
Chapter 1
Multi-Paradigm Modelling for Cyber-Physical Systems:
Foundations

Paulo Carreira, Vasco Amaral, and Hans Vangheluwe

AbstractModeling and analysis of Cyber-Physical Systems (CPS) is an inherently multi-disciplinary endeavour.
Anyone starting in this field will unavoidably face the need for a literature reference that delivers solid founda-
tions. Although, in specific disciplines, many techniques are used already as a matter of standard practice, their
fundamentals and application are typically far from practitioners of another area. Overall, practitioners tend to
use the technique that they are most familiar with, disregarding others that would be adequate for the problem at
hand. The inherent cross-disciplinary nature of CPS requires distinct modelling techniques to be employed, thus
prompting for a common background formalism that enables communication between all specialities. However,
to this date, no such single super-formalism exists to support the multiple dimensions of the design of a CPS.
Indeed, to effectively design a CPS, engineers (in the role of modellers) either need to be versed in multiple
formalisms, or a fundamentally new modelling approach has to emerge. Herein, we motivate Multi-Paradigm
Modelling of CPS (MPM4CPS), introducing fundamental definitions and terminology regarding CPSmodelling
and Multi-Paradigm, and finally, laying the ground for the rest of the book.

1.1 Introduction

Cyber-Physical Systems (CPS) refer to systems that consist of cyber (as computerised implementations) and
physical components [130]. The general idea is that the cyber and physical components influence each other in
such way that the cyber is able to cause the physical component to change state, and that the change, in turn,
will feed-back, resulting in a change of state on the cyber component.

Having emerged from earlier concepts, among other, in the fields of mechatronics, embedded systems,
and cybernetics, literature gives the coining of the term ‘Cyber-Physical System’ (CPS) to Hellen Guille in
2006 [130]. CPS are often regarded as networks of multi-physical (mechanical, electrical, biochemical, etc) and
computational (control, signal processing, logical inference, planning, etc) processes, often interacting with a
highly uncertain and adverse environment, including human actors and other CPS.

Example application domains of CPS include energy conservation, environmental control, avionics, critical
infrastructure control (electric power, water resources, and communications systems), high confidence medical
devices and systems, traffic control and safety, advanced automotive systems, process control, distributed robotics
(telepresence, telemedicine), manufacturing, and smart city engineering. The design of CPS is currently a driver

Paulo Carreira
Instituto Superior Técnico, Universidade de Lisbon, Portugal
e-mail: paulo.carreira@tecnico.ulisboa.pt

Vasco Amaral
FCT, Universidade NOVA de Lisboa, Portugal
e-mail: vma@fct.unl.pt

Hans Vangheluwe
McGill University, Canada
e-mail: hans.vangheluwe@uantwerp.be

1© The Author(s) 2020

P. Carreira et al. (eds.), Foundations of Multi-Paradigm Modelling for Cyber-Physical Systems, 

https://doi.org/10.1007/978-3-030-43946-0_1 

https://doi.org/10.1007/978-3-030-43946-0_1
mailto:paulo.carreira@tecnico.ulisboa.pt
mailto:vma@fct.unl.pt
mailto:hans.vangheluwe@uantwerp.be
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43946-0_1&domain=pdf


2 Paulo Carreira, Vasco Amaral, and Hans Vangheluwe

for innovation across various industries, creating entirely new markets. More efficient and cheaper CPS will
have a positive economic impact on any one of these applications areas.

CPS are notoriously complex to design and implement mostly because of their cross-discipline borders,
leading to inter-domain interactions, in applications that are often safety-critical. Indeed, due to the nature of
their application, failure or underperformance of CPS can have direct, measurable economic costs, can harm
the environment or even directly affect humans. Expectably, engineering practice has, over the years, sought to
address these concerns by improving the languages, frameworks, and tools used in the design and analysis of
CPS. This effort led to the emergence and strong adoption of model-based design, in which systems are designed
at a higher level of abstraction, and an implementation is then produced by automatic generation.

A striking aspect of CPS design is that it is inherently multi-disciplinary. One source of this multi-
disciplinarity arises from the domain of the application itself, such as e.g., medical, biological, or aeronautical
industries. Another source is the heterogeneous nature of CPS, which consists of computerised, electronic, and
mechanic parts. To design a CPS, engineers from various disciplines need to explore system designs collabora-
tively, to agree, to allocate responsibilities to software and physical elements, and to analyse trade-offs between
them.

Originating from the Modelling and Simulation Community, the term Multi-Paradigm-Modelling (MPM)
finds its origin in 1996, when the EU ESPRIT Basic Research Working Group 8467 formulated a series of
simulation policy guidelines [286] identifying the need for “a multi-paradigm methodology to express model
knowledge using a blend of different abstract representations rather than inventing some new super-paradigm”,
and later on proposing a methodology focusing on combining multiple formalisms [294]. Since 2004, during the
yearly Computer Automated Multi-Paradigm Modelling (CAMPaM) Workshop series at McGill University’s
Bellairs Research Institute, many ideas surrounding MPM were developed. Since then, MPM became a well-
recognised research field with a large body of research produced and published, in particular in the MPM
Workshops co-located with MoDELS.

The recent COST Action IC1404 MPM4CPS (http://mpm4cps.eu) aimed at exploring how MPM can be
employed to alleviate the engineering complexity surrounding the conception of CPS. Among other efforts, the
scientific community gathered around this action surveyed existing languages, techniques, and tools commonly
used for modelling CPS and organized them into an ontology [167].

