®

Check for
updates

Transformer Models for Question
Answering at BioASQ 2019

Michele Resta®™), Daniele Arioli, Alessandro Fagnani, and Giuseppe Attardi

Dipartimento di Informatica, Universita di Pisa, Pisa, Italy
{m.resta5,d.arioli,a.fagnani}@studenti.unipi.it, attardi@di.unipi.it

Abstract. We describe our experiments in building a system to tackle
task B of the BioASQ 2019 challenge on semantic question answering.
We built separate systems to handle the five different types of questions
in the dataset. We explored using transformer-based models using both
ELMo, BERT and BioBERT. For the yesno questions, the results of our
submissions using BERT ranked first in batches 3 and 4, while second
best in batch 5.

Keywords: Question-answering - Transformer - ELMo

1 Introduction

Along the years the BioASQ challenge has been growing in popularity as well
in the difficulty of the tasks to perform. The three tasks of the BioASQ 2019
challenge [7] concern biomedical semantic indexing and question answering.

Task B on Biomedical Semantic Question Answering requires creating an
automated system capable of responding to a set of biomedical questions with
relevant concepts, articles, snippets, and RDF triples, from designated resources,
as well as exact and ‘ideal’ answers. Questions are divided into various types
according to the expected answer (yes/no, a single fact, a list of entities, or
a summary). Systems often exploit different strategies to address each type of
questions.

2 Dataset

The BioASQ training dataset for Task 7b consists of 2747 questions in the biology
and medical domain. All questions were constructed by biomedical experts from
around Europe. Each dataset item consists of several fields, the most relevant of
which are:

— type: type of the question;
— ezact_answer: exact answer (absent in summary questions);
— tdeal_answer: an answer summarizing the most relevant information;

© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1168, pp. 711-726, 2020.
https://doi.org/10.1007/978-3-030-43887-6_63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43887-6_63&domain=pdf
https://doi.org/10.1007/978-3-030-43887-6_63

712 M. Resta et al.

— documents: PubMed articles relevant to the question. The supplied answer
snippets are extracted from these documents.

Questions are classified into the following types:

— yes-no: systems must provide a “yes” or “no” answer;

— list: systems must provide a list of entity names (e.g. a list of gene names);

— factoid: similar to list answers, these require as an answer a single entity
name (e.g. a disease, drug, or gene), a number, or a similar short expression.
Differently from list questions though there are lesser entities in the answer:
often, only a single entity or up to 3—4 in a few cases;

— summary: these questions must be answered by producing a short text sum-
marizing the most relevant information.

Besides answers of the types described above, submissions may provide an
ideal answer: a single text paragraph that best summarizes the most relevant
information answering the question.

For each question, a list of snippets is provided. Snippets are short texts that
are expected to contain the information needed to answer the corresponding
question. However, some of them may not be useful for extracting the answer.

Table 1 shows in detail the composition of the training dataset.

Most of the questions have 1 to 15 associated snippets while only a few of them
have a larger number of snippets (>40).

Table 1. Dataset composition

Question type | Number | Dataset %
List 556 20,2
Summary 667 24,2
Yesno 745 27,1
Factoid 779 28,3
Total questions 2747 100

Yesno Questions. There is a great imbalance in the answers to these questions:
82% of the answers are “yes” and only 18% have a “no” answer.

List Questions. List answers contain between 1 and 38 entities, but over 80%
have less than 10 elements.

Factoid Questions. The answer to a factoid question might be phrased dif-
ferently, therefore for some questions, there may be multiple answers with
different wording. This is important since it may affect the scoring, which is
based on MRR (Mean Reciprocal Rank).

Summary Questions. For these types of questions no exact answer is
requested; but the system is expected to provide just a kind of ideal answer.

Transformer Models for Question Answering at BioASQ 2019 713

3 Models

Since the challenge expects different types of answers according to the type of
questions, we developed specialized systems for each of them. We explored several
solutions, some of which had to be discarded because they did not produce
good results. Simpler approaches were tried first, such as Sentiment Analysis or
information retrieval based on a bag-of-words model, and more complex ones
were attempted as soon as the simpler ones showed unsatisfactory results.

In the following sections, a detailed description of the models employed for the
competition is presented. The discussion is organized into sections corresponding
to the type of questions to handle.

