
Chapter 7
Petri Nets: A Formal Language to Specify and Verify Concurrent
Non-Deterministic Event Systems

Didier Buchs, Stefan Klikovits, and Alban Linard

Abstract The study of concurrent and parallel systems has been a challenging research domain within cyber-
physical systems community. This chapter provides a pragmatic introduction to the creation and analysis of
such system models using the popular Petri nets formalism. Petri nets is a formalism that convinces through its
simplicity and applicability. We offer an overview of the most important Petri nets concepts, analysis techniques
andmodel checking approaches. Finally, we show the use of so-called High-level Petri nets for the representation
of complex data structures and functionality and present a novel research approach that allows the use of Petri
nets inside Functional Mock-up Units and cyber-physical system models.

Learning Objectives

After reading this chapter, we expect you to be able to:

• Use common Petri-net patterns to model concurrent processes
• Understand the semantics of Petri-nets in terms of state transitions systems
• Use model checking to systematically check for invariance and reachability properties of Petri-net models

7.1 Introduction

Since the early days of computing the modelling and verification of programs has been an important subject.
Nowadays this subject is even more vital as computers are ubiquitous in our current way of life. Computers
thrive in all kinds of environments, and some of their applications are life critical. Indeed, more and more
lives depend on the reliability of airborne systems, rail signalling applications and medical device software for
examples.

Given the importance of the matter, much effort has been invested to ensure the quality of the software.
On the organisational side, project management techniques have been devised for the software development
process, e.g. the RUP (Rational Unified Process) [174], the Waterfall Model [244], the Spiral Model [40],
B-method [189], etc. Most recently, so-called “agile” methodologies, such as SCRUM [261], are taking over the

Didier Buchs
Faculty of Science, Computer Science Department, University of Geneva, Switzerland
e-mail: didier.buchs@unige.ch

Stefan Klikovits
Faculty of Science, Computer Science Department, University of Geneva, Switzerland
e-mail: stefan.klikovits@unige.ch

Alban Linard
Faculty of Science, Computer Science Department, University of Geneva, Switzerland
e-mail: alban.linard@unige.ch

177
P. Carreira et al. (eds.), Foundations of Multi-Paradigm Modelling for Cyber-Physical Systems,

https://doi.org/10.1007/978-3-030-43946-0_7

© The Author(s) 2020

https://doi.org/10.1007/978-3-030-43946-0_7
mailto:didier.buchs@unige.ch
mailto:stefan.klikovits@unige.ch
mailto:alban.linard@unige.ch
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43946-0_7&domain=pdf

178 Didier Buchs, Stefan Klikovits, and Alban Linard

industry [249]. However, software development frameworks can improve software quality only up to a certain
point. In fact, they cannot offer complete guarantees for critical systems by themselves as their effectiveness is
only based only on empirical evidence [249].

These approaches have the fact in common that all of them require the description of what the system does
without prescribing how to do it. That description is called the specification. Depending on the development
process used, the specification can be informal (e.g. SCRUM), semi-formal (e.g. RUP) or formal (e.g. B-method).
Getting the specification right is paramount for the software quality. On the one hand, the specification is used
to check if the development team understood the requirements (to answer the question “Are we building the
right thing?”). This process is called validation. On the other hand, it is used to check if the finished software
does what it was meant to do (“Are we building the thing right?”). We call this step verification.

A very simple way to do verification is testing. In software testing, we use the specification to derive
behaviours that we expect from the software. For each expected behaviour we write a test. A test is a procedure
that exercises the software (or a part of it), and tells if the observed behaviour is as expected or not (according
to the specification). Hence, a test can prove that there are errors in the software. However, proving the absence
of errors is much more complicated. It implies to write a test for each possible behaviour of the software.
The number of behaviours of even simple software is extremely large, meaning that testing is infeasible for
proving the absence of errors. Nevertheless, there are some kinds of software that cannot afford to diverge from
specification as human life or health depends on it. This need gave birth to a set of verification techniques that
can guarantee the absence of errors in a given system: formal verification.

Formal verification techniques, a.k.a. formal methods, can guarantee the absence of errors in a system up
to its modelling. There are several formal methods ranging from theorem proving to model checking. These
techniques aim to build a formal mathematical proof of the program’s correctness. This requires of course that
the specification is also formally described. It further requires that the program itself has a formally specified
semantics. In these sections we focus on the modelling phase and the model checking variant of formal methods.

Formally modelling complex systems requires languages that are adapted to the kind of system we are
interested in and also must be defined with certain structuring mechanisms. In this chapter, we will mainly
describe languages that provide features related to dynamic systems and data types. For structuring mechanisms
we propose to consult publications on extensions of algebraic nets such as CO-OPN [32] and LLAMAS [197].
Wewill not describe them further as they are not absolutely necessary for the understanding of the basic concepts
behind formal methods.

7.2 Modelling Concurrency

The modelling of concurrency requires specially adapted formal techniques. Among the numerous existing
ones, we observe that all of them use constructs to either explicitly or implicitly describe events, states and
synchronisation mechanisms. Moreover, the technique’s semantics must exhibit the various behaviours of the
modelled system because parallelism and concurrency inherently introduce activity non-determinism into a
system. One of the most well-known formalisms is Petri nets, which we will introduce throughout this chapter.
However, it is important to understand that most of the explained principles can be translated to other kinds of
models such as process algebra [207], state charts [135] and similar.

In order to explain the essence of modelling with Petri nets, we use an example of a car engine throughout
this paper. The system describes a very simple combustion engine consisting of foot pedal, engine, carburettor
and fuel tank. The system is built from several elementary components, that are similar to automata used in
some modelling tools [277]. We will see how all components are combined in a single Petri net that describes
the entire system.

Although we could use a model of communicating automata for such problems, the use of a Petri net
makes communication between components explicit, whereas it is often implicit and hence unclear when using
automata. For instance, the choice of synchronous versus asynchronous communication is a meta-property in
automata, rather than an explicit choice.

So, in summary, we will have the possibility to model systems with Petri nets in a condensed way. These
systems will be composed of some non-deterministic entities communicating synchronously or asynchronously.

7 Petri Nets: A Formal Language to Specify and Verify Concurrent Non-Deterministic Event Systems 179

7.2.1 Petri Nets

Petri nets [237] are a graphical, formal modelling language dedicated to the representation of concurrent
processes, including communication and synchronisation between them. Petri nets consist of four basic concepts:
places, transitions, arcs and tokens. Places (represented by circles) model processes and resource containers
(such as a fuel tank) of the system, while transitions (represented by rectangles) are used to model system
evolution (e.g. the starting of an engine). Places and transitions are connected by arcs. Arcs describe how many
tokens (represented as large dots) are taken from a place before and how many tokens are put into a place after
a transition is executed. We usually refer to these arcs as the pre- and postconditions of a transition. Tokens are
used to model resources (e.g. the petrol in our example) or control (whether an engine is on or off). Note, that
in classic Petri nets only one kind of token is used, meaning that the process control and the resources are both
represented equally, which might be confusing for beginners. This feature however offers great flexibility and
renders Petri nets a very powerful formalism.

Figure 7.1 shows an example of a Petri net, that represents in a simple way the behaviour of a throttle foot
pedal, engine and fuel tank within a car. It represents processes and resources as places: e.g. up, off, fuel or
filled. The Petri net also contains transitions such as press, stop or empty. It can be easily observed that the
amount of fuel is modelled by the number of tokens within the place fuel, but also that control of the engine
is being handled by an individual token which is either in place on or off. An execution of a transition (e.g.
start) will consume tokens from the precondition states (off) and produce tokens in postcondition states (i.e.
on in our example).

The groupings (i.e. the big frames) shown for foot pedal, fuel tank, engine and carburettor have no semantic
influence on the system, but merely help system description.

foot pedal engine

fuel tank

carburetor

fuel

filled maximum

up

down

press

release

off

on

start

stop
fill

empty

Fig. 7.1: A Petri net that represents a simplified functionality of a car’s acceleration

Each places contains a (positive) number of tokens (0 by default), that describes how many processes or
resources are in this state. We refer to the number of tokens in a place as its marking. The combination of
markings of all Petri net places is also referred to as the Petri net’s marking and describes the entire system’s
state.

Due to their well-studied semantics, they can be simulated, or used for static or dynamic analysis. Their
simplicity makes it very easy to transfer them to other forms. For instance, Figure 7.2 shows the marking of the
Petri net shown in Figure 7.1 encoded in the Lua programming language1. This Petri net can thus be embedded

1 https://lua.org

https://lua.org

180 Didier Buchs, Stefan Klikovits, and Alban Linard

and used within a software application. We will use the Lua language throughout this article to show how to
implement and use Petri nets in practice. The marking of the Petri net is a structure that affects to each place its
number of tokens. The initial marking is the one described initially in the Petri net.

function Marking.new (t)
return {

up = t.up or 0,
down = t.down or 0,
fuel = t.fuel or 0,
off = t.off or 0,
on = t.on or 0,
filled = t.filled or 0,
maximum = t.maximum or 0,

}
end

initial = Marking.new {
up = 1,
fuel = 7,
off = 1,
maximum = 2,

}

Fig. 7.2: Declaration of a Petri net marking as Lua code. The new function (left) of the Marking module is used
to create a mapping that represents the Petri net marking. The code on the right shows the usage of this function
for the creation of a new marking. Note, that it is only necessary to specify the places that contain tokens, as the
other tokens are initialised with 0 by default.

A Petri net state (represented by its marking) is changed by “firing” transitions. In order to more efficiently
describe system evolution we will from use markings, and operations thereon to express the behaviour of a
Petri net. For convenience, we therefore define the following operators on markings: comparison, addition
and subtraction. The comparison operator compares the number of tokens in each place of the two operands
for equality or whether one of the operands is smaller/greater. Addition and subtraction operators perform
place-wise addition or subtraction of the number of tokens of the operands. These operators allow the concise
description of the transition firing semantics. Figure 7.3 provides the operator implementations in Lua.

As stated, the evolution of a Petri net is effected by firing transitions. Such transition firings are dominated by
a simple rule: a transition can be fired if it is enabled. A transition is called enabled, iff there are enough tokens
in all its input places (i.e. the places connected to the transition). When a transition is fired, it removes tokens
from its precondition places, and adds new tokens into its postcondition places. It is important to understand that
tokens do not “move” from one place to another, but are consumed and new (different) tokens are produced. The
number of tokens consumed and produced are defined using annotations on arcs. By convention arcs annotations
stating a weight of 1 token are omitted for legibility reasons.

For an illustration of a transition firing we can look at the empty transition from the car engine example
above. The transition consumes one token from place filled, and another token from place on. Therefore it
can be fired if the places filled and on contain at least one token each. Once fired, the transition produces one
token in place maximum, and another one in place on. Figure 7.4 shows the Lua code that describes the firing
of the transitions press and empty. It first checks if the input places contain enough tokens. If this condition is
met, it performs firing by subtracting the precondition arcs and adding the postcondition arcs to the marking of
the Petri net. If the transition is not fireable, the function returns nil, the Lua equivalent for NULL or null value.

7.2.2 Common Petri net patterns

Petri nets are better at expressing communication and synchronisation than the traditional automata formalism,
as they make these concepts explicit. However, similar to automata, Petri nets have the aforementioned drawback
to not distinguish processes and resources. It is up to the modeller to clarify the role of each place, for instance
with naming or colour conventions. In order to introduce some common modelling practices we present a few
standard patterns which are found in the Petri nets in Figure 7.5:

• Figure 7.5a represents the creation of two processes (q, r) from a process (p), or the release of a resource
(r) from a process (p, q).

7 Petri Nets: A Formal Language to Specify and Verify Concurrent Non-Deterministic Event Systems 181

function Marking.__add (l, r)
return {

up = l.up + r.up,
down = l.down + r.down ,
fuel = l.fuel + r.fuel ,
off = l.off + r.off ,
on = l.on + r.on,
filled = l.filled + r.filled ,
maximum = l.maximum + r.maximum ,

}
end

Listing 8: Addition operator

function Marking.__eq (l, r)
return l.up == r.up

and l.down == r.down ,
and l.fuel == r.fuel ,
and l.off == r.off ,
and l.on == r.on,
and l.filled == r.filled ,
and l.maximum == r.maximum ,

end

Listing 9: Equality operator

function Marking.__sub (l, r)
return {

up = l.up - r.up,
down = l.down - r.down ,
fuel = l.fuel - r.fuel ,
off = l.off - r.off ,
on = l.on - r.on,
filled = l.filled - r.filled ,
maximum = l.maximum - r.maximum ,

}
end

Listing 10: Subtraction operator

function Marking.__le (l, r)
return l.up <= r.up

and l.down <= r.down ,
and l.fuel <= r.fuel ,
and l.off <= r.off ,
and l.on <= r.on,
and l.filled <= r.filled ,
and l.maximum <= r.maximum ,

end

Listing 11: Less-than-or-equals op.