This work identified the need come up with a theoretical foundation for MPM and identified useful language
features. Among other, the most relevant can be summarised as follows: Closeness to the essential concepts that
engineers use to reason about the behaviour of physical systems, in a computationally a-causal fashion (i.e.,
without the need to specify early on what are inputs and outputs); the ability to precisely describe computation, at
different levels of detail of the time dimension; the ability to elegantly express concurrency, synchronisation and
non-determinism and to reason about properties over all possible behaviours of a system; the ability to express
modal, timed, reactive and autonomous behaviour and to synthesise code; suitability to model competition
for shared resources, which leads to queueing, as a basis for quantitative performance analysis; suitability for
easy and correct architectural composition; the ability to express workflows at a high level of abstraction and
finally, the high-level feature of modularity, supporting re-use, compositional verification of properties and the
integration of black-box components such as co-simulation units. The breath of the techniques is broad.

The results of the efforts held by the MPM community, mentioned above, culminated in a book that compiles
in a coherent manner well-established knowledge around fundamentals and formalisms for modelling of CPSs
with a particular focus on tools and techniques that are multi-paradigm.

1.2 Understanding Cyber-Physical Systems

We now turn to discussing which classes of systems can be considered a CPS, what are their properties, and the
sources of engineering complexity worth solving using the so-called MPM approach. Before embarking in the
discussion some preliminary concepts need to be made clear.

http://mpm4cps.eu


1 Multi-Paradigm Modelling for Cyber-Physical Systems: Foundations 3

1.2.1 Systems and their models

The notion of system is a fundamental concept used in multiple disciplines. The term conceptualises a physical
existence such as an ecosystem, an organism, a machine, or a purely abstract existence. The latter case refers
to processes, rules (such as a socio-economic system), or mathematical models. Regardless, any conception
of a system is understood (i) as a set of components (ii) identifiable as a whole, that (iii) cooperate (also said
to interact) to (iv) perform a particular function. There is a distinction between the actual systems (physical
or abstract) and the human understanding of them. The formalisation of this understanding, usually limited, is
called a model. [308]

According to Systems Theory, a system can be understood in two ways. One way is the black-box approach
that seeks to model the external behaviour of the system in terms of how it interacts with the environment. Here,
the behaviour of the system is seen as the relationship between the evolution of the history ofmanifestations (also
said outputs) and the history of stimuli (also said inputs). Another way to understand the system is the white-box
approach, that seeks to understand its internal structure in terms of components and connectors through which
interaction occurs.

Both the black-box and the white-box approach formalise knowledge about the behaviour of the system with
models1, which are simplified representations of the system.The utility of working representations is that they
are cognitively effective means to reason about the actual system (or systems) they represent. By reasoning, we
mean analysing properties of the system or predicting the future behaviour of the system. A system can thus have
multiple models that cater to distinct requirements in terms of reasoning. Control Theory has historically taken
the black-box approach where outputs are modelled in terms of inputs using differential equations; Computer
Science has traditionally taken the white-box approach by modelling the internal structure of systems using
object diagrams.

The driving idea behind understanding the internal structure is that components, bound through a certain
arrangement of connections, display specific external behaviour. Moreover, the overall behaviour can be derived
from (i) the known behaviour of the components and (ii) the characteristics of the connectors. Connections
are abstract flows of information, or energy, that bind components through pre-designated points of interaction
known as ports. Some component ports are directional, we can thus talk about input ports (inputs), and output
ports (outputs). Other ports are adirectional in that they model an exchange and not necessarily a flow (consider
a thermal coupler, for example).

A component can itself be seen as a system itself with its own components and connectors. The ability
to continue composing systems from previously constructed ones is known as hierarchical construction. It is
common also to model components with a internal state that reflects (partially and sometimes inaccurately)
what the system knows about the surrounding environment and a state-transition mechanism typically referred
to as transition function that is capable of producing new states from previous states upon receiving certain
inputs and creating certain outputs.

1.2.2 Types of systems

Inputs, outputs and the state of the components are modelled in terms of variables that can take values from
their corresponding support sets. These variables are said to be continuous or discrete if their support sets are,
in a mathematical sense, dense or discrete, respectively. The behaviour of the system, as modelled in terms
of internal state and outputs, evolves from a previous state according to some notion of time. Time can also
be understood as continuous or discrete. In continuous time, it is possible to derive the new state and the new
outputs for the system for an arbitrarily small time delta; whereas in discrete time, the new state and outputs can
be derived only at predefined intervals, or upon the occurrence of a certain event.

Systems can be classified into distinct types depending on the nature of inputs, outputs, state variables, state
transition function, and the notion of time. A well-accepted classification is as follows [308]:

• Static vs Dynamic Systems. A system is said to static if its output depends only on the present input. If the
output of the system depends on the history of past inputs, then the system is said to be dynamic.

1 The precise meaning of the term ‘model’ is discussed later in Section 1.3.1



4 Paulo Carreira, Vasco Amaral, and Hans Vangheluwe

• Causal vs Acausal (Non-causal).Whenever the output value of the system is independent of future values
of input, the system is said to be a causal system; whenever the output values of the system depend on input
values at any instant of time, the system is said to be a acausal system.

• Linear vs Non-linear. A system is said to be linear (respectively, non-linear) if changes on the output are
proportional (respectively, not proportional) to the changes of the input.

• Discrete State vs. Continuous State. Those systems in which the state variable(s) change only at a discrete
set of points in time are said to be discrete state systems; systems in which the state variable(s) change
continuously over time (e.g., a water tank filling in), are said to be continuous state systems.

• Discrete Time vs Continuous Time. A system is said to be discrete, in contrast with continuous, if it has
a countable number of states.

• Time-Driven vs. Event-Driven.A time-driven system changes state in response to a uniform physical time.
While, a event-driven system changes state in reaction to the occurrence of asynchronous discrete events
(not changing state between event occurrences).

• Time-Variant vs. Time-Invariant. A system in which certain state variables change with time causing the
system to respond differently to the same input at different times is called time-variant; a system that yields
the same output for a given input at distinct points in time is said to be time-invariant.

A dynamic system that exhibits both continuous and discrete time behaviour is said to be an hybrid system.
The study of hybrid systems is very important as they arise often in the composition of discrete with continuous
components typical of cyber-physical systems.

