®

Check for
updates

Chapter 6
Statecharts: A Formalism to Model, Simulate and Synthesize
Reactive and Autonomous Timed Systems

Simon Van Mierlo and Hans Vangheluwe

Abstract Statecharts, introduced by David Harel in 1987, is a formalism used to specify the behaviour of timed,
autonomous, and reactive systems using a discrete-event abstraction. It extends Timed Finite State Automata
with depth, orthogonality, broadcast communication, and history. Its visual representation is based on higraphs,
which combine graphs and Euler diagrams. Many tools offer visual editing, simulation, and code synthesis
support for the Statechart formalism. Examples include STATEMATE, Rhapsody, Yakindu, and Stateflow, each
implementing different variants of Harel’s original semantics. This tutorial introduces modelling, simulation,
and testing with Statecharts. As a running example, the behaviour of a digital watch, a simple yet sufficiently
complex timed, autonomous, and reactive system is modelled. We start from the basic concepts of states and
transitions and explain the more advanced concepts of Statecharts by extending the example incrementally. We
discuss several semantic variants, such as STATEMATE and Rhapsody. We use Yakindu to model the example
system.

Learning Objectives

After reading this chapter, we expect you to be able to:

* Specify the behaviour of a autonomous and reactive system using Statecharts
* Understand the semantics of a Statecharts model
* Deploy a Statecharts model onto a software platform (using appropriate tooling)

6.1 Introduction

The systems that we analyse, design, and build today are characterised by an ever-increasing complexity. This
complexity stems from a variety of sources, such as the complex interplay of physical components (sensors
and actuators) with (real-time) software, the large amounts of data these systems have to process, and the
interaction with a (non-deterministic) environment. Almost always, however, complex systems exhibit some
for of reactivity to the environment: the system reacts to stimuli coming from the environment (in the form
of input events) by changing its internal state and can influence the environment through output events. Such
reactive systems are fundamentally different from traditional software systems, which are transformational (i.e.,
they receive a number of input parameters, perform computations, and return the result as output). Reactive

Simon Van Mierlo
University of Antwerp - Flanders Make, Belgium
e-mail: simon.vanmierlo@uantwerpen.be

Hans Vangheluwe
University of Antwerp - Flanders Make, Belgium; McGill University, Canada
e-mail: hans.vangheluwe@uantwerpen.be

© The Author(s) 2020 155
P. Carreira et al. (eds.), Foundations of Multi-Paradigm Modelling for Cyber-Physical Systems,
https://doi.org/10.1007/978-3-030-43946-0_6

https://doi.org/10.1007/978-3-030-43946-0_6
mailto:simon.vanmierlo@uantwerpen.be
mailto:hans.vangheluwe@uantwerpen.be
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43946-0_6&domain=pdf

156 Simon Van Mierlo and Hans Vangheluwe

systems run continuously, often have multiple concurrently executing components, are reactive with respect
to the environment, and can act proactively by making autonomous decisions. An example is a modern car,
whose systems are increasingly controlled by software. Multiple concurrently running software components are
interpreting signals coming from the environment (the driver’s controls as well as sensors interpreting current
driving conditions) and making (autonomous) decisions that generate signals to the car’s actuators.

Such timed, reactive, autonomous behaviour needs to be specified in an appropriate language, in order to
validate the behaviour with respect to its specification (using verification and validation techniques, such as
formal verification, model checking, as well as testing techniques), and to ultimately deploy the software onto
the system’s hardware components. Traditional programming languages were designed with transformational
systems in mind, and are not well-suited for describing timed, autonomous, reactive, and concurrent behaviour. In
fact, describing complex systems using threads and semaphores quickly results in unreadable, incomprehensible,
and unverifiable program code [181]. This is partly due to the cognitive gap between the abstractions offered
by the languages and the complexity of the specification, as well as the sometimes ill-defined semantics of
programming languages, which hampers understandability. As an alternative, this book chapter describes the
Statechart formalism, introduced by David Harel in 1987 [134]. The syntax and semantics of Statecharts are
well-defined and can natively describe a system’s timed, autonomous, reactive, and concurrent behaviour. Its
basic building blocks are states and transitions between those states. States can be combined hierarchically
into composite states, or orthogonally into concurrent regions. Many (visual) modelling tools exist that support
the complete life-cycle of modelling a system’s behaviour using Statecharts: from design to verification and
validation, and ultimately deployment (code generation).

Throughout the sections of this chapter, we introduce the constructs of the Statechart formalism by incremen-
tally building the model of the behaviour of an example system. We explain the syntax as well as the semantics
of each construct. The examples are modelled in the Yakindu tool (https://www.itemis.com/en/yakindu/
state-machine/), but the techniques can be transferred to any Statecharts modelling and simulation tool with
comparable functionality.

Section 6.2 provides background for the rest of the chapter: it explains how we can view a system’s behaviour
using a discrete-event abstraction, it explains the behaviour of the example digital watch system we are going
to model, and it introduces a process model that can be used to build a system (from requirements, through
design, down to deployment) using Statecharts. Section 6.3 explains each Statechart construct, starting from
the basic state and transition, and progressively introducing more advanced constructs. Section 6.4 explains
the semantics of Statecharts (as implemented by STATEMATE) in detail. Section 6.5 explains how Statechart
models can be tested, to check whether they satisfy the requirements of the system. Section 6.6 explains how
code can be generated from a Statechart model and deployed onto a target platform. Section 6.7 goes into a
number of advanced topics. Section 6.8 summarises this chapter.

6.2 Background

This chapter provides background for the rest of the chapter. In Section 8.4, we explain the running example
that we will model using Statecharts in the next section. In Section 6.2.2, we look at a system’s behaviour using
a discrete-event abstraction. Finally, in Section 6.2.3, we present a process model that can be used to model a
system using Statecharts, verify that it satisfies the requirements (through simulation and testing), and finally
deploy it.

6.2.1 Running Example

The example system we use in this chapter to demonstrate the capabilities of the Statechart formalism is a
digital watch. A visual representation of the watch is shown in Figure 6.1. A watch is primarily used for keeping
time, but has other functions, such as chronometer, an alarm, and a light. A user can interact with the watch by
pressing buttons that result in switching between the different modes, editing the current time, turning on the
light, ... It is inherently timed and autonomous, as it changes its internal state without any input from the user.

https://www.itemis.com/en/yakindu/state-machine/
https://www.itemis.com/en/yakindu/state-machine/

6 Statecharts: A Formalism to Model, Simulate and Synthesize Reactive and Autonomous Timed Systems 157

Fig. 6.1: The running digital watch application.

Some notion of orthogonality is also present, as the system has to ensure time is updated while the chronometer
is running, for example.

A full specification of the requirements is given below:

The time value should be updated every second, even when it is not displayed (as for example, when the
chrono is running). However, time is not updated when it is being edited.

Pressing the top right button turns on the Indiglo light. The light stays on for as long as the button remains
pressed. From the moment the button is released, the light stays on for 2 more seconds, after which it is
turned off.

Pressing the top left button alternates between the time display, chrono display, and alarm display modes.
The system starts in the time display mode. In this mode, the time (HH:MM:SS) and date (MM/DD/YY)
are displayed.