Fig. 7.3: Addition, subtraction, equality and less-than-or-equals operators used to work on Petri net markings.
The evolution of a Petri net can be expressed using these operators.

function press (marking)
if marking >= { up = 1 } then

return marking
- { marking.up = 1 }
+ { marking.down = 1 }

else
return nil

end
end

Listing 12: Code of the press transition

function empty (marking)
if marking >= { filled = 1,

on = 1 }
then

return marking
- { marking.filled = 1,

marking.on = 1 }
+ { marking.maximum = 1,

marking.on = 1 }
else

return nil
end

end

Listing 13: Code of the empty transition

Fig. 7.4: Lua code as examples showing the implementation of transitions

• Figure 7.5b represents the synchronisation of two processes (q, r), or the acquire of a resource (r) from a
process (q, p).

• Figure 7.5c represents a choice for process p, that can go either in q branch or in q branch.
• Figure 7.5d represents the collection of processes or resources (q, r) into one (p). When q and r are in mutual
exclusion, it can also represent the end of a condition for process p.

182 Didier Buchs, Stefan Klikovits, and Alban Linard

p

q r

(a) Control flow split or
resource creation

p

q r

(b) Synchronization or
resource acquisition

p

q r

(c) Control flow choice

p

q r

(d) Control flow
synchronisation point

Fig. 7.5: These four common Petri net patterns can be used to express various concepts related to control flow
split, merge, choice or synchronisation, but also for the consumption, production, acquisition and release of
resources.

7.2.3 Formal syntax and semantics

Since we introduced Petri nets as a formal method, we feel obliged to also provide the syntax and semantics in
a more formal setting. We encourage the reader to bear with us through this section, as understanding of these
concepts will be necessary for the more complex aspects of Petri nets. In return, we promise to keep ourselves
short and only introduce the essential parts. It is also worth mentioning that these formal definitions can be used
directly for the creation of tools that manage, simulate and analyse models.

Formally, a Petri net is a labelled bipartite directed graph, i.e., a graph whose vertices can be divided into
two disjoint finite sets P and T (with P ∩ T = ∅), such that every edge is directed and connects a vertex of P to
a vertex of T (preconditions), or a vertex of T to a vertex of P (postconditions). This graph has natural number
labels on vertices of P (place markings), no labels on vertices of T (transitions), and positive number labels on
edges (number of consumed or produced tokens).

A Petri net is thus described as a tuple 〈P,T , pre, post ,m0〉. The set of all possible markings is denoted
M = P → N. It contains all possible functions that associate tokens to places of the Petri nets. The initial
marking m0 is an element of M that maps all places to their initial number of tokens. The pre : T → M and
post : T → M functions represent arc valuations, and are called the pre− and postconditions of the transitions.
For every transition, they return a marking that corresponds to the valuations of input (resp. output) arcs of the
transition. Note, that their signature is implicitly in curried form, as they can be rewritten as pre : T → (P → N)
and post : T → (P → N).

The arithmetic and comparison operators (+,−,=,6) that we introduced in the previous section are formally
defined on markings as follows. We require that ∀ml ,mr ∈ M

ml + mr = ∀p ∈ P, (ml + mr)(p) 7→ ml (p) + mr (p)
ml − mr = ∀p ∈ P, (ml − mr)(p) 7→ ml (p) − mr (p)
ml = mr ≡ ∀p ∈ P,ml (p) = mr (p)
ml 6 mr ≡ ∀p ∈ P,ml (p) 6 mr (p)
where a 7→ x signifies that x is the image value of a.

In this chapter we will describe the evolution and behaviour of Petri net using Structured Operational
Semantics (SOS) rules such as the example in Equation (7.1). We remind the reader that an SOS rule is
composed of a conjunction of premises (above the line) and a conclusion (below the line). The rule states
that it can be applied i.e. the conclusion transformation be executed, when the premises are satisfied. Both the
premise(s) and the conclusion are expressions (usually called “term predicates”).

rule :
tpred1 ∧ tpred2... ∧ tpredn

tpred
(7.1)

Each Petri net transition describes possible evolutions of the system. Formally it is a relation between Petri
net states, i.e. markings. Thus, the behaviour is described as a transformation of the Petri net marking. The

7 Petri Nets: A Formal Language to Specify and Verify Concurrent Non-Deterministic Event Systems 183

conclusion of SOS rules that describe transition firings are written as m
t
−→ m′, where m and m′ are Petri net

markings and t is a transition. m
t
−→ m′ states that the system’s current marking m leads to m′ by firing t.

Using a model checking mentality we can also say that the SOS rule states that, given two markings m and
m′, firing t is correct if all the premises are correct. The semantics of firing one transition is given by the general
rule in Equation (7.2).

transitiont :
pre (t) 6 m

m
t
−→ m − pre (t) + post (t)

(7.2)

Example Let us consider the release transition in Figure 7.1. Its semantics is represented by the following
rule:

release :
(down 7→ 1) 6 m

m
release
−−−−−−→ m − (down 7→ 1) + (up 7→ 1)

Remember that for a marking m to be greater or equal than another one, all individual place markings have to
be greater or equal. For this specific premise to be valid, it means that all places in m need to have a greater or
equal marking than (down 7→ 1) (i.e. all places need to have at least 0 tokens, except for down which needs at
least 1 token). If and only if this is the case, then firing the transition will lead to a new marking by removing
one token from down and adding one token to up. �

Sequences of transitions also have simple semantics: beginning from a starting state, the transitions within
the sequence are applied one by one. Formally, sequences of transitions (noted T∗) are inductively defined as
lists. Note, that every transition t ∈ T can also be seen as a sequence of transitions of length 1. Hence T ⊆ T∗.
Further, we use a concatenation operator (.) such that ∀t ∈ T ,∀s ∈ T∗, t.s ∈ T∗, i.e. every concatenation of
transitions is a transition, followed by a sequence of a transitions. Note that a the sequence s can be a single
transition. This semantics is given by Equation (7.2) and Equation (7.3).

sequence :
m

t
−→ m′,m′

s
−→ m′′

m
t .s
−−→ m′′

(7.3)

Figure 7.6 shows the Lua code that performs the computation of a sequence of transition. Each transition
is itself a function, such as those we have already defined for press and empty.

function sequence (marking , transitions)
for _, transition in ipairs (transitions) do

marking = transition (marking)
if not marking then

return nil
end

end
return marking

end

Fig. 7.6: The Lua code that handles the execution of a sequence of transitions on an initial marking. Note that
transitions is a list of transition functions as defined above. The ipairs function is an ordered iterator over
the elements of transitions.

184 Didier Buchs, Stefan Klikovits, and Alban Linard

7.2.4 Deduction Based on Rules

As we have seen above, we can compose new relations from existing rules, as shown for the sequences in
Equation (7.3). We refer to this feature as transitive closure. However, in order to compute new relations based
on existing SOS rules, we need to know exactly how to compute a rule’s term predicates, as another rule’s
premises can be used as a conclusion of another rule.

This process, called deduction, is based on three principles: rulematching, variable instantiation and predicate
reduction.These principles require the definition of additional operations on functional terms (the expressions
including only application of function) and term predicates (the predicates applied on functional terms).

These principles are related to the use of variables. The operations that manage the values which can be taken
by these variables can take must be thoroughly defined.

An assignment (or substitution) is defined as a function σ ∈ Σ, where Σ is the set of partial functions
from variables to terms, or ⊥ if no term is associated to the variable. For instance, a substitution σ can be the
replacement of the variable a with the term down 7→ 1, or by ⊥ if the variable a is undefined. Substitution is
extended to apply on terms instead of variables only: for all terms t, σ(t) returns the term t where all variables
that are defined in σ have been replaced by their associated term in σ. For instance if we take the term pre (x)
and apply the substitution σ(x) = release onto this term we see that σ(pre (x)) = pre (release).

Matching refers to the fact that we would like to identify two terms t1, t2 modulo a substitution σ. This means
that matching checks if there exists a substitution σ such that σ(t1) = σ(t2). For instance, the substitution
σ = {x 7→ release, y 7→ release} can be used to match pre (x) = pre (y).

We would like to introduce a simple example defining the comparison predicate over natural numbers.
According to the rules given in Equation (7.4): a, b ∈ N are variables over natural numbers.

R1 :
a 6 b

a 6 b + 1
R2 :

a 6 b
a + 1 6 b + 1

R3 :
0 6 0

(7.4)

We assume that the reader is familiar with the operations based on addition of natural numbers. Their very
definitions can be given as an exercise to the reader. Deductions are computed using a special Infer function.
Infer (R) is defined as the deduction process for a set of rules R. In our specific case Infer will be defined as
Infer ({R1, R2, R3}) and we will use Infer to compute the possible deduction on the predicate 6.

In such deductions rules are applied on top of each other, the correspondence being the possible matching
of one premises with the conclusion of another rule placed above. Correct deductions have to be finite and also
must rely on a base case, i.e. a rule without premises (in our case R3).

Example The following examples show possible deductions, based on the rules R1, R2 and R3. By applying
a rule whose conclusion that matches the provided term, we can find a premise, which we then use to match
against another rule. This means we generally work bottom-up and try to find matching rules which will lead us
closer to R3.

On the left, we try to deduce that 1 6 2. We observe that 1 6 2 can be the conclusion of the rule R1, leading
us to infer that the premise of this rule must be 1 6 1. Using rule R2 and the 1 6 1 as conclusion, we see that
the premise for this rule is 0 6 0. Now we can apply R3, which does not have any premise and we successfully
deduced that 1 6 2.

On the other hand we can look at the example to the right. Our goal here is to deduce that 4 6 2 is true. A
first application of rule R2 will get us to 3 6 1 and another application of R2 to the premise 2 6 0. At this
point, none of the rules can be applied any more This means that, according to the rules we defined, we cannot
reach a base case and that 4 6 2 must be incorrect.

Note, that in both cases we could have applied different rules than the ones that we actually used. On the left
hand we could have swapped the rules and first applied R2 before using R1. On the right side we could have
also used R1 instead of R2. In either case we would have reached the same conclusions. In general, inferences
can be performed in any order by using any rule that is applicable. The trick is to use rules that quickly lead to
an end (either a clash or a base-case).

7 Petri Nets: A Formal Language to Specify and Verify Concurrent Non-Deterministic Event Systems 185

R1
R2

R3
0 6 0

1 6 1
1 6 2

R2
R2

R?
???

2 6 0
3 6 1

4 6 2

According to the principles we gave, we can say that Infer (R) is the least set that includes the results of all
substitutions possible on all conclusions of all rules that do not have premises:

σ(post (r)) ∈ Infer (R) if pre (r) = ∅,∀r ∈ R,∀σ ∈ Σ

and all rules’ substituted conclusions where a substitution exists so that a rule premise is in the set:

σ(φ(post (r))) ∈ Infer (R) if φ(pre (r)) = φ(d),∀r ∈ R,σ ∈ Σ∃φ ∈ Σ,∀d ∈ Infer (R)

where pre(r) are is the premise and post(r) the conclusion of the rule
This last rule is called modus ponens, Example 7.2.3 shows such a deduction for a sequence of transitions.

Infer (R) is then obtained by fixpoint application of the modus ponens rule. For rules with positive numerator
(no negation, only conjunction) this set always exists according to fixpoint theorem of Knaster-Tarski [264].
Nevertheless, the set can be infinite.

Example Let us consider the sequence press.release in Figure 7.1. The semantics of this sequence are
represented by the following simple deduction using the SOS rules of press and release. What we see is that
the conclusion of the rule (the firing of press.release and creation of a new marking) has two premises: 1. the
conclusion of the press rule, and 2. the conclusion of the release rule. Each of these is part of an SOS rule
with it’s own premises, which has to be satisfied for this rule to be applicable.