1.2.3 What are Cyber-Physical Systems?

It is assumed that the cyber component controls the physical component in the sense that the cyber component
has some ‘intelligence’ or, at least, some strategy to drive the physical to reach a predefined observable goal.
The converse is not true, i.e., the physical does not aim at driving the cyber to reach a certain predefined goal.
This formulation puts CPS in the realm of Control Systems theory. Despite de comprehensive nature of Control
Systems theory, CPS are not a particular case of Control Systems.

In a control system one component, known as the controller realises a control model that acts upon the
physical environment component known as plant by means of a control action. The controller knows the desired
value of a variable and the current value of that variable in the physical component. The controller then creates a
sequence of control actions to correct (i.e., to minimise the distance over time) of a variable (measured from the
physical system) to the desired value (the goal). This arrangement is known as control system. It is, therefore,
reasonable to ask: "what distinguishes a control system from a CPS?" Besides the very idea of a cyber control
component—a discrete computer algorithm controlling continuous physical phenomena—it seems that there is
no single characteristic that of itself defines a CPS. However, it is well-accepted that cyber-physical systems
consist of a large number of interacting components and display a number of recurring characteristics that
distinguish them from classic control systems. In particular:

• Extensive ‘cyber’ components that encode complex control and supervisory control logic. Typically, they
have multiple cyber sub-components that support complex action coordination and require the processing
of very large amounts of historical data.

• Very large scale of operation outreaching several millions of elements (sometimes heterogeneous) involv-
ing an inherent complexity of hierarchies and interactions. Examples of those systems are Smart grids,
Smart cities, Particle Physics Detectors, among others.

• Hybrid discrete-continuous nature -where a very large number of discrete components (especially ‘cyber’
components) are connected to physical components (continuous in nature) thus creating a hybrid system.
Also, many of these components are quite heterogeneous with respect to their types (Section 1.2.2).

• Integration withmultiple external systems by processing data and events in distinct formats frommultiple
systems with varying bandwidth and message delivery guarantees.

• Highly networked and hierarchical connecting many components typically through digital networks with
distinct communication buses and protocols.

• Adaptable where the system must adjust their behaviour to patterns that could not be accounted for at
design time.



1 Multi-Paradigm Modelling for Cyber-Physical Systems: Foundations 5

• Human in the loop offering specific provision for Human actors to consume outputs and give inputs.
Human actors are often modelled as components with specific behaviour requirements. and assumptions.

The pervasiveness of IoT with a large number of connected devices has created an upsurge of interest in
CPS. However, the term is somewhat overused, and it has now become an umbrella for any system that interacts
with the physical environment. For instance, at the current state of practice, a developer of a temperature logger
might as well claim that his device is a CPS. This raises the question of what is the minimum requirements for a
system to be considered a CPS? One key observation is that having identifiable cyber and physical components
are not enough for a system to be considered cyber-physical; the cyber and physical components must influence
each other2. Another reasonable question is whether this relationship must be of mutual influence, or whether,
instead, the cyber component may not be influenced by the physical component. It is clear that since the cyber
controls the physical, the cyber must have the means to influence (act upon) the physical. It follows, that a system
where the cyber component does not influence the physical component is not a CPS.

CPS also builds on embedded systems, which are self-contained systems that incorporate elements of control
logic and real-world interaction. An embedded system is typically a single device, while CPS include many
constituent systems. Further, embedded systems are specifically designed to achieve a limited number of tasks,
often with limited resources. A CPS, in contrast, operates at a much larger scale, potentially including many
embedded systems or other CPS elements including human and socio-technical systems.

It becomes clear from the above that having a cyber and a physical component is not a suficient condition
for system to be considered cyber-physical systems. The example of the temperature logger system, which only
reads from the physical system, despite having a cyber and a physical component, is not a CPS.

1.2.4 Sources of Engineering Complexity

Cyber-physical systems are complex to build due to the inherent complexity of the problems they solve that
consist of coordinating action to optimise multiple (possibly contradicting) goals in systems with vast numbers
of sensors and actuators. The other source of complexity is, more of accidental nature, and has to do with the
heterogeneity of the components.

One starting source of complexity is that cyber components are discrete in nature but must act in a time-driven
fashion and, for that matter, they must reason about time. Concepts of duration, deadlines, and simultaneity,
must be dealt with and modelled explicitly. Yet, programming languages abstract away the notion of time and
provide little or no support for time3. Timing behaviour is achieved through dedicated timing hardware, interrupt
control routines, and timer libraries—in the words of Eduard Lee, “programmers have to step out outside of the
programming abstraction to specify timing behaviour.” Instead of being explicitly modelled, timing behaviour is
obfuscated and buried under the complexity of the orchestration of these mechanisms making the correctness of
the composition between the cyber and physical components very hard to achieve. The problem is exacerbated
as more components are added onto the system.

Not only discrete components often display incorrect timing behaviour but interfacing discrete and continuous
components poses another unexpected engineering challenge. The composition of a deterministic model of the
cyber with a deterministic model of the physical results in a non-deterministic model that is very difficult to
analyse. To understand why to consider that it is impossible, in practice, to guarantee that the components that
implement the two models will be perfectly aligned, concerning time. This applies especially to the mechanism
that they use to communicate and synchronise because thismechanism operates according to certain assumptions
(constraints) of time.

The actual implementation of CPS is largely component-based. These components are multi-vendor and
multi-technology and, as a result, they often have different communication protocols, response timings, distinct
tolerances and operating conditions. One side of the problem is that some of these constraints are not known or
accounted for upfront. Another side of the problem is that while constructing the system, these constraints are
not modelled and handled explicitly. A lot of accidental complexity arises when trying to assemble components
with such variability, especially because typical CPS consists of a large number of components.

2 In terms of modelling, this means that they must be bound through at least one connector
3 A rigorous semantics of time is absent from standard computer languages



6 Paulo Carreira, Vasco Amaral, and Hans Vangheluwe

It	is	a	Wall

It	is	a	Rope

It	is	a	Tree

It	is	a	Carpet

It	is	a	Snake

It	is	a	Spear

Fig. 1.1: Illustration of the tale of the 6 blind men. Each blind man, from his own perspective, understands the
elephant as a diferent object.

