various data sources, safety related events can be detected as well as
or predicted as safety hazards, i.e. ‘black-spots’, allowing the optimization of
the routes to consider such information and advising the users about possible
dangers and suggest re-routing. New mobility services can be built on top of this
integrated ecosystem, which offers new knowledge for different stakeholders like
transport authorities and agencies, citizens, local retail, and future autonomous
vehicles.
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