(up 7→ 1) 6 m

m
press
−−−−→ m′ = m + (up 7→ 1) − (down 7→ 1)

(down 7→ 1) 6 m′

m′
release
−−−−−−→ m′′ = m′ + (down 7→ 1) − (up 7→ 1)

m
press.release
−−−−−−−−−−−→ m′′

7.2.5 Reachability Graph

We saw that applying a transition to a Petri net marking generates a new marking. In order to study system
evolutions in a more efficient manner, we can try to represent transitions and the thereby created markings as
an automaton. The automaton’s states are the markings and the automaton’s transitions correspond to the Petri
net’s transitions. We refer to such an automaton as the reachability graph of a Petri net. This is due to the
fact that it shows, starting from an initial state, the possible states of the system that can be reached.. To fully
understand the definition of the automaton, it is noteworthy that the automaton’s input alphabet is the Petri net’s
set of transitions.

Note, that depending on the initial marking, a Petri net has different reachability graphs, as different transitions
might be enabled. To visualise this, we present the reachability graphs of the Petri net of Figure 7.1 in Figure 7.15
(at the end of this chapter). The two graphs correspond to the possible system evolutions with 0, 1, 2 and 3 initial
tokens in fuel in Figures 7.15a – 7.15d, respectively. We can clearly see the repeated groups of markings that
correspond to matching behaviour.

These groups of reachability graph nodes differ by the number of tokens available in the fuel place. To aid
the legibility, we use different shades of gray to distinguish markings with different token numbers in place
fuel, where the lightest is 0 and the darkest is 3. The last group at the bottom of the figures (almost white)
shows the behaviour when fuel is empty. We can easily observe that the states of 0 tokens in Figure 7.15a is
repeated in Figure 7.15b, but this time with 1 token (signalled by the darker shade of grey). In the same way,
we can find the group of Figure 7.15b in Figure 7.15c, where however, every state is one shade darker, as there
is one more token in state fuel. The reachability graph of the marking shown in Figure 7.1 with seven tokens
in fuel has 84 states. We can observe from the graphs in Figure 7.15 that a Petri net with 0 tokens has 4 states

186 Didier Buchs, Stefan Klikovits, and Alban Linard

and 12 states with 1 token. The number of states increases by 12 for each additional token added initially to the
fuel place.

The advantage of Petri nets is that, due to their better representation of concurrent processes and resources,
they can be orders of magnitude smaller than their equivalent automata. For instance, [300] managed to simulate
the state of several multi-threaded programs to perform intrusion detection. Simulation was performed on-
the-fly during the program execution by wrapping system calls, and thus required an efficient representation
and computation time. This goal was achieved using Petri nets, and it would not have been possible using the
equivalent automata on the available resources.

Formally, the reachability graph of a Petri net is defined by a function s : M → T → M ∪ {⊥} that returns
the successor for any marking and transition, or ⊥ if none exists. This function is derived from the following
basic rules:

∀m ∈ M , t ∈ T ,



s(m)(t) = ⊥ ⇔ @m′ ∈ M ,m
t
−→ m′ ∈ Infer ({transitionti |ti ∈ T })

s(m)(t) = m′ ⇔ m
t
−→ m′ ∈ Infer ({transitionti |ti ∈ T })

(7.5)

The relation can be restricted to the subset of states that are reachable from the initial state m0 of the Petri
net. This subset is easily defined using the sequences of transitions of Equation (7.3).

We define that the state space (SS) is the set of reachable markings starting from an initial marking m0 for a
given set of transitions T

SS(T ,m0) = {m ∈ M | ∃s ∈ T∗,m0
s
−→ m ∈ Infer ({transitionti |ti ∈ T } ∪ {sequence})} (7.6)

By convention, for a given Petri net it is natural to implicitly define SS(m0) = SS(T ,m0).
The (naive) reachability graph generation algorithm is given in Figure 7.7. This function iterates over the

reachable markings, initially only initial, and tries to apply all transitions. The function returns the set of
reachable markings, each one annotated with the transitions that can be fired, and the corresponding successor
marking. The explored set contains the already explored markings, whereas the encountered set contains
markings that have not been explored, or that have been encountered again since their exploration. The code
shows a simple implementation that iterates over all previously seen markings to ensure uniqueness. More
efficient implementations may use a hash table.

7.2.6 Monotony

Petri nets exhibit an interesting property: monotony. Monotony means that if a transition can be fired for one
marking, then it is also fireable for any marking greater than the evaluated one. Extended to the reachability
graph, monotony means that all sequences of transitions that exist in the reachability graph of a Petri net also
exist in reachability graphs of the same Petri net with greater initial markings. Trivially expressed we could say
that adding tokens to a Petri net can only add new behaviours, but never inhibit existing ones.

Formally, monotony is defined by Equation (7.7), which can be derived from the rules in Equation (7.2)
and Equation (7.3). This rule defines monotony on both, a transition and a sequence of transitions.

monotony :
m

t
−→ m′

m + δ
t
−→ m′ + δ

(7.7)

In our example monotony means that any sequence of actions in our engine can also be performed if we add
tokens to any state of the Petri net (such as adding more fuel). We can observe the inclusion of reachability
graphs in Figure 7.15 for initial markings fuel = {0, 1, 2, 3}. The sequence stop.release.start.press is
observed several times, but with different initial markings, leading to a varying number of tokens in the fuel
place for each one.

7 Petri Nets: A Formal Language to Specify and Verify Concurrent Non-Deterministic Event Systems 187

local markings = {}

function unique (marking)
for _, m in ipairs (markings) do

if marking == m then
return m

end
end
markings [# markings +1] = marking
return marking

end

function reachable ()
local explored = {}
local encountered = {

[unique (initial)] = true
}
while next (encountered) do

local marking = next (encountered)
encountered [marking] = nil
if not explored [marking] then

explored [marking] = true
for _, transition in ipairs (transitions) do

local successor = transition (marking)
if successor then

successor = unique (successor)
marking [transition] = successor
encountered [successor] = true

end
end

end
end
return explored

end

Fig. 7.7: Source code function that enumerates reachable markings (right). The code iterates over the already
encountered markings and tries to find all possible successors by attempting to fire all individual transitions on
that marking and adding the successful attempts into the list of encountered markings.
The unique function ensures that each marking corresponds to only one entry in the Lua memory. It is required
by the explored [marking] and encountered [successor] lookups.

To summarise, we can see that the reachability graph of a Petri net is always included in the reachability
graph of the same Petri net with a greater initial making. While the markings of the sequences’ states may differ
for each one, the transition sequences are preserved.

In fact, since monotony is a property of all Petri nets, we can observe the following lemma. It states that the
state space (and thus the reachability graph) inferred from just the transitions is equal to the state space inferred
by the transitions and the monotony rule that we can define as:

SSM (T ,m0) = {m ∈ M | ∃s ∈ T∗,m0
s
−→ m ∈ Infer ({transitionti |ti ∈ T } ∪ {sequence,monotony})} (7.8)

So that the following statement holds:

SS(T ,m0) = SSM (T ,m0) (7.9)

We also know that behaviours are preserved when extending markings:

m ≤ m′ ⇒ SS(T ,m) ≤ SS(T ,m′) (7.10)

Where ≤ on markings compare markings one by one.

7.3 Properties of Petri Nets

In the previous section we introduced Petri nets and the rules for the exploration of the reachable state space
of an initial marking. In this section we investigate the properties of Petri nets using representatives of state
properties and transition properties.

188 Didier Buchs, Stefan Klikovits, and Alban Linard

7.3.1 Marking Properties

The state properties or in Petri net-lingomarking properties of a Petri net can be used to analyse one configuration
of a Petri net. One of the most common representatives for these kinds of properties is the bound. A place’s
bound refers to the minimum (lower bound) and the maximum (upper bound) number of tokens that can be
reached by any marking. The minimum and maximum number of tokens of all places are commonly referred to
as the bound of a Petri net. This means that the Petri net bound is composed of

• the greatest marking that is contained by any reachable marking (lower bound),
• and the smallest marking that contains any reachable marking (upper bound).

Formally, we can define the lower and upper bound as follows:

lower = max ({m ∈ M | ∀m′ ∈ SS(T ,m0),m′ > m}) (7.11)
upper = min ({m ∈ M | ∀m′ ∈ SS(T ,m0),m′ 6 m}) (7.12)

Figure 7.8 shows the code that computes the bound of a Petri net, using its reachable markings. The code
works by iterating over all markings and computing the minimum and maximum number of tokens for each
place. There exist algorithms to compute the bound without the use of the set of reachable markings. These
algorithms use structural properties of the Petri net instead, such as the one shown in [188].

The importance of bounds is paramount as they are often used to detect dead parts in the model, i.e. places
that can never contain any tokens. Bounds computation can further detect places that can have an infinite number
of tokens. However, as an infinite number of tokens would (theoretically) require an infinite reachability graph,
such a bound cannot be detected using algorithms such as the one presented below. In order to detect an infinite
bound, we have to use a coverability graph, an adaptation of the reachability graph for which a detection of
repetitive sequences is added. This is explained for example in [238].

In the Petri nets community the term k-boundedness is often used, where k ∈ N is a natural number. This
notion of bound refers to the upper bound at the place level and helps describing a Petri net. We say that a place
p is k-bounded iff it contains at most k tokens in any reachable marking i.e. ∀m ∈ SS(T ,m0),m(p) 6 k. We
can further refer to Petri net as being k-bounded iff all its places are k-bounded, i.e. ∀p ∈ P, p is k-bounded.

function bounds (marking)
local markings = reachable (marking)
local bound = {

up = { minimum = math.huge , maximum = 0 },
down = { minimum = math.huge , maximum = 0 },
fuel = { minimum = math.huge , maximum = 0 },
off = { minimum = math.huge , maximum = 0 },
on = { minimum = math.huge , maximum = 0 },
filled = { minimum = math.huge , maximum = 0 },
maximum = { minimum = math.huge , maximum = 0 },

}
for marking in pairs (markings) do

bound.up.minimum = math.min (bound.up.minimum , marking.up)
bound.up.maximum = math.max (bound.up.maximum , marking.up)
...

end
return bound

end

Fig. 7.8: Source code stub of the function that calculates the Petri net’s bounds

7 Petri Nets: A Formal Language to Specify and Verify Concurrent Non-Deterministic Event Systems 189

7.3.2 Sequence Properties

Whilemarking properties provide useful information about the state of a system, they do not give any information
about how the system evolves. In contrast, sequence properties express the possibility to fire transitions in the
reachability graph. One such property describes the liveness of a transitions. This property assigns a liveness
level (li ∈ {l0, l1, l2, l3, l4}) to each transition of the Petri net, so that it provides information about whether a
transition is fireable, can/will be fireable or will never be fireable. The individual levels are defined as follows:
l0: the transition is dead, i.e. can never fire;
l1: the transition can fire at least once in at least one path of the reachability graph;
l2: the transition is quasi-live, i.e. can fire infinitely often in at least one path of the reachability graph;
l3: the transition is live, i.e. can fire infinitely often in all paths of the reachability graph;
l4: the transition can always fire.

Note that the liveness constraints are ordered and that if a transition is lk -live, it is also lk−1 live, except for l0
(dead). The liveness level of transitions is a useful information to debug models, as this level should in theory
match the intended behaviour of the process using by the transition. In practice, l0-live transitions should almost
never occur in models: finding a l0-live transition is usually a clear indication of a bug within the model as it
should not appear at all if the model was correct. Transitions that are l1-live can be fired at least once, and have no
really interesting meaning. They can appear in any behaviour, such as the representation of scripts or programs
that terminate. l2-live transitions trigger infinitely often, and are thus found in the behaviour of programs that
do not terminate, for instance web servers. They are distinguished from l3-live transitions, because the latter
can fire infinitely often in all execution paths. Thus, l2-live transitions are used usually in looping processes that
can terminate, whereas l3-live transitions are used usually in looping processes that cannot terminate. l4-live
transitions are in practice very rare, as they represent an action that can always happen. They can be found in
user interfaces, where one process records the inputs and has thus transitions that can always be fired.