CPS also have stringent requirements that cannot be relaxed. Besides the usual guarantees of functional
correctness that apply to any engineered object, CPS are especially known for their large number of extra-
functional (also known and ‘non-functional’) requirements that cover issues of reliability, performance, safety,
security, among other. What is relevant to note is that extra-functional requirements are known to pose complex
constraints to timing component design and to timing behaviour. Moreover, since these systems are critical,
they often have to undergo strict qualification/testing processes. When changes to the system are needed, they
are often discouraged due to the costs involved, making CPS difficult to adapt to changing requirements. There
should be a reliable means to guarantee that certain aspects of a system remain untouched and therefore, do not
need to be tested again.

Actual realisations of components sometimes interact in ways that were not designed upfront. Often physical
components interfere due to electromagnetic or thermal interference. Emerging behaviour as of complex be-
haviour that arises from the interaction between components, which was not planned upfront. While developing
CPS, it is important to have the means to explore alternative designs.

1.3 Modeling of a Cyber-Physical System

The engineering process of CPS requires distinct disciplines to be employed. Each discipline typically creates a
design (also said to be a view or understanding) of the system for its own purposes in the form of amodel. Models
are created using abstractions, heuristics of decomposition, and tools of analysis typical of each discipline. Each
discipline also brings along a body of knowledge that enables humans in charge of modelling the reality to
critically assess the correctness and soundness of the model being produced. In this sense, the piecemeal
approach of having distinct models organised by discipline is effective. Another motivation for having distinct
models is that, even within the same discipline, they are required to answer distinct questions. Models also have
to be produced with distinct levels of detail, and therefore, the modeller has to find the right balance and capture
the right things creating a model adequate to the question being studied.

Modelling of a CPS system is inherently represented in multiple views of the system (most of the times
following the principle of separation of concerns). As in the ancient tale of the six blind men (see Fig. 1.1),
no single view (nor corresponding modelling formalism) can model all aspects of a system. Similarly, in CPS
engineering, the results are models reflecting distinct views of the problem, expressed in multiple notations.
One problem for the CPS engineer, as it is also for blind men, is “how to integrate knowledge to form a more
approximate model of the reality?” Naturally, modelling of CPS systems calls for a trans-disciplinary approach
that merges the different models into a unified abstraction of reality. An essential challenge of CPS is thus how



1 Multi-Paradigm Modelling for Cyber-Physical Systems: Foundations 7

Represents	a	> <	Represents	a	

Study	GravityStudy		Volume

fall	

Fig. 1.2: Models of an airplane: The CAD model on the left to study volume; on the right side the model for
studying gravity.

to conjoin abstractions of the various engineering disciplines and the models for physical processes including
differential equations, stochastic processes, among others.

Currently, there is no standard design and modelling approach to integrate models produced by distinct
disciplines of CPS. Indeed, the knowledge captured in models only comes together when assembling physical
(prototype) implementations to evaluate some relevant properties of a given CPS. Amore sophisticated approach
is to avoid creating prototypical implementation altogether and (co-)simulate the models. This is a more generic
approach as it enables verifying properties independently from the particularities of the implemented prototype.

Previously, we have mentioned the term model assuming some implicit notion of modelling based on
abstraction, which is the process of removing details in the study of objects or systems in order to focus attention
on details of higher importance. However, not all conceivable abstractions or representations of a system can be
considered a model. Indeed, a more precise understanding of these concepts is required. Let us look at these in
further detail.

1.3.1 What is a Model?

A model of a system is an abstraction (a representation) to make predictions or inferences [176] about a reality.
More specifically, this reality is a system under study (SUS), whose governing rules and properties we want to
understand, within the context of a given experimental frame. An experimental frame denotes the limited set of
circumstances under which a system is to be observed or subject to experimentation.

According Stachowiak [256], three main properties should hold in a model. The first property is themapping
feature, which means that any model, to be called as such, should be faithful to or based on an original, that
exists or simply be the formalisation of an idea to be realised at some point in the future. The second property
is reduction feature. In this case, there is no model if it does not remove unnecessary detail, and select original
properties useful to the purpose of the model in hands. The third is the pragmatic feature. In this last property,
a model needs to be usable in place of an original with respect to some purpose. Other important, yet not
fundamental characteristics of a model are purposeful [243], understandable and cost-effective.

To make the idea of models more concrete, let us illustrate these properties with a simple example. Consider
the case of an aircraft where we are concentrating on the study of the single properties of mass and gravity. For
this purpose, we can claim that a glass of water is a rough approximation of an aircraft (and it is chosen as a
physical representation of the SUS). When it falls, it takes some time to reach the floor, and then it breaks. Can
the glass be considered a model for the aircraft? For the purpose of evaluating the effects of gravity (our scope)
we have (i) a mapping feature, as the object (glass) represents the original (the airplane); (ii) a reduction feature,
as all the unnecessary details like shape, aerodynamics, architecture, among other, are removed, and (iii) it is
pragmatic in terms that we can substitute the glass for the real airplane. Finally, it is (iv) purposeful, as it is meant
to study gravity, (v) understandable, as it is a straightforward representation that everyone understands; and (iv)
cost-effective, to study and substitute the real one during the fall it is several orders of magnitude cheaper and
ethically acceptable. Another possible example of a model, for the same case study, can be the CAD drawing



8 Paulo Carreira, Vasco Amaral, and Hans Vangheluwe

of the aeroplane for the goal of studying the volume of the machine, for purposes like studying how it fits in a
hangar or what is the internal volume for the purpose of choosing the proper ventilation system.