When in chrono display mode, the elapsed time is displayed MM:SS:FF (with FF hundredths of a second).
Initially, the chrono starts at 00:00:00. The bottom right button is used to start the chrono. The running chrono
updates in 1/100 second increments. Subsequently pressing the bottom right button will pause/resume the
chrono. Pressing the bottom left button resets the chrono to 00:00:00. The chrono will keep running (when
in running mode) or keep its value (when in paused mode), even when the watch is in a different display
mode (for example, when the time is displayed).

When in alarm display mode, the time at which the alarm is set is displayed. The default alarm time is
12:00:00.

When in time or alarm display mode, the watch will go into editing mode when the bottom right button is
held pressed for at least 1.5 seconds.

When in time or alarm display mode, the alarm can be toggled between on or off by pressing the bottom
left button.

The alarm is activated when the alarm time is equal to the time in display mode. When it is activated, the
screen will blink for 4 seconds, then the alarm turns off. Blinking means switching to/from highlighted
background (Indiglo) twice per second. The alarm can be turned off before the elapsed 4 seconds by a user
interrupt (i.e., if any button is pressed). After the alarm is turned off, activity continues exactly where it was
left off. Note that after the alarm finishes (flashing ends), the alarm is unset (so it will not go off the next
day at the same time).

When in (either time or alarm) editing mode, briefly pressing the bottom left button will increase the
current selection. Note that it is only possible to increase the current selection, there is no way to decrease
or reset the current selection. If the bottom left button is held down, the current selection is incremented
automatically every 0.3 seconds. Editing mode should be exited if no editing event occurs for 5 seconds.
Holding the bottom right button down for 2 seconds will also exit the editing mode. Pressing the bottom
right button for less than 2 seconds will move to the next selection (for example, from editing hours to
editing minutes).

These requirements now need to be translated to a design of the system. Many options exist: since we are talking
about control software, a possible choice would be a high-level programming language. But as we have argued

158 Simon Van Mierlo and Hans Vangheluwe

input
event segment

key_up |0 o

key_down | ! © .‘

key_enter |: 10 o i ° (moving)
system time key_up / (W) key_down /
state trajectory raise move_up raise move_down
key_up /
A raise move_up
srootng | e — O -G
moving —+e . Q————# key_down /
low_fuel o—e L raise move_down)
Eer D [low_fuel_detected()] /
output after(3s) raise low_fuel
key_enter / fuel ok
event segment raise shoot [fue _o\ 0]
move_up | © Q [
move_down | | o '
“shoot | | ! © 0 [low_fuel_detected()] /
low_fuel | ¢+ i1 o : : raise low_fuel
time
Fig. 6.2: Discrete-event abstraction of an example “tank Fig. 6.3: A possible behavioural model of an ex-
wars” game. ample “tank wars” game.

earlier in this chapter, a more appropriate choice (to describe this timed, reactive, autonomous behaviour) is the
Statechart language.

6.2.2 Discrete-Event Abstraction

Certain system behaviour, in particular the behaviour of control software, can be described using a discrete-event
abstraction. In Figure 6.2 a view of the behaviour of an example system is shown — in this case, the system is
a “tank wars” game, in which a tank drives around a virtual map by reacting to a player’s input through the
keyboard. The tank can shoot at the player’s command, and it can run out of fuel, at which point it goes into a
mode where it can only drive towards a fuelling station (and is no longer able to shoot).

As is clear from this intuitive description, the system reacts to input from the environment, and produces
output to the environment. Such input/output signals can be described by events. At the top of Figure 6.2, an
input event segment is shown. A segment is a finite interval of time, in which a number of events occur. Within
such a finite interval, only a finite number of such events can occur (which differentiates discrete-event systems
from continuous systems, whose input and output behaviour we can infinitely zoom into, as they are continuous
functions). The system reacts to the input event segment by producing an output event segment, shown at the
bottom of Figure 6.2. The environment (entities interacting with the system) can view the system as a black-box
which has an interface (defined by the input events it accepts, as well as the output events it produces). In
this case, the player interacts with the system by sending input events corresponding to key strokes: the player
controls the tank by pressing the up, down, and enter key. As a result, the system produces output, which
describes the reaction of the system to the input it receives. In this case, four output events can be produced:
move_up, move_down, and shoot, which signify that the tank starts moving up, starts moving down, or shoots,
respectively, and low_fuel, which signifies that the tank is low on fuel.

The system has an internal state, which changes over time as a result of input being received, as well as
autonomously by the system. A possible system state trajectory for the example system is shown in the middle
of Figure 6.2. Three states are defined: shooting, moving, and low_fuel. The first two input events do not cause
the state of the system to change, but it does cause two corresponding output events to be raised by the system.
The third input event changes the system state from moving to shooting. And, at some point after that, the

6 Statecharts: A Formalism to Model, Simulate and Synthesize Reactive and Autonomous Timed Systems 159

.—»[:GatherReqgs |
:Text. Req.

O manual transformation

(: manual activity -
-:Java
(D) automatic activity

O automatic transformation

1
1
1
1
1
1
1
1
1
GatneReds ' (:ModelSystem
1 .
Text. Req. ' :ReviseSystem
1
Y ' Verify S
. . y System
DefineTestCases Qm :
ModelSystem '
1
1
Statecharts E (:Definelnput) (:DefineTestCases]
Simulate ' IT: TracelLang [TC: Statecharts]
Definelnput : :
O Test TracelLang : l :Simulate l l :Test *I
Generate 1
O
CheckOutput Code ' ST: TraceLang TT: TraceLang
1
—>{ Boolean Java|<— , :CheckOutput {False}]
| | | : P] [False]
:
:]) [True]
: [False] \>‘[TrueL
1
1
1
[—] tanguage : [] model artefact (:GenerateCode)
1
'
1
!

Fig. 6.4: The workflow for modelling, simulating, testing, and ultimately generating code from Statechart
models.

system autonomously changes its state to low_fuel. From the input, output, and state trace, we can deduce that
the system is timed (its behaviour includes timeouts), reactive (to input from the environment), and autonomous
(as it can change the system state without any input from the environment).

To describe all possible state trajectories of the system, a state diagram can be used — see Figure 6.3 for a
possible model describing the system’s behaviour. It shows the different states or modes the system can be in: at
the highest level, three states (moving, shooting, and low_fuel) are defined (represented by rounded rectangles).
The moving state has three substates, corresponding to the direction the tank is traveling in. The state of the
system can change when a transition (represented by an arrow) triggers. A transition triggers due to an (optional)
event or timeout, and an optional condition on the total state of the system (including the values of the system’s
variables). When a transition is triggered, an action is executed, which can change the values of the system’s
variables, or raise an event.

This concludes a high-level description of discrete-event abstractions to describe a system’s behaviour,
including a possible diagrammatic notation. In the rest of this chapter, the Statechart formalism is explained
as an example of such a diagrammatic language to describe the timed, reactive, and autonomous behaviour of
systems.

160 Simon Van Mierlo and Hans Vangheluwe

6.2.3 Process

As a running example that demonstrates the use of Statecharts, we will develop a Statechart model describing
the timed, autonomous, and reactive behaviour of a digital watch. Whenever a system is developed, however,
it is important to consider which steps are taken and which artefacts are created in the system development
process, and to describe this process in a model. This process, or workflow, will guide us throughout the chapter
to design, simulate, test, and ultimately deploy our example system. Figure 6.4 shows a model of this process,
in a Formalism Transformation Graph and Process modelling (FTG+PM) language [195].