In order to find the liveness level of transitions, we can employ the algorithm provided in Figure 7.9. The
computation works on the set of reachable markings and further uses the information about a reachability graph’s
strongly connected components (calculated using Tarjan’s strongly connected components algorithm [263]). The
algorithm works in several stages, treating each transition individually as follows:
1. the transition is initially set as both, dead (l0) and always fireable (l4); these flags are unset as soon as the

transition can respectively be fired or cannot be fired in the reachability graph;
2. by iterating over the reachable markings, the transition is set as l1 live if and only if there is a marking in

which it can be fired;
3. l2 flag is set using the strongly connected components of the reachability graph: a transition is l2 live if a

component contains a marking in which the transition can be fired; and that stays within the component;
4. l3 flag is set similarly using the strongly connected components: a transition is set as l3 live if and only

if it is l2 live, and can be fired within a component that has no outgoing transitions (that is called a final
component).

7.3.3 Invariants

The actual aim of modelling is often to reason over certain problems. Invariants pose a convenient way of
reasoning over Petri nets independent from their actual marking.

Invariant reasoning is part of the structural analysis of Petri nets. Generally, invariants are distinguished
between place (P-)invariants and transition (T-)invariants.While the former is useful for deadlock detection [214],
T-invariants serve the modelling of logic programs [215] and Horn clauses [187] as pointed out in [199].

The goal of invariant creation is the establishing of proofs based thereon. In general, proofs based on invariants
have an algorithmic part that consists of computing invariants and a more analytic part, which is written by a
human and describes the reasoning necessary for building the proofs. There is a large number proofs we can
perform with invariants, ranging from state based proofs such as mutual exclusion to liveness properties. Such
invariant-based proofs are interesting alternatives to the ones based on temporal logic properties. Although they
tend to be less powerful, they can nevertheless provide parametric proofs more easily. This comes however at
the cost of human contribution while temporal logic proofs are automateable.

190 Didier Buchs, Stefan Klikovits, and Alban Linard

function liveness (marking)
local markings = reachable (from)
local components = tarjan (markings)
for _, transition in ipairs (transitions) do

transition.liveness = {
l0 = true ,
l1 = false ,
l2 = false ,
l3 = false ,
l4 = true ,

}
for marking in pairs (markings) do

if marking [transition] then
transition.liveness.l0 = false
transition.liveness.l1 = true

else
transition.liveness.l4 = false

end
end
for _, component in ipairs (components) do

for marking in pairs (component) do
if marking [transition]
and marking [transition]. tarjan.component == component then

transition.liveness.l2 = true
end

end
transition.liveness.l3 = component.is_final and transition.liveness.l2

end
end
return transitions

end

Fig. 7.9: Liveness level detection algorithm.

7.3.4 Formal Definition of Invariants

Each state m ∈ SS(T ,m0) can be associated with an observation value. The observation is a summary of the
state that contains only information relevant to the properties that are verified. Given a set of observations O,
which observations are obtained through functions ω : M → O that return an observation for any possible
marking in M , ω is an invariant if and only if it returns the same observation for all the reachable states of the
system. For instance, in Figure 7.1, the foot pedal is either up or down. In the marking, this means that there is
one token in one of the places and none in the other at all times. Therefore ω : m 7→

(
m(up) + m(down)

)
is a

function that always returns the value 1 for all reachable states and is thus an invariant. More formally, ω is an
invariant iff ∃o ∈ O,∀m ∈ SS(R,m0),ω(m) = o.

The definition above for invariants is very general. It can be used if the users define the invariants themselves,
but cannot help in deducing invariants from the structure of the Petri net. It is interesting to consider instead
only functions that are linear combinations of elementary observation of places.

Usually, elementary observations are functions that for any place and marking return the marking of the
given place. The elementary observations is thus defined as the function oe : P → (M → N) such that
∀m ∈ M ,∀p ∈ P, oe (p)(m) = m(p) These elementary observations can be instantiated using any place of
the Petri net, for instance oe (up) is an observation. The set of all elementary observations is included into the
observations. For convenience, we consider that writing the name of a place is equivalent to the elementary
observation for this place. Hence we will use up to also refer to the function that returns the marking of this
place: m 7→ m(up).

Observations can be composed as linear combinations of observations. For any observations o1, . . . on ∈
O, and constants c1, . . . cn ∈ N, an observation can be built to compute c1 ∗ o1 + . . . cn ∗ on , for instance
1 ∗ oe (up) + 1 ∗ oe (down) (the places with coefficient 0 are not shown). The set of observations is thus defined
by the linear combinations of elementary observations:

7 Petri Nets: A Formal Language to Specify and Verify Concurrent Non-Deterministic Event Systems 191

O = {Σp∈P (cp ∗ oe (p)) | ∀p ∈ P, cp ∈ N}

Following this definition, if ω1 and ω2 are invariants, then ω1 + ω2 is also invariant. The addition of two
invariants ω1 + ω2 : M → O is defined as: ∀m ∈ M , (ω1 + ω2)(m) = ω1(m) + ω2(m). Also, if ω is an
invariant then ∀k ∈ N, k ∗ ω is an invariant. The multiplication of an invariant with a constant is defined as:
∀m ∈ M , (k ∗ω)(m) = k ∗ω(m). To compute invariants it is necessary to find the appropriate linear combination
of elementary observations. The well-known Farkas algorithm can be employed for the finding of invariants, as
explained in the next section.

7.3.5 Computing P-invariants

Discovering the P-invariants can be done using the Farkas algorithm [97]. The Farkas algorithm is an iteration
process operating on a structure which corresponds to a Petri net’s incidence matrix. For spatial reasons we do
not provide the implementation of the algorithm but describe the (basic) functionality in textual form.

Its principle is to represent and manipulate a matrix where columns represent the transitions of the Petri net,
and lines represent place markings or linear combinations of place markings. The algorithm works iteratively,
performing the following actions:

1. add new lines to the matrix by building linear combinations of already existing lines, the aim of this process
being to nullify columns (i.e. create columns that only contain zeros);

2. remove the lines that were used based on the summation;
3. remove the columns that are nullified;
4. remove all lines that are already expressed through other lines.

The process terminates when all columns are nullified. The solutions are linear combination of place markings
that have a constant observation, and are thus invariants.

Example Below is an example of how to compute invariants following the given algorithm, on a very simple
Petri net shown in Figure 7.10.

a b

c d

t1 t2

t3

Fig. 7.10: Example of Petri net used to compute invariants

The successive Fi structures show the advance in Farkas algorithm. Each Fi is the result of one step, computed
from the Fi−1 structure. The first one (F0) is the incidence matrix of the Petri net, that represents for each place
and transition the difference between the weight on post arcs that rely the place and the transition, and the weight
on pre arcs that rely them also.

F0 =



t1 t2 t3

a −1 1 0
b 1 −1 0
c 1 −1 1
d −1 1 −1



192 Didier Buchs, Stefan Klikovits, and Alban Linard

The first iteration is to eliminate t1. To do it, we have to find linear combinations of rows such that the column
for t1 is always zero. Obviously, both a + b, c + d, a + c and b + d are correct linear combinations. There is
no need to represent greater coefficients, such as 2 ∗ a + 2 ∗ b, thus only the minimal combinations are kept.
Because all rows a, b, c, d have been used to compute the new rows, the rows a, b, c, d are removed from the
matrix in F ′1 . All columns that contain only zeros are also removed in F ′′1 , as they are useless for the remaining
of the iterations.

F1 =



t1 t2 t3

a −1 1 0
b 1 −1 0
c 1 −1 1
d −1 1 −1

a+b 0 0 0
c+d 0 0 0
a+c 0 0 1
b+d 0 0 −1



F ′1 =



t1 t2 t3

a+b 0 0 0
c+d 0 0 0
a+c 0 0 1
b+d 0 0 −1



F ′′1 =



t3

a+b 0
c+d 0
a+c 1
b+d −1



As there is only one transition t3 remaining, the second iteration is to remove it. Only one linear combination
can do it: a + b+ c + d, obtained by two ways: by adding the lines a + b and c + d, and by adding the lines a + c
and b + d. But the Farkas algorithm requires to use only the rows that are not zero, thus a + b and c + d are not
taken into account. As previously, the rows that have been used to compute the new ones are removed (a + c
and b + d) in F2", and the nullified column is also removed in F ′′2 .

F2 =



t3

a+b 0
c+d 0
a+c 1
b+d −1

a+b+c+d 0



F ′2 =


t3

a+b 0
c+d 0

a+b+c+d 0


F ′′2 =

[
a+b

c+d

]

After this iteration, there are no more columns to remove. The remaining rows represent invariants of the
Petri net: a + b and c + d, that are named for later use:

i1 = a + b

i2 = c + d

As previously discussed, invariants are formulas that do not change applied on reachable markings. This
means that for any sequence s and markings m,m′, such that m

s
−→ m′, the invariant i applies at both ends of the

sequence, and even at each state within the sequence: i ∗ m = i ∗ m′. In our example i is either i1 or i2, stating
that the observation of a + b and c + d remains constant, independently of which transitions are fired.

7.3.6 Using Invariants for Proving Properties

Proving properties on models can be done by exploration of the reachability graph. Nevertheless, in most
practical applications this method is difficult to use due to the state space explosion problem. The previous
section defines invariants on Petri nets, that can be computed without the need to create the full reachability
graph. In fact, invariants can be computed without even having to specify an initial marking. This section
outlines the power of invariants by showing how to use them to prove properties on models. The usual way of
performing these proofs is to establish invariants, and follow a case by case analysis of the possible state of
the Petri net. This is done using in the reasoning the fact that invariants are respected in the whole reachability
graph and also for the initial marking.

7 Petri Nets: A Formal Language to Specify and Verify Concurrent Non-Deterministic Event Systems 193

Proofs can usually be expressed as case analysis of the reachability graph of the Petri net. The proof process
is then based on the following steps:

1. compute the set of invariants
2. apply invariants to the initial marking to obtain the corresponding observations
3. define an arithmetic reasoning based on the observations, invariants and case analysis, where the cases are

in general markings of the state space that respect the invariants.

Using the invariants from Example 7.3.1, we can prove the principle of mutual exclusion of a and b in the
Petri net above. The reasoning steps for this proof are as follows:

1. Application of the Farkas algorithm onto the incidence matrix provides us with the Petri net’s invariants:
i1 = a + b and i2 = c + d.

2. Next, we calculate the invariant values using the initial marking m0 = {a = 1, b = 0, c = 0, d = 1}. This
leads to the inference that the value of i1(m0) = m0(a) + m0(b) = 1.

3. Since i1 is an invariant, this observation needs to hold on any marking in the reachability graph, i.e. ∀m ∈
M ,m(a) + m(b) = m0(a) + m0(b) = 1

4. Equipped with the knowledge that a place-marking cannot be negative (∀p ∈ P,∀m ∈ M ,m(p) > 0) we
can deduce that m(a) ∈ {0, 1} and m(b) ∈ {0, 1}

5. Lastly, we can easily observe that the mutual exclusion has to hold since if m(a) = 1 and m(a) +m(b) = 1,
then m(b) has to have the value 0. Similarly, m(a) = 0 ∧ m(a) + m(b) = 1⇒ m(b) = 0

While this trivial proof can easily be computed by hand, the same principle can be used to create more
complex, semi-manual, structural proofs. In practice such proofs are supported by powerful proof checkers such
as Coq [30] to verify that hand written proofs are correct. The detailed description of this technique surpasses
the scope of this book, but we encourage the reader to consult publications dedicated to this topic.

7.4 Techniques for Model Checking

Invariants can often be computed using less time and memory than a Petri net’s the entire reachability graph.
In some cases, however, such as during the computation of causality properties (for instance "if an event A
occurs, then an event B must occur later"), the need to perform the generation of the state space is still required.
Although the computation is straightforward (see the algorithm in Figure 7.7), this technique does not scale
well since many models have an exponentially growing number of states with respect to to their size. It is not
uncommon for a model’s reachability graph to have more nodes than the number of atoms in the universe (1082).

The size of the reachability graph of a Petri net usually depends on two factors: the number of places and
transitions within the Petri net and the number of tokens in each place. For instance, the reachability graph of
our example in Figure 7.1 increases with the number of tokens in the fuel place. It could also increase if we
add more places, for instance to represent several positions of the foot pedal (up, middle, down for instance).

In order to still be able to calculate the state space, research led to the development of various approaches to
overcome the increasing size of the state space. Below, we will briefly outline a few examples.