1.3.2 Multiple Formalisms in CPS

As it became clear above, the engineering process of CPS results in a collection of models. Models are
abstractions of a system (a reality) that has properties worth studying. It is well known as well that models,
especially of distinct disciplines, are are expressed using correspondingly different modelling formalisms. A
modelling formalism is a language that has formal syntax and semantics. The usual meaning of ‘formal’
is precisely and unambiguously defined, mathematically, in the form of Differential Equations, Finite State
Automata, State Charts, Petri Nets, among others. Distinct formalisms exist because they are more concise and
enable answering efficiently to distinct classes of questions. Indeed, no single formalism can be used to model
all aspects of a system, as the formalism to be used depends on the nature of the problem to be solved.

Formalisms also enable the manipulation and re-writing of models, or parts of models, into other that are
equivalent to the originals (for a given semantics), and whose realisations have more desirable properties. Such
as, being less redundant, more compact, faster, or consuming less energy, for example.

In order to overcome the complexity of the problem, a common modelling practice, is to describe models of
the same reality at different levels of abstraction (sometimes using correspondingly distinct formalisms.) Models
expressed at distinct levels of abstraction are linked to one another through structure-preserving maps. Indeed,
an overarching issue with distinct formalisms is merging models of the same system through these maps. There
needs to be a notion of consistency among them.

These multiple formalisms are used to model a system interacting with its environment, its architecture
and components, at different levels of detail, approximation and abstraction, and from different viewpoints, as
well as the platforms the software components of the system will be deployed on. The integration of models
produced according to distinct formalisms is achieved by mapping (compiling) the model into lower level super
formalisms that integrate different domains such as Bond Graphs, or other formalisms to integrate discrete and
continuous modelling constructs such as DEVS.

To support the design of CPS, not one single super-formalism, but rather of a multitude of modelling
formalisms, chosen for their particular reasoning and analysis features need to be employed. These features
make each of them most appropriate for a particular CPS design (sub-)goal. Pragmaticaly, the engineer (in the
role of modeller) needs also to know the strategies (formalised as processes) to describe reality according to
the formalism. The formalism together with these said processes and constraints form what is otherwise known
and as a modeling paradigm—the object of study of Multi-Paradigm Modelling [286].

1.4 Multi-Paradigm Modelling of CPS

Multi-Paradigm Modelling (MPM) has been recognised as a powerful approach (a paradigm in its own right)
that may be helpful in designing, as well as communicating and reasoning about CPS, which are notoriously
complex because of their cross-discipline borders and inter-domain interactions.

To develop aCPS, projectmanagers and engineers need to select themost appropriate development languages,
software lifecycles and “interfaces” to specify the different views, components and their interactions of the system
with as little “accidental complexity” [52] as possible. For example, when it is known that system/software
requirements are likely to change frequently during the project’s course, selecting an Agile development process
may help to cope with evolution and change. If the system’s behaviour requires that operations are triggered
when data becomes available, similar to reactive systems, Data Flow languages may help to specify the most
critical parts of the software behaviour in a precise way, making it amenable for timing analysis.



1 Multi-Paradigm Modelling for Cyber-Physical Systems: Foundations 9

1.4.1 What is a Paradigm?

In Computer Science, general-purpose programming languages (GPLs) can be classified according to the
paradigm(s) they support. For example, Eiffel is object-oriented and supports the contract-based-design
paradigm, Prolog is declarative, and Lisp is functional. The paradigm characterises the underlying syntac-
tic and semantic structures and principles that govern these GPLs. In particular, object orientation is imperative
in nature and imposes viewing the world in terms of classes and communicating objects, whereas the declarative
style relies on term substitution and rewriting. As a consequence, a statement in Eiffel has very little in common
with a Prolog sentence due to the very different view supported by each language. A programming paradigm
directly translates into different concepts encoded in the GPL syntax definition (known as a metamodel in the
Model-Driven Engineering world). Very naturally, the idea of combining several paradigms at the level of GPLs
led to more expressive, powerful programming languages such as Java (which is imperative, object-oriented,
concurrent, and real-time and, recently, functional) and Maude (which is declarative, object-oriented and also
concurrent and real-time).

What is a paradigm then? The science philosopher Kuhn [175], while investigating how science evolves
through paradigm shifts, defines it as an open-ended contribution that frames the thinking of an object of
study with concepts, results and procedures that structure future achievements. Though seemingly far from the
concerns in the discipline of Computer Science, this definition does highlight the emergence of a structure
(a formalism) that captures the object of discourse, and the notion of procedures (the processes) that guide
achievements.

1.4.2 The dimensions of Multi-Paradigm Modelling

The application of MPM requires modeling everything explicitly, using the most appropriate formalism(s),
at the most appropriate level(s) of abstraction [266]. This suggests that a paradigm can be understood as an
arrangement of the properties in each of the dimensions described above: the formalisms and the levels of
abstraction in the modelling activities.

Oftentimes, formalisms are general-purpose, and hard to be used by modellers (domain users, or domain
experts) who need to start by picking the most adequate formalism based on its well-known semantics, e.g., Petri
Nets for workflows and concurrency, or Statecharts for describing event-based systems, among others. However,
having to master mathematical notation poses a steep learning curve. To alleviate this problem, specialised
languages, called Domain-Specific Modelling Languages, are created to simplify the act of expressing the
modeller’s specification intent. The constructs in these languages are designed to be closer to the way domain
experts are used to conceptualize problems. The systematic approach of building new modelling languages, is
called Modelling Language Engineering (MLE) and must, itself, follow an engineering process [?].

To tackle complexity during the course of system development, three basic abstraction approaches are
commonly combined: Abstraction/Refinement, Architectural decomposition, and View decomposition.

• Model abstraction (and its dual, refinement) is used when focusing on a particular set of properties
of interest. While abstraction implies removing unnecessary detail, in opposition to refinement, the same
set of chosen properties should hold both on the abstract and detailed models. Verifying the property on
the abstract model is, expectably, cheaper (or simpler) than in the detailed model. Yet, note that the more
detailed model does have some advantages as it will allow the correct assessment of a larger set of properties
which can not be covered otherwise.