3.1 Models for YesNo Questions

In order to answer this type of questions, we exploited different versions of word
embeddings. We explored embeddings created from the BioASQ dataset itself
using word2vec [13]. Given the small size of the dataset however this type of
embeddings showed poor results.

Embeddings of ELMo, BERT, and ELMo-Pubmed (described below) have
been extracted using Flair [3] since it offers the same pre-trained weights and
simple programming interfaces.

ELMo. Elmo [15] is a deep contextualized word representation that models both
complex characteristics of word use (e.g., syntax and semantics), and how these
uses vary across linguistic contexts (i.e., to model polysemy). These word vectors
are learned functions of the internal states of a deep bidirectional language model
(biLM), which is pre-trained on a large text corpus.

This model consists of two layers of 4096 LSTM units. Of these units, half
handle the forward language modeling, and the remaining the backward language
modeling.

We exploited a pre-trained model on the “One billion word Benchmark” [5].

Figure 1 shows the network architecture.

ELMo

Fig. 1. Elmo architecture

714 M. Resta et al.

ELMo-Pubmed. This model is identical to the one described in Sect.3.1,
except that it is trained on PubMed abstracts.

BERT. BERT [6] stands for Bidirectional Encoder Representations from Trans-
formers. The BERT Large model consists of a stack of 24 Transformer encoders.
Each encoder incorporates an attention mechanism to help the model focus on
the most relevant parts of the input.

In this model, the attention mechanism is a multi-headed one with 16 atten-
tion heads.

The model was trained on the entire Wikipedia and BookCorpus [18] for a
total of 1 million update steps.

BERT architecture is showed in Fig. 2.

Fig. 2. Bert architecture

BioBERT. The BioBERT model [11] has the same architecture as Sect. 3.1 but
it was trained on PubMed abstracts.

After evaluating the performance of this model on the validation set we
decided not to use it for the yes-no questions.

Data Pre-processing. Before feeding the models with data, the following pre-
processing steps were performed on all questions and snippets:

— removal of spurious newlines,
— tokenization.

Each of the pre-trained models handles tokenization differently. All models
are capable of handling case sensitive text, so there was no need to lowercase
inputs. The inputs were normalized by each model in its own way, and the
resulting embeddings are of fixed size.

Transformer Models for Question Answering at BioASQ 2019 715

To extract the embeddings from the BioBERT model we prepared the input
concatenating the question, a separator token, and its snippets. However, since
the max token length for BioBERT is 512, we built multiple inputs by pairing a
question with each sentence from the snippets. Scispacy [14] was used to perform
sentence splitting on the snippets.

Classifier Inputs. Given a dataset consisting of questions {@,,n < N}, their
corresponding answer snippets {S, 1,k < K} and outputs {y,,n < N}, a train-
ing set is created consisting of inputs {z; = (Qn,Snk),n < N,k < K} and
outputs {y;}, where i is the index n of the @, corresponding to z;. In other
words we create pairs of each question with all its related snippets and assume
that they would all have the same answer. This is realistic, since all snippets
are assumed to have been chosen in the previous stage of question answering as
candidates for containing the answer.

Questions and snippets are transformed into a vector representation by using
a language model as follows.

For all models except the one based on BioBERT, for each input pair x; = <
Q;, S; > we pass separately through the language model the sequence of tokens
from the question @Q); and those from the snippet S;.

By means of functions from the Flair library, we extract the embeddings from
all layers of the language model for each token of the input sequence. The vectors
for the question tokens are added together and similarly those from the snippet,
obtaining fixed length vectors irrespective of the length of the sentences. A mean-
pooling is applied to the question vectors and snippet vectors so produced for
each layer, to obtain the final vectors representing the i-th question, Emb(Q;),
and the i-th snippet, Emb(S;). These two vectors are concatenated to obtain
vector

[Emb(Q:); Emb(S;)]

to be used as input to the classifier described below. We tested also using differ-
ent types of pooling (min and max), but they led to poorer results with respect
to mean-pooling. Embeddings vectors computed through BioBERT did not pro-
vide improvements with respect to the previous models, therefore we did not
employ them in our submissions for the yes-no questions. Even though BioBERT
is trained on the biomedical domain, the fact that has fewer parameters than
BERT asrcE is probably the cause of performance improvements lack.

Classifiers. Since the rules of the BioASQ challenge allow participants to send
up to 5 submissions, we trained 5 different classifiers with different embeddings
and different architectures.