On the right side, a process model (PM) describes the different phases in developing the system. The process
consists of several activities, either manual or automatic. Manual activities require user input: for example,
creating a model starts with a user opening a model editor and ends when the user saves the model and closes
the model editor. Automatic activities are programs that are transformational, in the sense that they can be seen
as black boxes that take input and produce output. All activities produce artefacts, and can receive artefacts as
input. Fork and join nodes can split the workflow into parallel branches, where multiple activities are active at
the same time. Decision nodes can decide, depending on a boolean value, how the process proceeds.

On the left side, a formalism transformation graph (FTG) is a map of all the languages used during system
development. Each artefact produced in the process model conforms to a language in the formalism transfor-
mation graph. Moreover, it defines the transformations between the languages, which can either be manual or
automatic. Again, there is a correspondence between activities in the process model and transformations in the
formalism transformation graph: the transformations act as an “interface” defining the input and output artefacts,
to which the activities in the workflow need to conform.

In our workflow, we will start by defining the requirements of the example system and developing an initial
model of the system. This model is subsequently (and in parallel) simulated and tested. A simulation produces
an output trace from a given input trace (according to the discrete-event abstraction discussed earlier). This
output trace is manually checked and a decision is made whether or not the requirements are satisfied. In the
other parallel branch of the workflow, a test case is defined by a generator (which produces input events) and an
acceptor, which checks whether the generated output trace is correct. A test runs fully automatically, and again
a decision is made whether the requirements are satisfied by the design of the system. If that is not the case, the
model of the system is revised until all requirements are satisfied. Once all requirements are satisfied, the system
can be deployed by generating appropriate application code. In our case, the system is deployed by generating
Python code and coupling it to a visualization of the (simulated) digital watch as shown in Figure 6.1.

6.3 Modelling with Statecharts

The previous section introduces the requirements of our example digital watch example, explains how we can
view its behaviour with a discrete-event abstraction, and describes a process for developing the system using
the Statechart formalism. In this section, we explain the elements of the Statechart formalism that can be
used to model the timed, reactive, and autonomous behaviour of systems. We start with the basic concepts of
states and transitions, and gradually introduce the more advanced concepts of depth, orthogonality, broadcast
communication, and history. Each new concept’s syntax and semantics are explained, and is illustrated by
progressively developing the running example’s model.

6.3.1 States and Transitions

The basic building blocks of any Statechart model are states and transitions between those states. They are
essential concepts that need to be explained before moving onto more advanced Statechart elements. These basic
building blocks have a theoretical underpinning in Finite State Automata [150]. To illustrate the use of states
and transitions, two parts of the digital watch behaviour are shown in Figure 6.5 and Figure 6.6, implementing
the part of the system that updates the clock value every second, and the part of the system that is responsible
for turning on and off the Indiglo light.

6 Statecharts: A Formalism to Model, Simulate and Synthesize Reactive and Autonomous Timed Systems 161

. ! indiglo

1
time

increasing topRightPressed / setlndiglo() pushed
entry / increaseTimeByOne() —
1 i ;i f H
after 1s off | topRightPressed
time_edit topRightReleased
edit_done
 J
'~ released
v 2—
editing after 2s / unsetIndiglo()
Fig. 6.5: Updating the clock value every Fig. 6.6: Indiglo behaviour.

second.

States model the mode a system is in. In the absence of concurrent regions, exactly one state is active at any
point in time of the system’s execution. A state has a name, uniquely identifying it. Exactly one state in the
model is the initial state — on system start-up, the state of the system is initialised to that initial state. The visual
representation of a state is a rounded rectangle, or roundtangle. To visualize the initial state, a small black circle
is drawn, with an arrow pointing to the initial state.

In Figure 6.6, three states are modelled, implementing the behaviour of the Indiglo light: off (the default
state), pushed, and released. These names are strategically chosen to reflect the state of the actual (“physical’)
watch (the display). However, there is no direct link between the name of the state and the state of the display: the
names are merely used to quickly convey their meaning to a person looking at the model; the actual behaviour
(turning on and off the light) has to be implemented in the link between the Statechart model (or more precisely,
its generated code) and the platform code (i.e., the physical digital watch and its embedded software platform,
or in our case, a simulated platform in Python). The state off represents the light being off; the state pressed
represents the state where the user is pressing the top right button (turning on the light); the state released
represents the state where the user has released the top right button.

Besides the state — or mode — the system is in, a system keeps track of a number of state variables
{vi,v2,...,v,}. The data type and possible assignments for these variables depend on the data model supported
by the specific variant of the Statechart formalism. In case of Yakindu, the implementation-language-independent
types integer, real, boolean, string, and void are defined!. These variables with names {v{, v2, ..., v,} and types
{t1,t2,...,t,} have values {valy,val,,...,val,} where val; € dom(t;) Vi € [1,...,n]

While states describe the current configuration the system is in, transitions model the dynamics of the system
and describe how this configuration evolves over time. A transition connects exactly two states: the source state
and the rarget state. When the system is running, a transition can trigger when a number of conditions are
satisfied. When the transition triggers, the current state of the system is changed from the source state to the
target state. At the same time, the transition’s action is executed. In general, the signature of a transition is
written as follows: < trigger — event > [< trigger — condition >] [< action >. The triggering condition of
a transition consists of the following elements:

* A triggering event (optional), identified by a name and a list of parameters. In general, an event has the
following signature: < event — name > (< event — params >). The event can be an input event (coming
from the environment) or it can be internal to the Statechart model. The triggering event can also be a

I https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/sclang_statechart_language_
reference#tsclang_types

https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/sclang_statechart_language_reference#sclang_types
https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/sclang_statechart_language_reference#sclang_types

162 Simon Van Mierlo and Hans Vangheluwe

timeout, which is identified by the reserved event name affer and a parameter denoting the amount of time
(using a certain time granularity) that will pass until the timeout triggers.

* A triggering condition (optional), which models a boolean condition on the state of the system. The
condition can check the values of system variables and check whether a specific state (in another orthogonal
component, see Section 6.3.3) is active.

A transition that has no trigger is said to be spontaneous. The transition leaving the marker for the initial
state is always spontaneous. The transition’s action can:

» Raise events, either local to the Statechart model, or to the environment. In general, an event has the
following signature: < event — name > (< event — params >).
* Perform computations and assignments on the system’s variables.

In Figure 6.6, transitions are modelled that describe the dynamic behaviour of the Indiglo light: it turns on
when the topRightPressed event arrives from the environment. It stays on as long as the button is not released;
if it is, the light stays on for 2 seconds and then turns off again. The interface of this model consists of the set
of accepted input events X = {topRightPressed,topRight Released}, the set of possible output events ¥ = &,
and a set of callback functions {setIndiglo,unsetindiglo}. When this model is deployed (by generating code)
and placed in an environment, the environment can send input events belonging to the input event set to the
running system. It can listen to output events raised by the system and take appropriate actions. Moreover, on
system start-up, it has to provide implementations for the call-back functions: these implementations are not
known by the Statechart model, as they will change the (“physical”) state of the system. In this sense, the same
model can be placed in different environments to implement the same behaviour on different “physical” systems;
for example, an updated version of the system’s hardware might not necessarily entail a change in the behaviour
of the system. In this case, we can update the hardware and its associated environment, but leave the Statechart
model the same and generate code that is placed in the new environment.