• Architectural decomposition (and its dual, component composition) is used when the problem can be
broken into parts, each with an appropriate interface. Such an encapsulation reduces a problem to (i) a
number of sub-problems, each requiring the satisfaction of its own properties, and each leading to the
design of a component and (ii) the design of an appropriate architecture connecting the components in a
way that the composition satisfies the original required properties. This a breakdown often comes naturally
at some levels of abstraction, using appropriate formalisms (which support hierarchy), for example, thanks
to locality or continuity in the problem/solution domain. Note that the above describes a top-down workflow
where decomposition of the requirements leads to the design of components followed by the architectural
composition of these components. A bottom-up workflow is also possible, where existing components are
combined to satisfy full-system requirements.



10 Paulo Carreira, Vasco Amaral, and Hans Vangheluwe

• View decomposition (and its dual, view merge) is used to enable the collaboration between multiple
stakeholders, each with different concerns. Each viewpoint allows the evaluation of a stakeholder-specific
set of properties. When concrete views are merged, the conjunction of all the views’ properties must hold. In
the software realm, IEEE Standard 1471 defines the relationships between viewpoints and their realisations,
views. Note that the views may be described in different formalisms.

One particular combination of the former approaches leads to Contract-Based System Design [84]. Indeed,
modelling activities are combined into processes (or workflows) that relate the variousMPMactivities. Processes
may be descriptive, charting the sequence of activities carried out as well as the artefacts involved, proscriptive by
declaratively specifying constraints on the allowed activities and their combinations, and prescriptive allowing
enactment. Processes are often supported by toolchains whereby different tools support different activities. It
can be said that a MPM framework aims to support (meta-)tool builders who assist practitioners to reason about
CPS and figure out which formalisms, abstractions, workflows and supporting methods, techniques and tools
are most appropriate to carry out their task(s).

Ultimately, by selecting, organising and managing the three dimensions above (formalisms, abstractions, and
processes), MPM facilitates the communication between experts to help them better grasp the essence of how
their CPS are built. Moreover, it also facilitates a rigorous comparison of distinct approaches to MPM based on
their coreMPM components. The implications and challenges that MPM brings to formalisms and to abstraction
mechanisms need to be discussed further.

1.5 A foundation for MPM4CPS

This book introduces a representative set of modelling formalisms, each with a characteristic collection of
features. The set is by no means complete but rather intended to showcase the wide variety of features available
in well-established formalisms, often supported by scale-able tools. These may be used to choose a most
appropriate formalism for a particular task at hand, as a starting point for looking into more formalisms, with
other desirable features (such as the inclusion of spatial distribution as found in Cellular Automata or Partial
Differential Equations), or as a basis for the design of Domain-Specific Modelling Languages (DSMLs) to
maximally constrain a modeller to a specific application domain.

The formalisms introduced in this book may also be combined, leading to “hybrid” languages, when a
particular combination of features is required that is not available in a single formalism. Note, however, that
some of the formalisms introduced in this book are already hybrid in the above sense. Bond Graphs, for
example, unify modelling of systems in various physical domains by focusing on power flow, and Modelica
combines features ofObject-Orientationwith those of computationally a-causal (equation-based)modelling. The
Architecture Analysis and Design Language (AADL), which focuses on embedded systems, with architecture at
its core, brings together different viewpoints, making it suitable for documentation, analysis and code synthesis.

The material is presented in a bottom-up fashion. Starts by presenting the formalisms to model physical
components. Then mechanisms encapsulate and re-use description of CPS components are presented as a
means to tame the complexity of large descriptions. We then present formalisms analyse the behaviour of CPS.
Finally, these formalisms are put together through the use of architectural descriptions and processes.

1.5.1 Modelling physical components

When modelling a physical system, the first decision to make is whether the properties of interest of the system
depend on the spatial dimension. The heating of a metal object due to an electrical current flowing through it,
for example, is determined by the interaction between the electrical and thermal physical domains. It depends on
the geometry of that object as well as on the object’s material properties such as density, electrical conductivity,
relative permittivity, heat capacity, and thermal conductivity, and their distribution across the entire object. The
object’s dynamics can then be described using the mathematical expression of the relationships between the
physical quantities of interest. Due to the dependence on spatial coordinates, this requires the use of “distributed
parameter” models. These are typically expressed using the Partial Differential Equation (PDE) formalism.



1 Multi-Paradigm Modelling for Cyber-Physical Systems: Foundations 11

When the parameters of an object are sufficiently homogeneous over its geometry, the properties of interest
may not depend on the spatial dimension. In that case, the parameters may be aggregated over an entire object,
and it may be reduced to its dimensionless essence. A rigid body in the mechanical domain with a constant
density over its geometry may, for example, be reduced to a simple “point mass”. Its dynamics can be described
using Newton’s Laws or a Hamiltonian or Lagrangian formulation. Such “lumped parameter” models are
typically expressed using the Ordinary Differential Equation (ODE) or Differential Algebraic Equation (DAE)
formalisms.

Often, the physical components of a Cyber-Physical System span distinct physical domains (electrical,
mechanical, thermodynamic, hydraulic, etc.). The Bond Graphs formalism described in Chapter 2 unifies the
different domains at a “lumped parameter” level of detail. It recognises the analogy between physical processes
in different physical domains, such as energy storage and dissipation. A system is modelled as a Bond Graph
connecting nodes representing physical elements. These nodes encode how physical quantities such as voltage
and current are related in, for example, a resistor. The Bond Graph’s edges—called Power Bonds—denote
the power flow between the nodes. Special nodes—junctions— encode conservation laws, generalisations of
Kirchoff’s current and voltage laws in the electrical domain. The chapter introduces a systematic procedure
for modelling multi-domain physical systems. It starts from Idealised Physical Models and converts these into
Bond Graph models. These Bond Graph models are computationally a-causal and can be translated to a set of
Differential-Algebraic Equations (DAEs). Computational a-causal models consist of equations relating signals
(variables, functions of continuous-time), without specifying which variables are known (inputs) and which
are unknown (outputs), nor how these equations need to be solved (i.e., how the unknowns are computed from
the knowns). Such DAEs can be represented in (mathematical) Equation-Based modelling languages such as
Modelica. Modelica is described in Chapter 3 The Bond Graph chapter then shows how computational causality
can be assigned, effectively converting to a Continuous-Time Causal Block Diagram (CT-CBD). Causal Block
Diagrams are described in Chapter 4. Causality assignment on a Bond Graph model may give insight based on
physics, into flaws in the model. This aid in “model debugging” is thanks to the (physical) domain-specificity
of the Bond Graph formalism.