Before training, the dataset yes-no ratio was re-balanced as shown in the
column Yes-No in Table 3 to avoid bias towards “yes” answers.

The classifier consists of fully connected feed-forward networks with the archi-
tecture described in Fig. 3.

The classifier was implemented using Keras [4] on a TensorFlow [2] backend.

716 M. Resta et al.

‘ Question ‘ ‘ Snippet ‘
—> Embedder —

|

‘ id - Emb(Q) - Emb(S) - Target(Q) ‘

" Input Layer J
‘ Hidden Layer J
\"’Output‘\ Classifier
./
I Feed Forward Network

Fig. 3. Yes-No model with feed-forward network. The activation functions are tanh for
the input and hidden layers and the sigmoid for the output layer. The vector dimensions
are shown in Table 2.

The hyperparameters for each model were tuned by performing grid searches,
in order to find the best combination of:

number of hidden layers — [1...5]

size of vectors in the first layer — [50...120]

size of vectors in the hidden layers — [50...150]

type of optimizer — [Sgd, RmsProp, Adam]

activation functions for the hidden layers — [tanh, ReLU]
activation function for the input layer — [tanh, ReLU]

We used 80% of the training set as development set and the remaining 20%
as the validation set. We also performed a 4-fold cross-validation on the devel-
opment set in order to select the best models for each task.

We then trained each classifier on the development dataset and tested it on
the validation set, to estimate the ability of the model to generalize to unseen
data.

The results of the grid searches are summarized in Table2, while Table 3
shows the scores on yes-no questions on the validation and test datasets.

Note. By inspecting the answers of the models and the training curves as well,
we noticed an increase in the validation score respect to training score. Since
in the 4-fold CV all the models had less data, more epochs were needed to fit.
During training we noticed a classifier tendency to overfit. To limit this problem,
we implemented an early stopping technique with patience equal to 4.

Transformer Models for Question Answering at BioASQ 2019 717

Table 2. Grid search results.

System QA-1/QA-2 | QA-3 QA-4 QA-5
Embedding Elmo-pubmed | BERT_LARGE
Pooling Mean

Num h. layers 1

Neurons h. layer | 120 120 120 120 80
Neurons 1-st layer | 90 90 90 90 50

Act. hidden tanh
Act. input tanh
Optimizer RMSProp
Loss Binary-crossentropy
’ T ‘ T h
‘ Classifier J ‘ Classifier J ses ‘ Classifier
[0.1] [0.1] [0.1]

[Round()] { Round()] Round()

No Majority Voting Yes

Fig. 4. Ensemble of classifiers for the Yes/No Model. The result is obtained by majority
voting

)

Ensemble Classifier. A ensemble of K classifiers is used to classify each pair of
question/snippet < @;, S; > for the same @; and the answer is obtained through
a majority vote among these classifiers. More precisely, the ensemble outputs:

— model QA-1: “yes” if (votes > floor(K/2))
— other models: “yes” if (votes > floor(K/2))

The last system, QA-5, was trained on an augmented dataset constructed
by manually annotating the yes-no datasets of the previous editions of the
BioASQ challenge. Since previous models appeared biased towards giving posi-
tive answers, we chose to add to the training set just the questions with negative
answers.

3.2 Models for List Questions

To answer this type of questions we explored two approaches: one based on
frequency and tf-idf and one based on the analysis of the dependency trees of
questions and snippets.

718 M. Resta et al.

Table 3. Scores before retraining.

System | Yes-No% | Epochs | 4-fold VL score | Held-out TS score
QA-1 | 50-50 40 0.9861 0.9612
QA-2 | 50-50 40 0.9861 0.9564
QA-3 | 50-50 50 0.9840 0.9668
QA-4 | 50-50 50 0.8801 0.9429
QA-5 | 60-40 50 0.8201 0.8455

The processing pipeline to produce the list of entities for the answer consists
in the following steps:

— data pre-processing: stop words such as “list”, punctuation and parentheses
were removed from the input texts;

— entity extraction: entities from both questions and snippets were extracted
using scispacy [14] and then converted to lowercase;

— ranking: the extracted entities were scored with the metrics discussed below;

— filtering: unrelated entities were dropped;

— rank-boosting: entities that were more likely to be an answer received an
increase in their score;

— list-trimming: entities with a score below a given threshold are discarded.