6.3.2 Composite States

A composite state is a collection of substates, which themselves can be basic states or composite states. This
allows for nesting states to arbitrary depths. The main purpose of composite states is to group behaviours that
logically belong together. Transitions entering a composite state will enter its default state (transitively, to the
lowest level). This means that all composite states need to have exactly one default state, as was the case for the
Statechart model as well. It is also possible to enter a child state of the composite state directly by targeting it, of
course. Transitions going out of a composite state can be thought of as being defined on all of the inner states as
well — through a flattening procedure, it is possible to obtain an equivalent Statechart model that only contains
basic states and transitions.

For example, in Figure 6.7, the behaviour of the alarm is modelled. A composite state blinking is defined: it
is entered when the checkTime procedure returns true (signifying that the time of the alarm has been reached).
Upon entering the blinking state, the default on state is entered as well (and, if an action is defined on the
transition to the default state, it is executed as well). Two outgoing transitions are defined: when the user presses
any button, or after 4 seconds, the alarm is turned off. Regardless of the internal active state of blinking, when
the outer transition is triggered, that active state is exited before the blinking state is exited and the off state is
entered.

One important issue with composite states is that unwanted non-determinism can occur if a substate has an
outgoing transition that is triggered on the same event as its composite state’s transition. In the flattened version
of the Statechart model, this non-determinism will be obvious, since a state will have two outgoing transitions
that are triggered on the same event. We can obtain the flattened version of a Statechart model by removing
hierarchy: we only retain “leaf” (basic states), by adding the transitions that leave (or enter) their ancestor states
on the leaf state. By doing this recursively (starting at the lowest level), we remove hierarchy by progressively
adding these “higher-level” transitions to the basic states.

For example, in Figure 6.7, if there was a transition on the topRightPressed event from the state on to the
state off, the model is non-deterministic in case the on state is active when a fopRightPressed event is raised
by the environment. To resolve such non-determinism (as Statecharts is a deterministic formalism), either the
outer-most transition can be chosen — as is the case in STATEMATE [141] — or the inner-most transition can

6 Statecharts: A Formalism to Model, Simulate and Synthesize Reactive and Autonomous Timed Systems 163

4
alarm

bottomLeftPressed [active(display.displaying.ri.time) || active(display.displaying.ri.alarm)] / setAlarm()

o

4

|

bottomLeftPressed [factive(display.displaying.ri.time) || active(display.displaying.ri.alarm)] / setAlarm()

2. L 4

topRightPressed, .

topLeftPressed,
bottomRightPressed, 1

bottomLeftPressed after 4s

[checkTime()]

blinking
exit / setAlarm();
unsetindiglo()

ri

.—; on
entry / setindiglo()

after 500ms gdfter 500ms

off
entry / unsetindiglo()

Fig. 6.7: The component that controls the alarm behaviour.

be chosen — as in Rhapsody [139]. These different options are presented in Figure 6.8, which also shows the
flattened version of the models. In this tutorial, we assume STATEMATE semantics.

6.3.3 Orthogonal Regions

States can be combined hierarchically in composite states (as explained in the previous subsection), or orthog-
onally in concurrent regions. While before, exactly one state of the Statechart model was active at the same
time, when entering a state which has concurrent regions, all regions execute simultaneously. Each region has
a default state, that is entered when the region is entered. Orthogonal regions can react to events concurrently,
and communicate with each other. This is done by raising events in one concurrent region that are “sensed”
by the other concurrent regions (broadcast communication). A second way in which orthogonal regions can
communicate is by querying the state of another orthogonal region: the triggering condition of a particular
condition could include a constraint on which state is active in a different orthogonal region.

Figures 6.5, 6.6, and 6.7 all are orthogonal to each other. Indeed: the time needs to be updated, even if the
Indiglo light is turned on, or the alarm goes off. Otherwise, the watch would be useless as a timekeeping device.
A fourth orthogonal component is shown in Figure 6.9. It controls the display of the digital watch, by switching

164 Simon Van Mierlo and Hans Vangheluwe

.

B &F
[
@ &

Fig. 6.8: Non-determinism in composite state; (a) an example model containing non-determinism, (b) flattened
version: non-determinism in state A, (c) Statemate semantics: outermost transition is prioritized, (d) Rhapsody
semantics: innermost transition is prioritized.

(in the displaying composite state) between the displaying_time, displaying_chrono, and displaying_alarm
states when the user presses the top left button. The user can edit both the current time, as well as the time
at which the alarm is set. For this, there is a transition from the displaying_time and displaying_alarm state
to the editing_time state, where the user can increase the hours/minutes/seconds by pressing the bottom left
button, and change the current selection by pressing the bottom right button. The display orthogonal component
communicates with the time orthogonal component by raising the time_edit and edit_done events. This will
ensure that the time is not updated while the user is editing it.

6.3.4 History

A last element of the Statechart formalism is the history state. A history state can be placed in a composite state
as a direct child. It remembers the current state the composite state is in when the composite state is exited.
Two types of history states exist: shallow history states remember the current state at its own level, while deep
history states remember the current state at its own level and all lower levels in the hierarchy. When a transition
has the history state as its target, the state that was remembered is restored (instead of entering the default state
of the composite state).

In Figure 6.9, a shallow history state remembers the active direct child of the displaying composite state
when it is exited (i.e., when a transition to the editing_time state is taken). Upon returning from the editing_time
state, the history state will restore the last active state, to ensure that we end up back in the displaying_time
or the displaying_alarm state, depending on what we were editing. If no history state were present, we would
always end up back in the displaying_time (default) state.

6 Statecharts: A Formalism to Model, Simulate and Synthesize Reactive and Autonomous Timed Systems

3display

._vL

165

displaying
rl
time |
ri
l i bottomRightPressed ¢
displaying_time waiting_to_edit | 1
entry / refreshTimeDisplay() J
after 1s
.
topLeftPredsed

rfter 10ms / refreshChrohoDisplay()

displaying_chrono }2_ after 1500ms / raise time_adit
1
topLeftPressed
alarm
toplLeftPriessed J
‘| I # bottomRight:F’ressed after 1500ms / raise alarm
displaying_alarm waiting_to_edit
entry / refreshAlarmDisplay()
bottomRightReleased
hist ?—
>
editing_time
entry / startSelection()
exit / stopSelection()
ri
® 3 - -
} after Ss / raise edit_done
w‘iﬂno 2mw. |nm.sin° J -
Ny bottomLeftReleased entry / increaseSelection()
bottomRightReleased / selectNext() TM, e
bottomRightPressed
Y 1

going_to_next I 2 after 2s / raise edit_done

Fig. 6.9: The component that controls the display behaviour.

166 Simon Van Mierlo and Hans Vangheluwe

6.3.5 Syntactic Sugar

The previous subsections discussed the essential elements of the Statechart formalism. There are, however,
additional syntactic constructs that make the modeller’s life easier, but can be modelled using the “standard”
Statechart constructs as well.