1.5.2 Joining the ‘Physical’ with the ‘Cyber’

Cyber-Physical Systems are composed of networked physical and computational components. To allow for a
modular and hierarchical design of such systems, maximising model re-use and enabling the construction of
model libraries, the Modelica language, described in Chapter 3 combines features of Object-Orientation such
as encapsulation and inheritance with those of computationally a-causal (equation-based) modelling. Compu-
tationally a-causal models allow the modeller to express the fundamental laws of physics using mathematical
equations. The semantics of Modelica is given by expanding object-oriented constructs such as inheritance, by
instantiating classes, and by flattening the hierarchy. This results in a set of (hybrid) Differential-Algebraic Equa-
tions. For each particular simulation experiment context, computational causality can be assigned by aModelica
compiler. This effectively generates a model in the Continuous-Time Causal Block Diagram formalism. Most
Modelica compilers will further (time-)discretise these models, either symbolically through "inline integration"
or by calling upon external numerical solvers. This ultimately leads to an executable simulation code. Note that
it is possible to create a Modelica library with Bond Graph components. In this case, the Bond Graph causality
assignment procedure will not be used. Rather, Modelica’s causality assignment will be applied to the entire
model, including non-Bond Graph parts. Through the code-based specification of functions, Modelica also
allows traditional object-oriented code to be represented. It is this combination of code, equations, and hybrid
constructs such as "when" (which allows the introduction of discrete events, so-called "state events", based on
conditions over continuous behaviour such a crossing a threshold value) that makes Modelica suited to build
models of Cyber-Physical Systems, spanning their physical, network and computational parts.

As mentioned earlier, declarative, computationally a-causal models need to ultimately be transformed into
a causal form, which allows for their computational solution. In Chapter 4, a family of Causal Block Diagram
(CBD) formalisms is introduced. Causal Block Diagrams consist of a network of computational blocks. Each
block specifies the computationally causal relationship between its input and output signals. The block diagram
network specifies how outputs of one block are connected to inputs of other blocks. Such a connection denotes
that the values at connected output and input ports must at all times be equal. The three CBD variants are built



12 Paulo Carreira, Vasco Amaral, and Hans Vangheluwe

up gradually. The Algebraic Causal Block Diagram (ALG-CBD) formalism has no notion of time: values are
propagated through a CBD according to a computation “schedule” (i.e., the order in which block computations
are invoked) derived from the dependency structure encoded in the block diagram network. Special care needs
to be taken to detect and properly solve dependency cycles known as “algebraic loops”. A discrete (Natural
Number) notion of time is then added, as well as a delay/memory block, resulting in Discrete-Time Causal
Block Diagrams (DT-CBDs). These are equivalent to Synchronous Data Flow (SDF) models. Finally, the Real
Numbers are introduced as a time base to give Continuous-TimeCausal BlockDiagrams (CT-CBDs). These have
the same expressiveness as mathematical equations and need to be discretised to allow for their computational
solution. Numerical discretisation techniques are used to turn a CT-CBD into a DT CBD.

Very often, it is reasonable to abstract away many of the details of the behaviour of a system and to only focus
on pertinent “events”. Such Discrete-Event abstractions see a system as changing its internal state, either reacting
to input events of autonomously changing its state after a certain time (due to an internal “time event”) and
possibly producing output events at certain times. As only the events are what changes the state of the system,
and in between event instances, nothing pertinent is assumed to happen, the evolution of the state over time is
piecewise constant. Unlike inDiscrete-Time (DT) formalisms, inDiscrete-Event (DE) formalisms, time advances
in leaps and bounds, from pertinent event to pertinent event. One advantage of DE abstraction is performance:
a simulator will directly step to the next time at which an event occurs whereas a DT simulator would have to
step through time in fixed increments even if nothing noteworthy happens (i.e., the state remains unchanged).
The DE abstraction is commonly used to study the competition of different processes for shared resources. If
resources are constrained, this inevitably leads to queueing. The abstraction is hence useful for simulation-based
performance analysis. Utilization of resources, time spent to complete an activity, the distribution of queue
length and queueing time are all examples of the typical performance measures that are obtained from discrete-
event simulations. Note that DE formalisms are often deterministic. Through the inclusion of distributions for
parameter values such as Inter Arrival Time rather than unique values, and using Monte-Carlo simulation,
distributions of performance measures are obtained. Thus, repeatable (as pseudo-random number generators –
which are deterministic– are used to sample from distributions) stochastic simulations are obtained. Many DE
formalisms were developed over the years. The Discrete EVent Specification (DEVS) formalism described in
Chapter 5 is a DE formalism that is primitive and expressive enough to act as a DE "assembly language": models
in all DE simulation formalisms can bemapped onto aDEVS equivalent. As such, it can be used to architecturally
connect models in different formalisms by first mapping all components onto DEVS. The resulting architecture
only contains DEVS components. As DEVS is modular and supports hierarchical architectural composition, the
resulting model has a precise meaning. DEVS’s support for hierarchy makes it suitable to build model libraries
and to subsequently build up highly complex models.