• Symmetry reductions [74] allow us to perform model checking on a smaller system, by analysing one
representative component instead of several identical components. For instance, instead of analysing the
behaviour of several databases, identified by their names, symmetry reductions focus on analysing the
behaviour of one anonymised database.

• Partial order reductions [125, 163, 278] are based on the commutativity of concurrent actions. When
performingmodel checking of asynchronous systems, action interleaving requires an arbitrary order between
the events. To treat all possible cases, all permutations of the order must be considered, resulting in an
exponential explosion of the number of traces and states. Partial order reductions allow to check only a
subset of the behaviours, by removing executions that differ only by the order of independent transitions.
This technique can only be applied when the property we want to check does not depend on the removed
executions.

• Büchi Automata [296]: Some temporal logic formulæ (namely linear temporal logic ones) are checked
against the set of infinite executions of the model. A way to perform this verification is to transform the
formulæ into automata that accept the valid executions. Such automata are called Büchi automata. For

194 Didier Buchs, Stefan Klikovits, and Alban Linard

verification, the model and the formula are both encoded as Büchi automata which accept the languages
that represent the executions of the model and the valid executions with respect to the property to verify.
Model checking then consists of checking that the language of the executions is included in the language of
the property.

• Bounded Model Checking (BMC) [33]: This approach is a kind of “degraded mode” of standard model
checking, as the formula is checked only for executions of a maximum length k (where k is the sequence
length from the initial marking). If no problem is detected, then k is increased until the formula does not
hold any longer, or k reaches an upper bound (called the completeness threshold of the design). Note that
there is no guarantee for executions longer than this upper bound. Since these kinds of problems can be
reduced to propositional satisfiability problems, they can use very efficient SAT or SMT solvers.

• Distributed Model Checking [121, 22, 21]: One of the main problems when performing model checking is
memory exhaustion. The idea of distributed model checking is to distribute the states over several computers
in order to increase the overall available memory. This technique has a drawback: the transmission of data
between computers poses as a bottleneck. Various algorithms have been designed to perform a “good”
distribution of states so that most transitions are local to the same computer. They have reached their limits
however due to the rise of modern, highly efficient CPUs. Distributed model checking is in practice most
efficient when the time required to compute successor states is much longer than the time required to
transmit states.

• Parallel Model Checking [257, 20]: With multi-core architectures, the trend is nowadays to perform parallel
model checking instead of distributed model checking. In this approach, all the states are represented and
computed on the same computer, but several execution processes are used to speed up the computation.
This approach still grows more difficult with increasing parallelism, because of possible memory contention
within storage for computed states. The same approach is used to perform parallel model checking on GPUs.

• Symbolic Model Checking (SMC) [58, 59, 77]: Instead of explicitly representing states and transition
relations, this approach only represents and manipulates sets of states or sets of transitions using Decision
Diagrams [55]. This representation allows at the same time to share some common parts of the states and
reduce computations when applying the transition relation, in the best cases logarithmic with respect to the
size of the model.

Some techniques have been developed that combine several approaches [92]. For instance, symmetry and
partial order reductions are also often coupled with static reductions techniques that reduce the size of the
specification with respect to the property to check, or with state compression as in [96], where some states are
represented by the difference with their predecessor. Similarly, parallel model checking is easily used in combi-
nation with the other approaches discussed above. One exception is symbolic model checking because Decision
Diagrams require a unicity table and computation caches, that need to be locked and are thus bottlenecks.

7.5 Data manipulation in Petri nets

The previous sections present the use of simple Petri nets models. While this type of Petri nets are sufficient to
represent simple systems, they lack several features that are useful when dealing with complex cyber-physical
systems, such as modularity, time constraints, and data manipulation. Such simple models encode data as a
number of tokens. For instance, the fuel level is represented by a certain amount of tokens within the fuel place.

The basic Petri nets we introduced so far are commonly referred to as Place/Transition (P/T) nets. As we
have seen, they are well-suited for the modelling of process control, synchronisation and resource flow within
a system. However, in more complex situations the information used might not be easily representable as
simple, black tokens. We can easily imagine cyber-physical systems where the transmission of more complex
information is required. A P/T net modelling a very simple drone controller may have transitions up, down, turn
left, turn right, move forward and move backward, which all modify the state. However, if we now add
possibilities to perform multiple actions at the same time, we would have to add more transitions such as move
up & forwards. The number of transitions within this relatively simple system would grow exponentially.

It would be more efficient to represent such information directly in the tokens. In order to do so, we need a
token for vertical movement that could express to either move up, move down or stay, another one for changing
directions (left, right, stay) and a third one for the forward/backward movement. We can then send these three
tokens into a transition that would perform the action depending on the token values.

7 Petri Nets: A Formal Language to Specify and Verify Concurrent Non-Deterministic Event Systems 195

This simple scenario shows the necessity for High-level Petri nets (HLPN). HLPN were developed with the
goal to attach a values to tokens, such as described before. Transitions and arcs are extended with guards, which
evaluate the token values and assert a certain configuration.

7.5.1 Drone Controller

Our new High-level Petri net drone controller is presented in Figure 7.11 On the first view we can see three
distinct groupings for vertical movement, horizontal movement and orientation. Each one of these three
groups contains one place with an initial token with value stay. The behaviour of the groups follows the same
scheme. From the initial place we can use transitions to create tokens with different values. The transitions’
preconditions are guarded. This means that if the token’s value is stay, we can only fire transitions whose guards
require a stay-token (there are two in each group). Once we fire the transition, the stay-token is consumed
and a new one is produced. For example from the place altitude we can either fire a transition move up,
which produces an up-token, or move down, that creates a down-token. This behaviour matches the pushing of
a joystick on the drone’s physical remote to either direction. There are two more transitions within this group
that are guarded by up and down, respectively. Firing these transitions will consume the token respective token
and produce a stay token. In other words, we can use them to “reset” the token (i.e. to stop movement into that
direction). On an actual drone remote, this behaviour matches the releasing of the drone’s altitude joystick to
neutral position. The groups that express the horizontal movement and orientation behave correspondingly.

Next to these three groups we can see the central move transition. This transition is responsible for the
actual displacement of the drone Move consumes the tokens from vertical, horizontal and orientation.
Interestingly, the arcs for these tokens are not guarded by concrete token values, but by variables (a, d and
m). These variables are assigned when move fired and take the tokens’ values. The transition further uses a
token from place drone and a token from place battery. Note, that both drone and battery have different
token types (i.e. can hold different valuations): While battery contains multiple, classical black tokens, the
drone-place only holds one data-record token whose value stores information about the drone’s current position
(as 〈x, y, z〉-coordinates) and angle (stored as anti-clockwise deviation angle from north2).

Firing move will consume the three movement indicator tokens, one battery-token and the drone-token
(assigned to variable s). It then produces equivalent tokens to the consumed ones in each one of the movement
places, plus a new token in the drone-place, whose value is updated to match the new state of the drone3.
Producing equivalent movement tokens to the one that has been consumed, has the effect that the behaviour of
the drone will remain continuous until it is actively altered. In the example, move’s consumption of an up token
will produce another up in the altitude-place. Hence, when firing move again, the drone will continue rising,
unless the token has been modified (using the transitions within the altitude group)

Note, that since there is no way to produce tokens in the battery-place, this is the resource that limits the
number of times we can trigger the central transition and hence move the drone.

Our drone controller further has a safety-mechanism integrated. This mechanism is shown as a guard on the
central transition and expresses that we cannot fire this transition if the drone’s position z-position is lower than
50 (centimetres) and the altitude token is specifies a downward movement (i.e. has value down).

7.5.2 Formalising High-level Petri nets

As we saw in the example, HLPN use various additional concepts such as variables and expressions. In this
section we will focus on the adaptation of our existing Petri net formalism to integrate these concepts.

Variables and expressions To formally express the concepts that were used in the example above, we need
to define matching and filtering of tokens. For this reason we introduce the notions of variables and expressions:
We define a set of variables V (e.g. s,a,d,m), and a set of expressions over data and variables (noted E).

2 I.e. the value 90 describes West, 180 South, and 270 and −90 stand for East
3 In the figure the update is simply expressed as s + f (a, d,m), where we assume the existence of a function f which can provide
the 〈x, y , z〉-coordinate and orientation angle change produced depending on the group tokens.

196 Didier Buchs, Stefan Klikovits, and Alban Linard

Since variables are expressions or parts thereof, V is a subset of E: V ⊆ E. We further define a function
variables : E → P (V), which returns the set of variables that are used by an expression.

If an expression does not contain any variables, we call it a ground expression. The set of ground expressions
E∅ is defined as E∅ = {e | e ∈ E ∧ variables (e) = ∅}. In order to express concrete values (such as stay or
up) this set has to be non-empty.

Binding Equipped with these tools we can now express the binding of variables (such as binding of the
altitude token to the variable a). A binding σ ∈ Σ is a partial function from variables to ground expressions:
σ : V → E∅∪{⊥}.We remind ourselves that a substitution, as introduced in Section 7.2.4, is denoted notedσ(e).
This means that it is the application of a bindingσ on an expression e ∈ E and replaces variables with their value
in the binding. Note, that a substitution does not have to replace all variables within an expression. Variables
that do not appear in the binding remain in the expression. Formally:
∀e ∈ E,∃e′ ∈ E∅, e′ = σ(e) ∧ variables (e′) = variables (e) \ {v | v ∈ V ∧ σ(v) , ⊥}.
Transition guards In high-level Petri nets transition guards are used to prevent transitions to fire with

unwanted token values and thereby stop unwanted behaviour. In the drone controller we use the guard ¬(a =
down∧s.position .x < 50) to prevent the drone frommoving downwhen its altitude is below a certain threshold.
Formally, transition guards are functions that evaluate to Boolean values (B = {>,⊥}). Transitions can only be
fired iff the guard evaluates to >.

Integration of the conceptsUsing the above definitions, wemodify the definition of a Petri net to incorporate
the new concepts. Specifically we change the following:

1. Add ground expressions to tokens within markings as a means to hold data
2. Add (variable) expressions to arcs in order to filter tokens or bind variables
3. Add Boolean guards over expressions to allow filtering of tokens and disabling transitions for certain

token-values.

Formally, HLPN are described as tuples based on the structure of P/T nets (as defined before), but with added
and modified fields: 〈V , E, variables , P,T , pre, post , guard ,m0〉, where:

• V , E, variables are the sets of variables and expressions, and the variables function as introduced above;
• M = P → M (E) is the set of all possible multisets over expressions. It replaces the former marking
definition (P → N);

• guard : T × Σ → B defines the allowed bindings for each transition;
• m0 : P →M(E∅) associates to each place a multiset of ground expressions as the initial marking.

This definition differs resembles the P/T definition from before, except for the introduction of variables and
expressions and the new definition of marking, where a marking consists of a multiset of expressions rather than
a natural number.

In fact, we can look at a classical P/T net is a special kind of high-level Petri net where the set of variables
is empty (V = ∅) and only one expression (E = {•}) exists. Note that since transition guards are usually
defined as Boolean expressions over expression comparisons, a P/T net’s guard function always returns true:
∀t ∈ T ,∀σ ∈ Σ, guard (t,σ) = >.

The semantics of a transition t is given in Equation (7.13). It differs from the previous transition semantics
given in Equation (7.2) by adding the substitution of a binding within the pre and post functions.

transitiont :
∃σ,σ(pre (t)) 6 m, guard (t,σ) = >

m
t
−→ m − σ(pre (t)) + σ(post (t))

(7.13)

The use of expressions in HLPN requires the extension of the substitution to include all expressions in the
function image. Formally, ∀m ∈ M ,∀p ∈ P,σ(m)(p) = σ(m(p)). This substitution also has to be extended
to multisets, since HLPN markings are defined as such. Applying a substitution on a multiset is performed by
applying the substitution to each element: ∀es ∈ M(E),σ(es) = [σ(e) | e ∈ es], where [] denotes a multiset
by intention.