One of those “syntactic sugar” additions is the entry/exit action for states, which is a more efficient way of
specifying actions that always need to be executed when a state is entered or exited, instead of repeating the
action on each incoming/outgoing transition. An entry action is executed when a state is entered, while an exit
action is executed when a state is exited. This has an important effect on the semantics of executing a transition
combined with composite states. A transition is defined between states A and B. When executing this transition,
the state A is exited, and the state B is entered. However, this is only the case if A and B are direct descendants
of the same composite state. More states are exited if A is part of a state hierarchy, and more states are entered
in case B is part of a (different) state hierarchy. To execute a transition, the “least common ancestor” (LCA) state
is computed from the source state A and target state B. The LCA is a state up the hierarchy of both A and B
that has both A and B as a substate (and is the bottom-most state to have that property). To execute a transition,
starting from A, the states in the hierarchy up to but not including the LCA are exited (and their exit actions
are executed in the same order). Then, the transition’s action is executed. Then, the states down the hierarchy
towards B are entered, including B but excluding the LCA (and their enter actions are executed in the same
order).

Entry and exit actions have been shown throughout the components of the digital watch model in this chapter.
For example, for the alarm orthogonal component of Figure 6.7, whenever the blinking state is exited (which
signifies that the alarm “triggered” and the blinking phase is over), the alarm is disabled by a call to setAlarm,
and the Indiglo light is turned off by a call to unsetindiglo. Were we not to model this action as an exit action,
we would have to repeat it on the two transitions that leave the blinking state. Within the blinking composite
state, the on state has an entry action that turns on the Indiglo light. Were we not to model this action as an entry
action, we would have to repeat it on the incoming transition that marks this state as the initial state, and the
incoming transition from the off state.

6.3.6 Full Statechart Model

The full Statechart model (where the previously discussed orthogonal regions have been placed in subdiagrams)
of the digital watch is shown in Figure 6.10. One extra component not discussed in the previous subsections
is the chrono component, which is responsible for increasing the chronometer when it is activated. Note that
the chronometer can only be activated when the chronometer is shown (in the display component); the active
function takes a state reference as a parameter and returns frue when the state is active at that moment.

6.4 Detailed Semantics

The detailed semantics of Statecharts are more intricate than first meets the eye. In this section, we explain
the semantics of Statecharts according to its implementation in STATEMATE [141]. As was already touched
upon, some semantic variations are possible if multiple options can be chosen (for example, taking the inner or
outer transition if there is a conflict in a composite state). In Section 6.7, we will explain that more options are
possible.

The execution of a Statechart is divided into (micro)steps. An event queue holds the events that are currently
raised (either by the environment, or locally by the Statechart). It also keeps track of timeouts that will expire
in the future (corresponding to an after condition on a transition). In each microstep, the execution algorithm
decides which transition(s) (in different orthogonal regions) are enabled. They are executed (in arbitrary order)
by changing the state of the system from the source state of each transition to its target state. In detail, the
execution algorithm works as follows:

1. A set of candidate transitions is generated that are enabled by events that were raised locally in a previous
step, by timeouts, or by events coming from the environment. The candidate transitions are filtered by

6 Statecharts: A Formalism to Model, Simulate and Synthesize Reactive and Autonomous Timed Systems 167

-
chrono

bottomLeftPressed [active(display.display.rl.displaying.rl.displaying_chrono)] / resetChrono()

{ ¥

L e stopped

5

bottomRightPressed [active(display.display.rl.displaying.rl.displaying_chrono)]

bottomRightPressed|[actiye(display.display.rl.displaying.rl.displaying_chrono)]
1

running
after 10 ms / increaseChronoByOne()
1 3 4 5
indiglo display alarm time
° T I I
indiglo display alarm time
. . L

Fig. 6.10: The full Statechart model of the behaviour of the digital watch.

evaluating their condition (which is a boolean function on the total state of the system). The state of the
system stays constant until all the transitions execute (at the same time); a function which checks whether
a particular state is active does not depend on which transition fires first (as the check is done before any
transition fires).

2. The set of candidates is checked for non-determinism (a conflict), of which there are two types:

* Two candidate transitions can be in conflict if they have the same source state. In the case of STATE-

MATE, the execution algorithm cannot give priority to one or the other; as such, a warning is issued to
the user and one of the candidates is chosen arbitrarily. More elaborate schemes could assign priority
to these transitions based on other criteria; these will be discussed in Section 6.7.1.

» Two candidate transitions can be in conflict if they are enabled in the same hierarchical state (on any

level of the hierarchy). In case of STATEMATE, the top-most transition in the hierarchy is chosen.

3. Once the set of transitions to be executed is known, they are executed by following these steps for each of
them (in arbitrary order, since we assume the orthogonal components are independent):

a.

b.

The Least Common Ancestor (LCA) of the transition is calculated. This is the state that is lowest in the
hierarchy of states that has both the source and the target state as descendant.

The exit set of the transition is calculated. This set contains all the states that need to be exited when
the transition is executed. This includes the source state of the transition, as well as all the states in the
hierarchy up to (but excluding) the LCA.

. For each composite state in the exit set that has a history state as a direct child, the current configuration

of the composite state is remembered.

For each state in the exit set (in order, from lowest to highest in the hierarchy), its exit action is executed
and the state is removed from the current configuration of the system.

The action of the transition is executed. Actions that are modelled using code (such as value assignments)
are immediately executed. Events that are raised are placed in the queue, either to be sent to the

168 Simon Van Mierlo and Hans Vangheluwe

environment as output at the end of the step, or to be sensed by the Statechart in the next iteration of
the execution algorithm.

f. The effective target set of each transition is executed. This is a recursive procedure down to the “leaf”
(basic) states. In case the target is a composite state, the target set is extended with the effective target
set of its default state. In case the target is a state containing multiple orthogonal regions, the target set
is extended with the effective target set of all its orthogonal regions. In case the target is a history state,
the target set is extended with the effective target set of the remembered state(s).

g. All the targets in the effective target set are entered, as long as they are not an ancestor of the source
of the transition. The targets are entered from highest in the hierarchy to lowest. Their enter action is
executed and they are added to the current configuration of the system. For all the outgoing transitions
of the entered states that have a timeout, an event is scheduled in the future.

4. All events that were raised during the step are processed: they are either sent to the environment as output
events, or (in case they are local) used in the next microstep.

This process is continued indefinitely — or until an end condition on the execution is satisfied. For example, a
particular state could syntactically be designated as the “final” state, or a condition could be defined on the full
state of the system. In any case, the execution algorithm is responsible for respecting the timings specified in
after-events, by pacing the execution in such a way to approach real-time execution (with or without guarantees,
depending on the operating system).

6.5 Testing Statecharts

To test a Statechart model, we need to define a trace of input events and an expected trace of output events,
as was shown in Figure 6.4. Tests need to be fully automated. Therefore, we need a different tactic from
simulating the model and manually providing the input events, while checking the model’s reaction. We want
to autonomously generate a number of events (timed) in a “generator” and check whether the system raises the
correct events in an “acceptor’. Basically, an environment interacting with the system is simulated in the form
of this generator-acceptor pair.

To simulate such an environment, either we regard the system as black box and use a mechanism to generate
events correctly outside of the model. Alternatively, we can view the system as a white box and model the
generator/acceptor pair using Statecharts as well. This has the advantage of instrumenting the model in the same
language as it was developed in. Moreover, the Statechart language is appropriate to express the behaviour of
the generator and acceptor, as they are timed, autonomous, reactive systems. This is illustrated in Figure 6.11,
where we develop a test case for (a part of) the digital watch model. The generator and acceptor are modelled
as orthogonal regions alongside the actual system.