A different way of modularly combining state automata is found in the Statecharts formalism described in
Chapter 6. The Statecharts formalism consists of hierarchies of state automata, of parallel composition of these
automata, of a notion of time, and an event broadcast mechanism. The popularity of Statecharts is partly due
to its intuitive visual notation. The main purpose of Statecharts is to not only simulate models, but also to
synthesise from them, autonomous, timed and reactive software and/or hardware.

When a parallel composition is made of state automata, many interleavings are possible. One option is to
choose a unique interleaving, leading to a unique, deterministic behaviour trace. This is what is done in the
DEVS and Statecharts formalisms. To model true concurrency, this artificial sequentialisation is not always
appropriate. Rather, a non-deterministic choice should be allowed. This leads, not to a single behaviour trace,
but to a collection of possible behaviour traces. This collection of traces may be summarised in a compact
representation in the form of a state reachability graph. The satisfaction of interesting properties may then
be checked over the collection of traces. An example is the reachability of a certain undesirable state. Such
properties are also expressed in an appropriate property language. Non-deterministic languages, as described
above, usually have a weak notion of time: not the Natural or Real numbers are used as a time basis, but only
a (partial) ordering of event instants. The focus is on concurrency and synchronisation. Rather than simulation
or synthesis, such formalisms are mostly used for the analysis of properties, across all possible behaviours
of a system. This makes them suited for, for instance, safety analysis. One such formalism is Petri Nets, as
described in Chapter 7. Petri Nets encode state as a "marking", an n-dimensional vector of Natural numbers.
Each element of the vector corresponds to the number of "tokens" in a Petri Net Place. The evolution of the
state is encoded in a Petri Net graph which, apart from Places, contains transitions and Arcs. Thanks to the
use of Natural numbers, the number of possible states can be infinite (but countable). Petri Nets are a simple
formalism that, like DEVS, is often used as a common semantic domain onto which to map diverse other,



1 Multi-Paradigm Modelling for Cyber-Physical Systems: Foundations 13

often domain-specific, formalisms. The chapter also demonstrates how Petri Nets can be combined with other
formalisms. In particular, the co-simulation of Petri Nets with Functional Mockup Units (encoding discretised
continuous models) is introduced. This effectively leads to non-deterministic hybrid models.

1.5.3 Tooling support for MPM4CPS

Complex engineered systems consist of heterogenous components arranged in an architecture. Furthermore,
multiple viewpoints on the same system may be of interest and ultimately (part of) a system model needs to
be "deployed" on an often embedded software/hardware architecture. The Architecture Analysis and Design
Language (AADL) described in Chapter 8.1 is foremost an Architecture Description Language. It allows one
to provide a description of the overall system and the environment into which it will operate. From such a
description, other models in other formalisms such as those described in this book can be generated. These can
be further augmented to study various aspects of the system, which is essential for its optimisation, verification
and validation. After a brief introduction to ADLs and their role in MPM4CPS, the AADL is presented and
its use illustrated through the modelling, analysis and code generation for a simple Lego Mindstorm robot for
carrying objects in a warehouse. A simple top-down architecture-centric design process is followed, starting
from the capture of stakeholder goals and system requirements, followed by system design, design analysis and
verification and finally automated code synthesis.

It becomes apparent from the above that complex systems modelling involves not only different abstractions,
architectures and views, modelled using varying formalisms but also complex development workflows. Chapter 9
looks into the topic of process (workflow) modelling. Often complex, concurrent development processes,
modelled in the form of a Process Model (PM) are built up of primitive activities which take as input,
modelling artefacts and produce modified or new modelling artefacts as output. The activities may require
human or computer resources, possibly leading to delays as described in the chapter on DEVS. As the artefacts
manipulated by activities are models in various formalisms, it makes sense to “type” them with the appropriate
formalisms. To chart the many formalisms used, and to show how they are related, a Formalism Transformation
Graph (FTG) is introduced. The FTG+PM, combining FTG with PM, allows one to characterise the essence
of Multi-Paradigm Modelling solution patterns to CPS development problems. One advantage of the explicit
representation of the FTG+PM is that is can be used as a basis for the synthesis of MPM tools.

1.6 Summary

The field of CPS is affected by the complexity of different approaches, processes, and modelling languages.
Indeed, this field is well-known to have an inherently multi-displinary nature and, since there is no single
well accepted modelling approach, multi-paradigm modelling has been advanced as a solution. Yet, to date,
literature still lacks a solid reference that introduces distinct CPS modelling and analysis techniques towards a
multi-paradigm approach.

This first chapter motivates Multi-Paradigm Modelling for CPS and the need for its clear foundations.
Staring from an introduction to the concept of System, it introduces distinct classes of systems, discusses their
characteristics, and then derives a definition of CPS. As CPS are complex to build, we dedicate part of the
chapter to discussing and drilling down on their common sources of complexity. Overall, designing a system
means that one has to make use of several kinds of abstractions to describe different properties and system’s
concerns, using languages (with existing, modelling formalisms and paradigms) and processes to be able to
avoid unnecessary complexity. The chapter then defines what a model is, and what does it mean to use multiple
formalisms when engaging in multi-paradigm modelling. Finally, a structure of the book is described, further
explaining how the formalisms and techniques presented fit together.



Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International 
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative Commons 
license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s 
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. 

14 Paulo Carreira, Vasco Amaral, and Hans Vangheluwe

http://creativecommons.org/licenses/by/4.0/

	Multi-Paradigm Modelling for Cyber-Physical Systems: Foundations
	Introduction
	Understanding Cyber-Physical Systems
	Systems and their models
	Types of systems
	What are Cyber-Physical Systems?
	Sources of Engineering Complexity

	Modeling of a Cyber-Physical System
	What is a Model?
	Multiple Formalisms in CPS

	Multi-Paradigm Modelling of CPS
	What is a Paradigm?
	The dimensions of Multi-Paradigm Modelling

	A foundation for MPM4CPS
	Modelling physical components
	Joining the `Physical' with the `Cyber'
	Tooling support for MPM4CPS

	Summary