7 Petri Nets: A Formal Language to Specify and Verify Concurrent Non-Deterministic Event Systems 197

vertical movement horizontal movement

orientation

battery

drone

[(position = (x = 0, y = 0, z = 0), angle = 0)]

vertical [stay]

move up stop up

move downstop down

[stay]

[up] [up
]

[st
ay
]

[stay]

[down][do
wn
]

[st
ay
]

direction[stay]

turn left

stop left turn right

stop right

[st
ay
]

[le
ft
]

[left]
[stay] [st

ay
]

[ri
gh
t]

[right]

[stay]

horizontal[stay]

move frontstop front

move back stop back

[st
ay
]

[fo
rw
ar
d]

[forw
ard]

[stay]

[st
ay
][ba

ck
w
ar
d]

[backw
ard][stay]

move

¬(a = down ∧ s.position .x < 50)

[•]

[s
]

s
+
f (a, d,m

)]

[a]

[a]

[d][d]

[m]

[m]

Fig. 7.11: Petri net representing the control of a drone, using data as tokens and arc valuations. The control
is composed of three modules, that represent the state of the controller joysticks: one to move upwards or
downwards, one to rotate left or right, one to move forwards or backwards. The drone moves when the move
transition is fired. It captures the state of the controller to move the drone. Places are labelled with multisets of
tokens, shown as [token1, . . . tokenn]. Each token is a structured data, that can be a simple token (•), an atom
(stay) or a record or subdata with named fields, such as (position = (x = 0, y = 0, z = 0), angle = 0). The
position is a position relative to the initial position of the drone, and the angle is an angle on the horizontal
plane and signifies the deviation from north. Arcs are labelled by multisets of tokens, that can use variables,
for instance x. Transitions have implicitly a guard that always returns >, except the move transition that has an
explicit guard ¬(a = down ∧ s.position .x < 50).

7.5.3 Other High-level nets

In the last couple of decades, researchers hae come up with numerous extensions and modifications of the P/T
net formalism to ease the modelling of complex systems. This section introduces four representatives of such
complex variants of Petri nets.

198 Didier Buchs, Stefan Klikovits, and Alban Linard

Coloured Petri nets (CPN) [158] CPN are an extension of Petri nets where each token can be of a certain
colour. Each colour is a set of values, comparable to a type definition. The set of colours has to be clearly
specified for a CPN. Arcs are modified to allow the specification of the colour to use in pre- and postconditions.

The drone example in Figure 7.11 is a CPN with the following colours:

• CVertical = {up, down , stay }
• CHorizontal = {forward , backward , stay }
• CDirection = {left , right , stay }
• CFuel = {•}

Unfortunately, not all data types can be easily represented as colours, for instance, the drone state is a dictionary
or tuple. The corresponding colour contains all the possible combinations of positions and angles. Since this
set is infinite (x, y, z and angle are rational), this solution is not usable in practice, and the domains have to be
made discrete and bounded.

Symmetric nets [71] Symmetric nets, formerly known as “well-formed Petri nets”, are a special kind of
Colored Petri nets that use only simple data types: tuples of constants in finite and ordered domains. The data
structure is thus very limited, and cannot easily represent data of varying size, as well as data in a priori unbound
domains. Operations on data are also very restricted: it is only possible to obtain the successor or predecessor
of a value, and test equality between two values. There are no operations allowed on the tuples themselves.

Despite all these limitations, symmetric nets are successfully used in practical problems because they offer
a formalism that is convenient for efficient structural analysis and model checking. The limited expressiveness
of these types increases the number of properties that can be verified, in particular for the structural analysis of
models, such as computation of bounds or invariants.

Algebraic Petri nets (APN) [297] Algebraic Petri nets are a special form of Colored Petri nets, that allow
the use of abstract algebraic data types [87] as colours. Such algebraic data types consist of a signature and
axiomatisation and hence allow the user to represent custom data types. The advantage of APNs is that every
data type used has a precise axiomatisation and consequently proofs can be done by theorem proving without
the usual limitation of finiteness of model checking. Using APNs, parametric and under-specified systems can
be modelled and also be verified in a more systematic way.

Timed Petri nets [231] The concepts of time and of Petri nets are quite opposite: while time determines the
occurrences of events in a system, Petri nets consider only their causal relationships. Several variants of Petri
nets have been defined with the notion of time. The three most common are: Time Petri nets, Timed Petri nets,
and Petri nets with Time Windows. In Time Petri nets, transitions are labelled with time intervals, that define
the time at which the transition can be fired, after it has been enabled (has all its preconditions met). In Timed
Petri nets, time is also put within tokens, that have thus an age, and transitions are labelled with time intervals
that define the age at which tokens can be consumed. In Petri nets with TimeWindows, transition are given time
intervals, this means that transition can fire (not mandatory) only in this time interval.

In this chapter we do not consider time with Petri nets for simplicity, and only focus on the causal relations
associated to Petri nets.

7.6 Combining Model Semantics and Simulation

The recent rise of computers in everyday life is especially of importance when their purpose is to react to and
act upon environment changes. We refer to such systems as cyber-physical systems (CPS). Such systems consist
of a software part (e.g. a controller program) and a hardware side that usually consists of sensors and actuators.

While smaller systems, such as heating/light systems that measure presence have been installed and used for
a long time, the trend towards Internet-of-Things applications, “smart systems” (such as new-generation cars
and trains), and general large-scale systems that include hundreds, sometimes even thousands of components
drives the need for means to verify and validate such systems.

The problem of these highly heterogeneous systems lies in finding the right means to model each part of
the system. While former approaches to find the one modelling language or tool failed, nowadays the trend is
reversed. Modern research is looking to model every part of the system with its most appropriate modelling
formalism. Subsequently the individual components are combined and simulated together. This approach, called

7 Petri Nets: A Formal Language to Specify and Verify Concurrent Non-Deterministic Event Systems 199

co-simulation [126] has shown promising research results, but comes with one important question: How should
we combine models that were developed using different syntaxes and semantics?

One of the approaches that aims to answer this question are Functional Mock-up Units (FMUs) [36]. The
FMU formalism provides a homogeneous interface, the Functional Mock-up Interface (FMI). Each component
is wrapped inside its own FMU and is henceforth executed using the FMI. The individual FMUs’ inputs and
outputs are connected to one another in order to allow information to be transmitted within a system. The
semantics of such a composition are dominated by a so-called master algorithm that is responsible for passing
control to individual components, relaying signals and choosing appropriate time step sizes which suit all units
in the system.

In this section we introduce Petri Net Functional Mock-up Units (PNFMUs) [180]. This new type of FMU
wraps a Petri net within the FMU in order to provide access to the efficient evaluation and calculations we
introduced in the previous sections. Using Petri nets it is possible to detect deadlocks and possible system
evolutions.

The FMI standard strictly defines the qualities of a valid FMU. In order to comply with this standard however,
it is necessary that PNFMUs overcome three major challenges:

1. Time evolution Similarly to a Mealy or Moore machine, the Petri net formalism doesn’t explicitly define a
time concept. Often, the firing of a transition is accepted as a time unit. To overcome this limitation, the periodic
or aperiodic wrappers presented in [272] can be used for this purpose. In addition, these wrappers has also been
discussed in [83] when considering the semantic adaptation, giving the possibility to automatically generate
FMUs from a domain specific language that solve this problem.

2. Inputs/Outputs adaptation Obviously, the inputs and outputs type and nature of a given formalism can
differ from the simple value affectation of a variable defined by the FMI standard. Therefore, an adaptation must
be performed as well for inputs and outputs of a FMU. The authors of [83] provided solutions with their domain
specific language to overcome this limitation too.

3. Non determinism In the standard, FMI API functions are mathematically modelled as total functions
[272]. This means that calling an FMU’s API with the same parameters should always yield the same result. An
initial, yet naive, approach to represent a Petri net state would be to consider it as a single marking. However, in
situations where a Petri net has more than one fireable transitions at a given state, the evolution function of the
FMI API (doStep) cannot yield a deterministic result. This particularity is clearly shown by the Petri net and its
reachability graph in Figure 7.12. In this example, either t1 or t2 can be fired from its initial marking, leading to
different system evolutions. This issue must be addressed to be able to represent a Petri net within an FMU.

Since the two first subjects of interest have been extensively discussed in the referenced publications, the
non determinism of the formalism is considered here. Now that the problems related to the consideration of
formalisms as FMUs has been addressed, let’s discuss now of the PNFMU formalisation.

p1 p2

p5

t1

p3 p4

t2

t3

〈1, 0, 1, 0, 0〉

〈0, 1, 1, 0, 0〉

t1

〈1, 0, 0, 1, 0〉

t2

〈0, 1, 0, 1, 0〉t2 t1

〈0, 0, 0, 0, 1〉
t3

Fig. 7.12: A simple Petri net and its reachability graph. The markings are encoded as 〈p1, p2, . . . , pn〉, where pi
are the number of tokens within the places, which the ordered by their index. 〈1, 0, 1, 0, 0〉 encodes the initial
marking on the left, stating that there is one token in the first and third place each (i.e. p1 and p3).

7.6.1 PNFMU Formalisation

The need for Petri nets within an FMI system is closely tied to the need to analyse system evolutions and
reachability of possible states. In order to do so, we need to define the formal basis of an PNFMU, which we
base on the FMU formalisations presented in [272] and [51].

200 Didier Buchs, Stefan Klikovits, and Alban Linard

A standard FMU is defined as the structure F = 〈S,U,Y , D, s0, set , get , doStep〉. Given a Petri net PN =
〈P,T , pre, post ,m0〉, we define that a PNFMU is a tuple PNFMU = 〈S,U,Y , D, s0, setN, getN, doStepN〉.

A PNFMU’s internal states S are all possible markings of the Petri net, not just the reachable ones (i.e.
reach (s0) ⊆ S). U and Y are the Petri net’s places which are writeable and readable, respectively. D remains
the dependency of outputs on inputs and is used to avoid circular dependencies when composing FMUs. s0 is
set to the initial marking m0.

The biggest difference between FMU and PNFMU is that the former only operates on one state. On the
contrary, PNFMU are designed to explore and operate on a Petri net’s reachability graph. This change is
reflected in the three functions set , get and doStep, which are adapted to perform operate on sets of states as
follows:

set : P (S) ×U × P (N) → P (S) operates on a set of states (markings), modifies the marking of a certain
place in each marking and returns a set of new states. Intuitively, the function iterates over the values to
set and modifies returns a new state for each state that is modified. In total the function returns n × m
markings, where n is the count of states and m the number of values entered into this function. Us-
ing the reachability graph from above, the call set({〈0, 1, 1, 0, 0〉, 〈1, 0, 0, 1, 0〉}, p5, {2, 4}) returns the set
{〈0, 1, 1, 0, 2〉, 〈1, 0, 0, 1, 2〉}, {〈0, 1, 1, 0, 4〉, 〈1, 0, 0, 1, 4〉}. Note, that none of the four returned markings is
reachable from s0 by transitions.

get : P (S) × Y → P (N) recuperates the set of place-markings of a set of states.
For example, get({〈0, 1, 1, 0, 0〉, 〈1, 0, 0, 1, 0〉}, p3) returns {1, 0}, while get({〈0, 1, 1, 0, 0〉, 〈1, 0, 0, 1, 0〉}, p5) =
{0}.

doStep : P (S) × N→ P (S) × N executes system evolutions. Given a set of states and a time step h ∈ N,
doStep returns the length of the longest sequence h′ (with 0 ≤ h′ ≤ h) that can be executed and the states
that are reached. Note, that doStep only operates states that are reachable from s0, any states s < S are not
considered. Furthermore, contrary to standard FMUs, PNFMU’s doStep is defined over natural numbers
and fails if h < N. doStep is defined as follows:

doStep (s, 0) = (s, 0) (7.14)

doStep (s, 1) =



(succ, 1) s.t. succ =
{
s′ |∃t ∈ T ,∃si ∈

(
s ∩ SS(T , s0)

)
, si

t
−→ s′

}
∧ succ , ∅

(s, 0) otherwise.
(7.15)

For h ≥ 2: (7.16)

doStep (s, h) =



(s, 0) st. (s, 0) = doStep(s, 1)
(s′′, h′′ + 1) st. (s′, 1) = doStep(s, 1) ∧ (s′′, h′′) = doStep(s′, h − 1)

(7.17)

The doStep function for the example Petri net net above is given by the equations above. To show its
execution, here is the first four steps of doStep for pn′:

• doStep({〈1, 0, 1, 0, 0〉}, 1) = ({〈0, 1, 1, 0, 0〉 〈1, 0, 0, 1, 0〉}, 1);
• doStep({〈1, 0, 1, 0, 0〉}, 2) = ({〈0, 1, 0, 1, 0〉}, 2);
• doStep({〈1, 0, 1, 0, 0〉}, 4) = ({〈0, 0, 0, 0, 1〉}, 3).