The test case tests the expected behaviour of the digital watch in case the user wants to edit the time. To
do this, an input event corresponding to the user pressing the bottom right button is raised after 1 second.
The acceptor checks whether this results in the system switching to the waiting_to_edit state. Next, after an
additional 1.6 seconds, the bottom right button is released, which should result in the system state changing to
editing_time. Then, 0.4 seconds later, the bottom left button is pressed; this results in the increasing state to
be activated until the bottom left button is released (after 3 seconds). Then, 5 seconds later, the system should
automatically switch to the displaying_time state again. If the test ends up in the passed state, the testPassed
callback is called, signifying that the test has passed. Otherwise, the testFailed callback is called.

Due to our white-box approach, we were able to both check the output events produced by the system, as
well as its internal state. To be able to check the events raised by the model, we had to change these events
to be locally raised, instead of raised to the environment. If we were testing using a black-box approach, the
generator and acceptor could be modelled as separate Statechart models, and a communication channel between
the generator, the system, and the acceptor could be set up. However, this has the disadvantage of a delay being
introduced by the communication channels, which might be difficult to account for in the generator and acceptor.
It does allow for testing a system for which we do not have access to the model, but it is outside of the scope of
this chapter.

6 Statecharts: A Formalism to Model, Simulate and Synthesize Reactive and Autonomous Timed Systems

1
input_generator
@® —— init

after 1s / raise bott&;m&ghtﬁessed

stepl

after 1600ms / raise %ottom RightReleased

step2
after 400ms / raise bgttomLeftPressed
step3

after 3s / raise bottt{mLeftReleased

step4

" output_checker

@ init R after 100ms

[active(display.displa ylné.rl Atime.rl.displaying_time)]

stepd after 1100 ms

[active(display.displa yln%rl Atime.rl.waiting_to_edit)]

step2 after 1600ms

[active(displa »iedmng_tlrre)]

step3 after 2100ms

[active(displa wednfung_tnme.r l.increasing)]
after 8100ms

stepa [?

ictive(display.displa ynng.rlltlr‘rte .ri.displaying_time))] J
Yy

passed failure
entry / testFailed()

entry / testPassed()

Fig. 6.11: The extra components of the digital watch test.

6.6 Deploying Statecharts

169

Once we have specified the timed, reactive, autonomous behaviour of a system, it needs to be deployed onto
a target platform. The most common method of doing so is by generating code in a high-level language such
as C++, Python, or Java. The generated code is then coupled (through its interface of input/output events and
callback operations) to a (hand-coded) platform that implements the non-modal (i.e., non-timed, -reactive, or
-autonomous) behaviour. Most often, this platform consists of a number of library functions that perform some
action, such as displaying information on a screen, sending a signal to an actuator, or querying the value of
a sensor. An execution kernel for the platform also has to exist, which is responsible for implementing the

behaviour specified by the Statechart — more information on these platforms can be found in Section 6.7.2.

For code generation, we rely on Yakindu. Yakindu is a Statecharts modelling and simulation tool, with the

following features:

* A graphical modelling tool for describing systems with the Statechart formalism.
* A neutral action language to use in transition constraints and actions.
¢ A simulator, to simulate Statechart models to check its behaviour. The simulator allows users to raise events

while the simulation is running.

* A code generator interface for generating code to any programming language — pre-defined code generators
are provided for Java, C, and C++. The code generator’s configurable options include the folder to generate
files in, the “execution scheme” (cycle-based or event-driven), whether listeners for external events need to
be generated, etc. Yakindu allows for writing custom own code generators, increasing the flexibility of the

tool.

Figure 6.3.6 shows the digital watch model, as it was modelled in Yakindu. Central to the figure is the canvas,
on which the Statechart model is drawn. The tool is “syntax-directed”, which means only syntactically correct
models can be constructed. The valid syntactic elements are shown on the right side in a palette. These elements

170 Simon Van Mierlo and Hans Vangheluwe

correspond to the ones discussed in the previous sections, along with a few extra syntactic sugar elements,
which will not be discussed here. On the left of the figure, an interface for the Statechart model is defined. This
interface makes explicit the possible input, output, and locally raised events, as well as any data variables and
callbacks. In the previous sections, we have left this definition of the interface implicit, but Yakindu requires to
make it explicit for various reasons:

 Transition triggers can be validated, since they can only use an affer-event or an event declared in the
interface (which is either internal or external).

* Actions can be validated to only access variables that were declared, perform operations on them that are
valid for their data type, and only call functions that were declared in the interface.

* When generating code, interface methods for output event listeners can be generated, corresponding to
the possible output events of the system. Similarly, interface methods for raising input events (from the
environment) can be generated.

By checking the syntactic validity of the model, as well as the validity of condition triggers and action code,
Yakindu prevents many possible errors that a modeller can make. We can, from this model, also generate a
running application. In our case, we will generate the behaviour and visualize it in a Python GUI, which shows
the current state of the system (depending on the display mode either the current time, the chrono, or the alarm,
as well as the Indiglo light), and allows to interact with the system by pressing the four buttons of the watch. To
do this, we define a visualization library that can display the state of our system. It has the following interface:

* refreshTimeDisplay(): displays the current value of the clock.

* refreshChronoDisplay(): displays the current value of the chronometer.

* increaseTimeByOne(): increases the value of the clock by one second.

* setIndiglo(): turns the Indiglo light on.

* unsetlndiglo(): turns the Indiglo light off.

e resetChrono(): resets the chronometer.

* increaseChronoByOne(): increases the chronometer by % seconds.

* startSelection(): starts the selection for editing the time (or alarm).

* stopSelection(): stops the selection for editing the time (or alarm).

 selectNext(): selects the next element (hours/minutes/seconds) to edit.

e increaseSelection(): increases the current selected element (hours/minutes/seconds).

o setAlarm(): toggles the alarm.

e checkTime(): boolean: returns true when the alarm time is reached.

* refreshAlarmDisplay(): shows the set alarm time.

* addListener(Button, Listener): adds a listener for the buttons in the GUI for turning on/off the traffic light,
or for the police interrupt.

This library can be instantiated to show (and change) the current state of the digital watch, as is shown in
Figure 6.1, where the current time is shown (corresponding to the default display). To connect this GUI to the code
generated by Yakindu from the Statechart model, we define appropriate listeners for the buttons in the interface:
pressing/releasing the bottom left/top left/bottom right/top right button will send an appropriately named event
from the set {bottomLeftPressed, bottomLeftReleased, topLeftPressed, topLeftReleased, bottomRightPressed,
bottomRightReleased, topRightPressed, topRightReleased).

The callback functions that are called during the execution of the Statechart are implemented by calling the
function with the same name in the interface. This coupling is trivial, but more complex couplings are possible,
as long as the callback functions themselves do not introduce waiting behaviour, spawn threads, or take too long
to execute.

This development method allows for cleanly separating behaviour (encoded in the model, and generated to
executable code by an appropriate code generator) and the presentation (encoded in a visualisation library).
More complex control systems benefit from this by separating the control logic from the actuators and sensors,
through appropriate interfaces that offer the necessary functionality.

6 Statecharts: A Formalism to Model, Simulate and Synthesize Reactive and Autonomous Timed Systems 171

6.7 Advanced Topics

This section explores a number of advanced topics related to Statecharts. We first explore possible semantic
variation for Statecharts; we can consider Statecharts not as a single formalism, but a family of formalisms,
whose semantics differ slightly. Then, we explain that Statecharts can be executed (deployed) on multiple possible
platforms, which has an effect on how the kernel handles the event queue and how time is advanced. Last, we
explore ongoing work to introduce dynamic structure to allow for multiple concurrent objects (“agents”).

6.7.1 Semantic Variations

In Section 6.4, we’ve explained the execution semantics of Statecharts with small steps: an (unordered) execution
of an enabled transition in each orthogonal region. While this is a correct specification, we can ask ourselves
several questions:

* When are events that are raised by a transition visible and usable to calculate a new set of enabled transitions?

* How is conflict resolution performed if there are multiple transitions enabled within the same orthogonal
region?

* When do we process an external event? Immediately after a small step, or do we wait until the system is in
a quiescent (i.e., no transitions are enabled) state?

* When are assignments to variables visible? Immediately after a transition is executed, after a small step, or
even later?

In their paper, Esmaeilsabzali et al. explore these semantic options for big-step modelling languages (a set of
languages that Statecharts belongs to) [94]. These semantic options lead to a family of (related) languages: there
is no longer the Statechart language, but one can configure the language in such a way to suit the application at
hand.

At the essence lies the observation that there are three layers of steps: small steps, combo steps, and big steps.
A big step is a sequence of combo steps, and a combo step is a sequence of small steps. The special property
of a big step is that after it ends, environmental input (events sent to the Statechart) and output (events sent to
the environment) are processed. One could state that small steps and combo steps are internal steps, while big
steps lead to externally visible changes. A small step behaves the same as defined before, however, the choice
can be made to not allow concurrency in a small step: only one transition is executed in that case. Moreover,
when concurrency is allowed, a choice can be made whether transitions can preempt each other. A combo step
groups a sequence of small steps. In the following paragraphs, we explore a number of semantic choices that
can be made; these choices configure the Statechart language, resulting in a language “variant”.

Big Step Maximality

This semantic choice decides when a big step ends, which always has to be in a “consistent state” (so after at
least one small step). One option (syntactic) is to designate certain states as “stable” control states; in that case,
a big step ends after a series of small steps that end in such a state. A second option is fake one, which executes
exactly one small step. And last, there is the fake many option, which executes small steps until there are no
more enabled transitions.

In the first and last options, a downside is that big-steps might not terminate (either because a designated
control state was not entered or because transitions remain enabled). A downside of the second option is the fact
that big steps have no clear syntactical scope (while in the other cases the scope of a big step can be deduced
from the model).

Combo Step Maximality

This semantic choice is identical to the big step maximality, but then applied to combo steps. The main difference
between combo steps and big steps is that after a combo step, no environmental input can be processed.

172 Simon Van Mierlo and Hans Vangheluwe

Small Step Concurrency

While the big step maximality and combo step maximality govern how many small steps can be executed,
this semantic option allows for one small step to consist of a single transition execution or many (concurrent,
enabled) transition executions. The advantage of the single approach is its simplicity, but it requires that the
transitions are ordered non-deterministically. The many approach, on the other hand, has the potential for race
conditions.

Small Step Preemption

If one transition is an interrupt for another transition (this is the case when both transitions are enabled in
orthogonal regions, and one of them has a target state which is not orthogonal to the source states of both
transitions, which effectively exits both orthogonal regions), and many concurrency is enabled, this semantic
option allows to control what happens. Either both transitions are executed (non-preemptive, the result being
the execution of both the transition’s actions, and the target state outside of the orthogonal regions to be active),
or only the interrupting transition (preemptive) is.

Event Lifeline

The event lifeline specifies how long an event “lives” (and can trigger a transition). Both input events and
internally generated events have a lifeline (which can be different). There are five options:

1. With present in whole, the event is assumed to be present throughout the full duration of a big step. This
leads to counterintuitive behaviour (since this might lead to non-causal behaviour, where an event generated
by a transition “later” in the big step might cause a transition “before”).

2. With present in remainder, the event is available in the remainder of the big step. This is an intuitive option,
but can lead to unwanted non-determinism: depending on the order in which transitions are executed, a
transition can generate an event and immediately enable a transition which would be disabled in a different
ordering.

3. With present in next combo step, a generated event can only be sensed in the next combo step. This ensures
that the ordering of transitions within a combo step cannot affect a transition being enabled or not. However,
the ordering is only partial (since combo steps are potentially ordered non-deterministically).

4. With present in next small step, a generated event can only be sensed in the next small step. The ordering of
transitions within a small step, nor the ordering of combo steps can affect whether a transition is executed
in a particular run.

This semantic option has a potentially major impact on the execution of a Statechart model. It also shows the
potential benefits of splitting up the executions in big steps, combo steps, and small steps.

Transition Priority

The last semantic option resolves the issue when two or more sets of transitions exist that can be executed in a
small step. In that case, a choice has to be made which set is to be executed. A common example is when two
transitions in the same state hierarchy are enabled. The hierarchical choice lets the priority be determined by
the source and destination states of the transitions; for example, in STATEMATE [141], the outermost transition
is chosen, while in Rhapsody [139], the innermost transition is chosen. More elaborate schemes are possibly
within this choice, however. The explicit priority option lets the modeller assign priorities explicitly in the
model. Last, the negation of triggers requires the modeller to go through all transitions and strengthen the event
triggers in such a way that conflicts are avoided. The last two options are tedious to use, but allow for precise
control over the priorities.

6 Statecharts: A Formalism to Model, Simulate and Synthesize Reactive and Autonomous Timed Systems 173

Threads
- == e e T 1
Statechart . . \
event . . . \
O 0O -
time
UI Event Loop
o --r- -'-- -‘--- -‘- ____UIevent
Statechart | P . . B .
event :
1] s i,
time

Game Loop

- - o= - - m o= - meEm m m Em o mmE === === 1

T
Statechart ,delayed
event lprocessingl . \

. . IO T b IN

L - d | —1,
Tgrc??;ssingt T T T time

Fig. 6.12: The three runtime platforms.

6.7.2 Execution Platforms

We have discussed deployment of Statechart models in Section 6.6. In particular, we discussed how to provide
an implementation for the computation functions that are called in the actions of the Statechart model, and how
a “glue” layer has to be constructed that correctly sends input events to the Statechart and interprets output
events coming from the Statechart. We did not yet consider who the control in the deployed application has; we
always consider it is the Statechart. But often, Statechart models are embedded in applications that also require
to have control, such as Ul systems and game engines. This section explores how the Statechart kernel can work
on these platforms by relinquishing certain key control functions.

The semantics of Statecharts (configured according to the semantic options presented in the previous section)
are executed on a runtime platform, which provides essential functions used by the runtime kernel, such as the
scheduling of (timed) events. The kernel attempts to run the Statechart model in real-time, meaning that the delay
on timed transitions is interpreted as an amount of seconds. The raising of events and untimed transitions are
executed as fast as possible. It is useful to discuss these platforms, as the Statechart simulators/executors depend
on them; moreover, we need different types of platforms for different application scenarios. We distinguish three
platforms, each applicable in a different situation. Figure 6.12 presents an overview of the three platforms, and
how they handle events.