Table 7.1 compares the definitions of the individual components of both, the FMU and PNFMU.

7.6.2 PNFMU Example

Figure 7.13 shows some possible evolutions of a PNFMU that wraps the Petri net of the above example. Out of
the infinite sequences of actions possible, we choose five traces that are being presented as an evolution tree.

• First, the main branch (center) shows the doStep evolution of the system. Note that after the third doStep
the returned state remains unchanged and the returned h′ is 0. This indicates a deadlock, as no further
evolution is possible.

7 Petri Nets: A Formal Language to Specify and Verify Concurrent Non-Deterministic Event Systems 201

Component FMU PNFMU

S a set of internal states of F the set of all possible markings; S

U a set of input variables over values V a set of input places;U ⊆ P, V = N

Y a set of output variables over values V a set of output places; Y ⊆ P, V = N

D ⊆ U ×Y a set of input-output dependencies specifying which outputs depend on which inputs

s0 ∈ S the initial state of F the initial marking of PN ; s0 = m0

set
sets the value of an input variable, returns the
new state; set : S ×U × V→ S

sets the value of an input place in the given states, returns
the new states; set : P (S) ×U × P (N) → P (S)

get
returns the value of an output variable;
get : S ×Y → V

returns the an output place’s values in all given markings;
get : P (S) ×Y → P (N)

doStep
attempts simulation step, returns actual step size and new
state; doStep : S × R≥0 → S × R≥0

attempts simulation step, returns actual step size and new
states; doStep : P (S) × N→ P (S) × N

Table 7.1: Comparison of the structures of FMU and PNFMU.

• We observe another trace using only doStep actions. The doStep(s, 4) attempts to find the states reachable
with a sequence lenght of 3. However, the reachability graph dictates that only two steps are possible. Hence
the action returns the end of the longest sequence that has been reached (in this case 1) and

• On the left branch, we see the creation of two markings of which one is not in the reachability graph of m0.
The subsequent doStep therefore ignores this state when performing the calculation.

• The right branch describes the evolution after a set action on the initial state. This set creates one single,
non-reachable marking. Therefore, the doStep action on this state returns the empty set of states.

• Executing another set creates a reachable marking. This means that the doStep is possible and succeeds.

We can easily see that, using PNFMUs, it is possible to study the possible evolutions of a system and analyse
whether the execution of certain sequences leads to a reachable marking (i.e. a “good state”). We can also find
deadlocks situations, i.e. states where a doStep) returns 0.

{〈1, 0, 1, 0, 0〉} }

{〈0, 1, 1, 0, 0〉, 〈1, 0, 0, 1, 0〉}, 1 { 〈0, 0, 1, 0, 0〉 }

{〈0, 1, 1, 0, 0〉, 〈0, 0, 0, 1, 0〉 } {〈0, 1, 0, 1, 0〉}, 1 ∅, 0 {〈0, 1, 1, 0, 0〉}

{〈0, 1, 0, 1, 0〉}, 1 {〈0, 0, 0, 0, 1〉}, 1 {〈0, 0, 0, 0, 1〉}, 2 {〈0, 1, 0, 1, 0〉}, 1

{〈0, 0, 0, 0, 1〉}, 0

doStep (s,1)
set (s,p1 ,{0})

set
(s,p1,{0

})
doStep (s,1)

do
S
tep (s,3)

set (s,p2 ,{1})

doStep (s,1)

doStep (s,1) doStep (s,1) doStep (s,1)

doStep (s,2)

Fig. 7.13: A tree displaying possible system evolutions. Nodes are the (sets of) states and arcs are annotated
with the action performed (where s is the variable that stores the previous states). Markings that are not in the
reachability graph of s0 are gray .

202 Didier Buchs, Stefan Klikovits, and Alban Linard

7.6.3 PNFMU Composition

The FMI standard defines FMU composition in a very simple manner. An FMU’s outputs are directly connected
to another FMU’s inputs. This is usually performed by the master algorithm using the set method. Generally,
the master algorithm performs such updates in two steps: 1. update all FMUs’ input values; 2. perform system
evolution by calling doStep on each FMU.

The composition of PNFMUs is slightly more complex, as it is necessary to handle sets of states. In general,
three main scenarios can be distinguished:

One-to-One/One-to-Many Connecting a PNFMU that is currently in one, single state to another PNFMU
is most trivial of the possibilities. Upon update, the marking(s) of the second PNFMU’s inputs are set to the
first PNFMU’s output places’ values. If the second PNFMU has multiple states, all states are updated.

As represented in Figure 7.14a the place p5 of PNFMU 1 is linked to the place p0 of PNFMU 2, drawn in
bold. The execution scenario is quite trivial. In fact, for every marking of PNFMU 2, the number of tokens of
place p0 is set to the number of tokens of the place p5 from the PNFMU 1.

Many-to-OneThe case represented Figure 7.14b is slightlymore complicated.PNFMU 1, which hasmultiple
markings, is connected to PNFMU 2 that has one single marking. In other words, there is two distinct numbers
of tokens in the place p5 in PNFMU 1, respectively 0 and 1. In consequence, the variables update step should
create one marking for each values of PNFMU 1’s output variable. In the current case, PNFMU 2 should have
two markings after the update, one for M (p1) = 0 and another for M (p1) = 1.

Many-to-Many After a step evolution, it is possible that both PNFMUs contain more than one marking. In
fact, theMany-to-Many relationship is a generalisation of theMany-to-One case. This case requires to write all
output values of one PNFMU to all inputs of the other. Effectively, the Cartesian product of possible states is
created, where all combinations of PNFMU 1’s values are applied to all input places of PNFMU 2.

〈1, 0, 1, 0, 0,1〉Before:

PNFMU 1

〈0, 1, 1, 0, 0, 1〉
〈1, 0, 0, 1, 0, 1〉

PNFMU 2

p5 p0

〈1, 0, 1, 0, 0,1〉After: 〈1, 1, 1, 0, 0, 1〉
〈1, 0, 0, 1, 0, 1〉

p5 p0

(a) One-to-One/One-to-Many relationship

〈0, 1, 1, 0, 0,1〉
〈1, 0, 0, 1, 0,0〉Before:

PNFMU 1

〈1, 0, 1, 0, 0, 1〉

PNFMU 2

p5 p0

〈0, 1, 1, 0, 0,1〉
〈1, 0, 0, 1, 0,0〉After: 〈1, 0, 1, 0, 0, 1〉

〈0, 0, 1, 0, 0, 1〉
p5 p0

(b) Many-to-One relationship

Fig. 7.14: FMU relationships before and after the update

7.6.4 Advanced Composition Mechanisms

Modularity is a mandatory principle to apply Petri nets to real world-sized systems. Modular extensions of
Petri nets allow to create complex models by combining smaller entities. They facilitate the modelling and
verification of large systems by applying a divide and conquer approach and promoting reuse. Modularity
includes a wide range of notions such as encapsulation, hierarchy and instantiation. Over the years, Petri nets
have been extended to include these mechanisms in many different ways. The heterogeneity of such extensions
and their definitions makes it difficult to reason about their common features at a general level. An approach has
been proposed to standardise the semantics of modular Petri nets formalisms, with the objective of gathering
even the most complex modular features from the literature. This is achieved with a new Petri nets formalism,
called the LLAMAS Language for Advanced Modular Algebraic Nets (LLAMAS)[197]. This framework can be
envisioned to extend current work on PNFMU and for the abstract description of the master algorithm.

7 Petri Nets: A Formal Language to Specify and Verify Concurrent Non-Deterministic Event Systems 203

7.7 Tooling

The vast amount of research invested in the Petri nets domain not only led to many important, theoretical
findings but also saw the development of tools and software that can be used to model, analyse and simulate
Petri nets. In the following section we will describe some tools that can be used to develop models based on
Petri nets and to perform model checking thereon. Some of the tools described below are currently unavailable
or are not able to perform model checking for Petri nets directly. Nevertheless, we will introduce them since they
contribute interesting concepts and serve as potential candidates for extension to the formalism. Note, that since
the domain is subject of intensive research, new ideas are often presented in in academic tools which oftentimes
remain proof-of-concept implementations and not advanced into mature, reliable software.

7.7.1 Tools for Petri net Modelling and Verification

Since the Petri net formalism is based on a graphical syntax, matching model editors, composers and visualisers
are an important important part of the Petri nets tool chain. Over the years, a lot of tools have been implemented
to perform these tasks, but only a few have survived long enough to be well-recognised by the Petri nets
community, or to be used in industry.

CPN Tools [206] (http://cpntools.org) is a tool for editing, simulating, and analysing high-level Petri
nets. It supports basic Petri nets, timed Petri nets and Coloured Petri nets. It features a graphical editor, a
simulator and includes a state space analysis component.

CPN-AMI [132] (http://move.lip6.fr/software/CPNAMI) is a formal modelling platform based on Petri
nets, more specifically targeting Symmetric nets. It provides a graphical user interface to create and edit models,
run tools built upon the platform and obtain their results. The CPN-AMI platform uses tools developed by
several research teams to perform structural and behavioural analysis of models.

The platform features software to graphically create Petri nets modularly or using a scripting interface.
Other tools allow to compute structural properties, such as bounds, invariants, syphons, traps, and liveness. The
platform is also able to generate the state space of a Petri net, and perform CTL and LTL verification using
various model checkers.

ITS-Tools ITS-TOOLS [267] (http://ddd.lip6.fr/) is a successor of CPN-AMI. It allows its users to
create models using a textual language or a graphical editor for Petri nets. This tool is able to perform behavioural
analysis (safety, CTL and LTL model checking) on models expressed in Place/Transition, Symmetric and Time
Petri nets, as well as some other formalisms.

AlPiNa & StrataGEM: Algebraic Data Types and Term Rewriting tools In recent years, the University
of Geneva’s SMV group has produced two tools for model checking and model editing: the Algebraic Petri Nets
Analyzer (AlpiNa) [56, 57, 151] and StrataGEM 4 [190, 39]. AlpiNa is a model checker dedicated to Algebraic
Petri Nets. StrataGEM marries the concepts of Term Rewriting to the efficiency of Decision Diagrams, in order
to perform efficient model checking. While AlPiNA is adapted to high-level specifications using Petri nets,
StrataGEM focuses on the low-level ones.

These two tools heavily rely on algebraic data types and term rewriting techniques to represent systems and
their semantics. They are able to compute large state spaces, and to evaluate reachability properties, as proven
in the Model Checking Contest [171].

SNAKES [230] (https://snakes.ibisc.univ-evry.fr) is a Python library that provides a framework to
define and execute many sorts of Coloured Petri nets. A key feature of SNAKES is the ability to use arbitrary
Python objects as tokens and standard Python expressions in many points, for instance in transitions guards or
arcs.

Renew: Renew [62] (http://www.renew.de) is a tool that supports the development and execution of
object-oriented Petri nets, a specific kind of Coloured Petri nets. Its main feature is its integration with the Java
programming language: Petri nets can be labelled by Java code, and thus call Java methods in transition guards
or on arcs.

Petri net kernel (ePNK): [164] (http://www.imm.dtu.dk/~ekki/projects/ePNK/) is a platform for
developing Petri net tools based on the PNML [147] transfer format. Its main idea is to support the definition of

4 https://github.com/mundacho/stratagem

http://cpntools.org
http://move.lip6.fr/software/CPNAMI
http://ddd.lip6.fr/
https://snakes.ibisc.univ-evry.fr
http://www.renew.de
http://www.imm.dtu.dk/~ekki/projects/ePNK/
https://github.com/mundacho/stratagem

204 Didier Buchs, Stefan Klikovits, and Alban Linard

Petri net types, which can be easily integrated into the tool, and to provide a simple, generic graphical editor,
which can be used for graphically editing nets of any plugged in type.

Tina [29] (http://www.laas.fr/tina) The TIme Petri Net Analyser is a toolbox for the editing and analysis
of Petri nets, and Time Petri nets. It features a graphical editor, and a set of tools to perform structural analysis
(e.g. invariants), behavioural analysis (e.g. reachability and coverability graphs) and LTL model checking.