The most basic platform, available in most programming languages, is based on threads. In its simplest form,
the platform runs one thread, which manipulates a global event queue, made thread-safe by locks. Input from the
environment is handled by obtaining this lock, which the kernel releases after every (big) step of the execution
algorithm. This allows external input to be interleaved with internally raised events. Running an application on
this platform, however, can interfere with other scheduling mechanisms (e.g., a Ul module), or with code that is
not thread-safe.

To overcome this interference problem, the event loop platform reuses the event queue managed by an existing
UI platform, such as Tkinter. The UI platform provides functions for managing time-outs (for timed events),
as well as pushing and popping items from the queue. This results in a seamless integration of both Statechart
events and external Ul events, such as user clicks: the UI platform is now responsible for the correct interleaving.

174 Simon Van Mierlo and Hans Vangheluwe

The interleaving is implemented in the “main loop” of the UI platform, instead of (for the threads platform) an
infinite while-loop.

The game loop platform facilitates integration with game engines (such as the open-source Unity? engine),
where game objects are updated only at predefined points in time, decided upon by the game engine. In the
“update” function, the kernel is responsible for checking the current time (as some time has passed since the last
call to the “update” function), and processing all generated events. This means that events generated in between
two of these points are not processed immediately, but queued until the next processing time.

6.7.3 Dynamic Structure

The exclusive use of Statecharts does not scale to the complex (and often dynamic-structure) behaviour of
complex software systems, such as (WIMP) graphical user interfaces, games, multi-agent systems, ... Their
complexity goes further than the timed, reactive, autonomous behaviour Statecharts is good at representing. In
many applications, there is a need for a set of collaborating, concurrent objects, that can appear and disappear at
runtime. Object-oriented modelling methodologies address software complexity and allow for the construction
of a set of interacting objects, but are not specifically designed for modelling timed, interactive discrete-event
systems [137].

A number of approaches, such as OO Statecharts [137] were proposed. More recently, SCCD [281] was
presented, combining the structural object-oriented expressiveness of Class Diagrams with the behavioural
discrete-event characteristics of Statecharts.

Figure 6.13 presents an overview of the SCCD language, applied to a “bouncing ball” application: the
application allows for a user to create a number of balls on the screen. Their autonomous behaviour is simply to
move in a certain direction and bounce off the sides of the screen. The user can select and delete balls. As we
can see, a number of objects are present: an instance of the Window class, and two instances of the Ball class
are shown. There are a number of links between objects; these links can be used to send or receive events. The
object diagram (consisting of objects and links) conforms to the class diagram part of the SCCD model. On the
other hand, each object has a runtime state, corresponding to one of the states in its Statechart model. A central
entity, the object manager, allows for instances to request a new object or link to be created or deleted.

Objects can communicate using events: SCCD specifies a number of event scopes. A narrow cast allows for
an object to send an event over a connection to another specific (set of) object(s). A broad cast will send the
event to all other objects in the application. An output event works similarly to an output events in Statecharts:
it is sent to the environment of the application. A special cd scope is defined for sending event to the object
manager.

In essence, the objects of a Statechart run concurrently and communicate in a more “loose” way than the
orthogonal regions of a Statechart. The Statechart model in each object has to finish a big step before events
can be sent to other objects or input from other events can be processed. The communication between objects
is asynchronous: they are not able to call each other’s methods, or change their variable values directly. In this
sense, SCCD can be seen as a semantic basis for multi-agent systems, where agents have a well-defined interface
through which they can communicate.

6.8 Summary

This chapter demonstrates how to use the Statechart formalism to model the timed, reactive, autonomous
behaviour of a system. The chapter is built around a development process that starts from requirements gathering,
to build an initial design of the system. The concepts of the Statechart formalism (states, transitions, hierarchy,
orthogonality, broadcast communication, and history) are explained by a running example of a digital watch.
This design is refined by simulating the model and testing it, by providing an input event segment to the
simulation/test and checking the output produced by the model (either manual in a simulation, or automated
using an oracle in a test). Ultimately, code is generated from the design model and deployed on a platform.

2 https://unity3d.com/

https://unity3d.com/

6 Statecharts: A Formalism to Model, Simulate and Synthesize Reactive and Autonomous Timed Systems 175

Object Manager

BROADCAST ’-"' OUTPUT

T, s

NARROW b2: Ball
; -color: "yellow" | |

bl: Ball -pos: [71,60]
-color: "black" -vel: [0.0, 0.0]
-pos: [10,51] :
-vel: [0.74, -0.23]

wl: Window

left-click

Create Wndow

74 BouncngBalls (=] X :: -
‘ . b SCR left-click

. . o | left-click left-click

Fig. 6.13: SCCD: An overview.

Coupling between the platform functions and the Statechart output events/callback functions is required to
finally arrive at a running system. Last, a number of advanced topics were discussed.

6.9 Literature and Further Reading

A thorough discussion of the origins of the Statecharts visual notation can be found in [136]. The origins of
the Statecharts formalism are described in [134]; this work was later complemented with a discussion of its
semantics in STATEMATE [141] and Rhapsody [139]. More recently, Esmaeilsabzali et al. have deconstructed
the semantics of “big-step modelling languages”, a family of languages to which the Statecharts language
belongs, and have presented a family of their execution semantics [94]. A standard for the precise execution
semantics of UML state machines is being worked on by the OMG [221].

Coordinating concurrently executing Statechart objects has its roots in a 1997 paper by Harel and Gery [137].
SCCD [281] attempt to constrain the possible object operations (creation and deletion of objects, as well as
communication between objects) by modelling the allowed object configurations in a class diagram, to which
each object diagram (a snapshot in the execution of the model) has to conform.

176 Simon Van Mierlo and Hans Vangheluwe

6.10 Self Assessment

1. Explain the difference between deep history and shallow history.

2. Explain the different ways in which Statechart variants (in particular, Statemate vs. UML 2.0/Rhapsody)
resolve non-determinism when outgoing transitions of hierarchically nested states are triggered by the same
event.

3. Can a Statechart model ever “block”? Explain why/why not.

4. Draw the flattened version (no hierarchy or orthogonality) of a Statechart model containing hierarchical
states and orthogonal components.

5. How are transitions outgoing/incoming from/to a hierarchical state containing orthogonal components
executed? Explain the different ways in which orthogonal regions can “interact”. Explain the difference
between concurrently running objects in SCCD and orthogonal regions within these objects.

Acknowledgements

This work was partly funded by Flanders Make vzw, the strategic research centre for the manufacturing industry.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Statecharts: A Formalism to Model, Simulate and Synthesize Reactive and Autonomous Timed Systems
	Learning Objectives
	Introduction
	Background
	Running Example
	Discrete-Event Abstraction
	Process

	Modelling with Statecharts
	States and Transitions
	Composite States
	Orthogonal Regions
	History
	Syntactic Sugar
	Full Statechart Model

	Detailed Semantics
	Testing Statecharts
	Deploying Statecharts
	Advanced Topics
	Semantic Variations
	Execution Platforms
	Dynamic Structure

	Summary
	Literature and Further Reading
	Self Assessment
	Acknowledgements