TAPAAL [157] (http://www.tapaal.net/) is a tool for themodelling, simulation and verification of Timed
Petri nets. It offers a graphical editor for drawing Petri nets, a simulator for experimenting with the designed nets,
and is able to check the bound of the model, and to verify properties expressed in a subset of CTL. TAPAAL
can translate its models to the format of the UPPAAL tool. In the same domain, Open-Kronos [298] uses the
Büchi automata approach to verify real-time systems.

The Petri nets repository [146] (http://pnrepository.lip6.fr) is a recently created repository of Petri
net models. It includes models imported from several sources, such as the Model Checking Contest [170, 169],
the former PetriWeb repository [127], and the Very Large Petri nets benchmark suite (http://cadp.inria.
fr/resources/vlpn/). Its main feature is that this repository provides access to models and corresponding,
computed properties through both, a web interface and an API.

Many other tools exist to perform model checking on systems specified with formalisms that are not Petri
nets, such as for instance automata or communicating processes. Among them, the following tools are worth
mentioning:

SPIN [149] (http://spinroot.com) is a software model checker that verifies specifications written in
PROMELA (PROcess MEta LAnguage), adapted to the representation of asynchronous distributed systems.
The tool uses the Büchi automata approach to verify LTL properties on the models.

SPOT [192] (https://spot.lrde.epita.fr) is a Büchi automata library rather than a full model checker.
It is intended to be coupled with an engine able to compute the transition relation of the system, in order
to build a LTL model-checker. This design allows it to be used with any kind of formalism. This library
implements great number of useful algorithms related to LTL model checking: LTL parsers, LTL formulae
syntactical simplification, translation to several flavours of Büchi automata, automata simplification, and of
course emptiness check algorithms for them. It is considered one of the best candidates for operational model
checking [245].

UPPAAL [27] (http://www.uppaal.com) UPPAAL is an integrated tool environment for modelling, simu-
lation and, verification of real-time embedded systems. Typical application areas of UPPAAL includes real-time
controllers and communication protocols in particular, those where timing aspects are critical.

SCADE [265] (http://www.esterel-technologies.com) is an industrial-grade environment for the de-
velopment of critical embedded systems. It is coupled with a model checker and used in industry in the domain
of synchronous systems.

Note that this list is non-exhaustive and the provision of a complete list is out of the scope of this chapter.
Its purpose is to provide a short overview over some of the more popular tools to help the decision of an
appropriate one. The choice of a tool should however depend on various criteria, such as the Petri net class (P/T
net, Coloured Petri nets, Timed Petri net), the type of properties that should be tested by the tool, the required
efficiency of the tool and the execution environment. We encourage the reader to consult other resources5 to
find additional guidance towards a better informed decision process.

7.7.2 Evaluation of Model Checking Techniques

The Petri nets community is eagerly hosting and participating in various model checking contests in order to
evaluate the various model checking techniques and tools and to discover approaches that might be particularly
well-suited for certain model classes and types. Some of the more prominent ones are following, but note that
this list is non-exhaustive.

The Hardware Model Checking Contest [34] was first held in 2007, and is now associated with the CAV
(Computer Aided Verification) and FLOC (Federated Logic Conference) conferences. It focuses on circuit
verification by means of model checking based on SAT-solvers. This event ranks the three best tools according
to a selected benchmark.

5 such as https://en.wikipedia.org/wiki/Model_checking

http://www.laas.fr/tina
http://www.tapaal.net/
http://pnrepository.lip6.fr
http://cadp.inria.fr/resources/vlpn/
http://cadp.inria.fr/resources/vlpn/
http://spinroot.com
https://spot.lrde.epita.fr
http://www.uppaal.com
http://www.esterel-technologies.com
https://en.wikipedia.org/wiki/Model_checking

7 Petri Nets: A Formal Language to Specify and Verify Concurrent Non-Deterministic Event Systems 205

The Verified Software Competition [165] takes place within the Verified Software: Theories, Tools and
Experiments (VSTTE) conference. This competition is a forum where researchers can demonstrate the strengths
of their tools through the resolution of five problems. Themain objective of this event is to evaluate the efficiency
of theorem proving tools against SAT-solving. Started in 2010, it has now become a yearly event.

The Competition on Software Verification [4] is an event associated with the conference on Tools and
Algorithms for theConstruction andAnalysis of Software (TACAS).Aimed at the verification of safety properties
of C programs, it has been held yearly since 2012.

The SatisfiabilityModulo Theories Competition [54] takes place within the context of the CAV conference.
Held yearly since 2005, its objective is to evaluate the decision procedures for checking the satisfiability of
logical formulas.

The SAT Competitions [159] proposes to evaluate the performance of SAT solvers. Initiated in 2002, it is
held every two years since 2007, and identifies new challenging benchmarks at each edition.

The Model Checking Contest [169] at the Petri Nets conference puts emphasis on the specification of
parallel and distributed systems, and their qualitative analysis.

The main problem of these contests is the difficult choice of comparison metrics. It is seemingly easy to
compare tools for a set of models. Drawing conclusions from the achieved tool results in order to compare of
model checking techniques is a much more complex endeavour, as each tool merges several techniques to be
efficient. Moreover, the efficiency of model checking techniques highly depends on each individual model’s
characteristics. For instance, partial order reductions are showing good results for highly parallel systems
with few synchronisations, but are less efficient when the degree of synchronisation increases. However, since
verification techniques are often combined with other ones, it is difficult to clearly attribute good performance
to an individual technique.

7.8 Summary

In this chapter we have shown a way to develop cyber-physical systems that include concurrent dimension. Our
proposal is to consider to model first our system as many entities cooperating. Each entities can be modelled
using the most convenient formalism to the problem that is considered. We propose for concurrent systems the
use of Petri nets. We explain the interest and capabilities of Petri nets for modelling complex systems in an
abstract way, i.e. by masking details that are not useful. Such modelling techniques hide concerns related to
distribution, naming, communication mechanism and representation of data structures. We provide also their
semantics through deduction systems in order to explain precisely all notions we are using such as states,
marking and state space. It must be noted that the key aspect of the semantics of Petri net is the potential
non-deterministic behaviours that we can exhibit from a model. The impact of this dimension is the potentially
very large number of states of a system.We then develop some formal ideas to analyse Petri nets such as marking
exploration and the use of invariants. While there is a complexity barrier for marking exploration, the use of
invariants need human intervention.

In the rest of the chapter we have been interested into the idea of managing complexity by applying the
divide to conquer principle. It means to consider separately the modelling and verification into small units. We
also promote by this model decomposition the possible integration of heterogeneous modelling which is very
important for the intrinsically heterogeneous cyber-physical systems.

The need for simulation of heterogeneous systems is also covered by our approach. It is based on the
construction of functional units (FMU) and their cooperation into a larger system by specific master algorithms.
Petri nets being a formalism often used to represent concurrent executions, defining its state as a set of markings
was discussed and formally presented, avoiding the violation of the FMI API determinism. Furthermore, the
API standard was extended with functions to add more observability and functionalities on the considered
PNFMU. This study showed that deadlocks can be detected when simulating a PNFMU with the standard API,
yet without being able to know the actual markings in which the Petri net is in a deadlock. Then, the composition
of PNFMUs was introduced, yet partially leaving out of the study time evolution and outputs/inputs adaptation.
Moreover, since the state of a PNFMU is now defined as a set of markings, a multi states relationship of the
composition between FMUs was presented.

206 Didier Buchs, Stefan Klikovits, and Alban Linard

(a) 0 tokens in
fuel

stop pressstart

press stop

(b) 1 token in
fuel

stop

press

start

press release

stop

fill

release

start

stop

empty

release

start

release

release

stop

press

stop

empty

press

start

press

stop start

press

start

release

(c) 2 tokens in
fuel

stop

press

start

pressrelease

stop

fill

release

start

stop

empty

fillrelease

start

release

release

stop fill

stop

empty release

press

stop

empty

press

start

press

stopstart

press

start

release

start

release

release

empty

stop

press

stop

empty

press

start

press

stopempty start

pressstop

press

start

press release

stop

release

start

start

release

(d) 3 tokens in fuel

stop

press

start

pressrelease

stop

fill

release

start

stop

empty

fillrelease

start

release

release

stop fill

stop

empty release

press

stop

empty

press

start

press

stopstart

press

start

release

start

release

release

empty

stop

fill

press

stop

empty

press

start

press

stop emptystart

press stop

press

start

press release

stop

fill

release

start

stop

empty

release

start

release

release

stop

press

stop

empty

press

start

press

stop start

press

start

release

start

release

empty stop

release

start

release

empty

press

stop

press

start

stop

press

start

pressrelease

stop

fill

release

start

stop

empty

fillrelease

start

release

release

stop fill

stop

empty release

press

stop

empty

press

start

press

stopstart

press

start

release

start

release

release

empty

stop

fill

press

stop

empty

press

start

press

stop emptystart

press stop

press

start

press release

stop

fill

release

start

stop

empty

release

start

release

release

stop

press

stop

empty

press

start

press

stop start

press

start

release

start

release

empty stop

release

start

release

empty

press

stop

press

start

fill

Fig. 7.15: The reachability graphs of the Petri net in Figure 7.1 with different initial markings. Note how the
smaller graphs can be found as subgraphs inside the larger ones. This is due to the monotony of Petri nets as
discussed above. Moreover, the node colour is representative of the number of tokens in place fuel, ranging
from 0 (lightest) to 3 (darkest).

7.9 Literature and Further Reading

For a deeper understanding of concurrency modelling and Petri nets, we refer the interested reader to the
following works. An excellent book by Reisig [239] is explaining fundamental analysis techniques for Petri nets.
Through well-chosen examples, it also shows how to model several well-known systems that can be useful for
beginners and newcomers to the domain of discrete dynamic system modelling and analysis. M. Diaz [85] also

7 Petri Nets: A Formal Language to Specify and Verify Concurrent Non-Deterministic Event Systems 207

provides a look at basic techniques for modelling with Petri nets. Several extensions of place transition nets are
explained and their practical use for concrete applications detailed. This book will probably be of more interest
for the curious Petri-netter who wants to dive into various modelling options such as stochastic Petri nets, Timed
Petri nets and their corresponding formal techniques.

Finally, [26] is a reference for people who are interested in exciting and practicable directions related to
performance modelling and cost estimations of system through quantitative methods. The authors presented
useful methods based on Markov chains and develop these techniques for the purpose of stochastic Petri net
analysis.

7.10 Self Assessment

1. What is a Petri net marking? What is the initial marking?
2. What is the difference between a reachability and a coverability graph?
3. Can you list some interesting properties of Petri nets related to states? And related to transitions?
4. What does monotony express in the Petri net context?
5. What are Petri net invariants? What purpose do invariants serve? Can you name the two types of invariants

and state their difference?
6. Can you name different types of High-level Petri nets and state their purpose? In these Petri nets, can you

say which of the transitions are live or not?
7. For these two Petri nets, can you say which transitions are live and which ones are not?

2

p1

p2t1 t2

2
2

p1

p2t1 t2

8. In these Petri nets, what are the bounded places. What are the place bounds of this Petri net?

p1

p2

p3

t1 t2

t3

9. Can you identify which of these transitions are live, and which ones are not?

p1 p2 p3
t1

t2

t3

p1 p2 p3
t1

t2

t3

10. For which initial marking of P1 this Petri net has no dead state or has dead state?

3

2p1

p2

p3t1

t2

t3 t4

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.

208 Didier Buchs, Stefan Klikovits, and Alban Linard

http://creativecommons.org/licenses/by/4.0/

	Petri Nets: A Formal Language to Specify and Verify Concurrent Non-Deterministic Event Systems
	Learning Objectives
	Introduction
	Modelling Concurrency
	Petri Nets
	Common Petri net patterns
	Formal syntax and semantics
	Deduction Based on Rules
	Reachability Graph
	Monotony

	Properties of Petri Nets
	Marking Properties
	Sequence Properties
	Invariants
	Formal Definition of Invariants
	Computing P-invariants
	Using Invariants for Proving Properties

	Techniques for Model Checking
	Data manipulation in Petri nets
	Drone Controller
	Formalising High-level Petri nets
	Other High-level nets

	Combining Model Semantics and Simulation
	PNFMU Formalisation
	PNFMU Example
	PNFMU Composition
	Advanced Composition Mechanisms

	Tooling
	Tools for Petri net Modelling and Verification
	Evaluation of Model Checking Techniques

	Summary
	Literature and Further Reading
	Self Assessment