Entity Extraction. We explored two approaches for entity extraction. The first
one is the simplest: the scispaCy mention detector was used to extract entities
from questions and snippets. We used the en_core_sci_md model available from
the scispaCy website.!

This model was trained on a collection of biomedical data, recognizes a wide
variety of entity types, has a vocabulary of 101,678 tokens and includes 98,131
word vectors.

Entities that are already present in the question were dropped, assuming that
a question will typically look for answers not already known and hence terms
appearing in the question are unlikely to be part of an answer.

The second approach is based on the analysis of parse trees. First we deter-
mine the main entity in the question, that is the entity required as answer to the
question. For example, consider the following question: “Which miRNAs could
be used as potential biomarkers for epithelial ovarian cancer?”. The main entity
is miRNAs, since a list of entities of this type is the required answer.

The next step splits the snippets into sentences and then it parses them with
scispaCy. From the parse trees, we extract the entities that:

— are child nodes of an entity similar to the main entity;
— are child nodes of a verb that is the same of the main one;

! https://allenai.github.io/scispacy/.

https://allenai.github.io/scispacy/

Transformer Models for Question Answering at BioASQ 2019 719

— are child nodes of an entity similar to the father of the main entity in the
question’s parse tree;

— are child nodes of an entity similar to the verb of the main entity’s father in
the question’s parse tree.

The similarity between two entities is based on string comparisons. An app-
roach with distances between vector representation has been taken into account
but it was not possible to finish it before the deadline of the last batch.

All the resulting entities are merged with those obtained with the first app-
roach described at the beginning of this section. The whole list is sent to the
ranking phase.

Ranking. In this phase all elements of the entity list are ranked based on the
frequency of occurrence in the snippet list. So e.g. the entity genes appear three
times in question’s snippets, then Score(genes) = 3.

We investigated also a different type of scoring scheme based on tf-idf. In this
case the collection of documents was composed of all snippets in the training set,
and the terms to be scored are the elements of the list created in the previous
steps.

The entities list is then sorted according to the scores.

Filtering. Filtering of entities is based mainly on Part of Speech tags from
scispacy. If the considered entity is composed of a single word, and this word is
a verb or an adjective we delete this element from the list. The same is done
if the entity is composed of 2 words and POS are verbs and adposition. In this
way we discard entity like “associated with”.

Score Boosting. In this phase the score of each entity in the resulting list is
increased according to the context of the question.

First, there is an ontology checking, where the entities are boosted if they
appear in a local database of the biomedical domain (the choice of the database
depends on the main entity of the question). Available databases are: bacteria
[1], viruses [1], genes [9,10], drugs [8], proteins, human symptoms, human organs.

We check if the main entity concern one of the domains above. If it happens,
all the entities of the list are searched in the databases and, if an entity is found,
its score is increased. This process increases the probability of finding the entities
required for the answer with greater rank in respect to those that are unrelated.

In the presented code the score of an entity is increased by the mean of all
the ranks >= 1.2

After the ontology checking, tf-idf boosting is performed. Thanks to the
tfidf () function we can extract the value of the entities based on an analysis
of all the snippets in the dataset. With some analysis and test, we found that

2 This is only an empirical choice due to the short time of development, but it could
easily changed with more in-depth work.

720 M. Resta et al.

entities which have a value between 3 and 4 have more chances of being a good
answer to the question.

Based on these considerations, we boosted another time the scores of these
entities. In the presented code this function doubles the entity’s rank. This choice
is empirical and could be refined through a more accurate and in-depth analysis
of the problem.

Normalization. Before the trimming phase, scores of all the entities are nor-
malized in the [0,1] range with the formula:

score — min_score

score’ = .
maz._score — min_score

Where score is the actual score of the entity and max and min score are the
maximum and minimum score of entities in the list.

List Trimming. The last phase of the process is based on a threshold. All
entities that have a score below this threshold are removed. Anyway, if the list
exceeds the 100 elements then only the first 100 are returned as the answer.
The threshold has been determined experimentally by running the entire
pipeline with different thresholds and evaluating the final Mean F1 Score, since
it is the official metrics for these types of questions.
In the current implementation, the threshold is fixed at 0.15.

3.3 Model for Factoid Questions

The approach used for this kind of answer was to exploit the very well known
BERT [6] and how it is used for the challenge SQuAD [17]. As a matter of fact,
SQuAD is, to some extent, a factoid task.

We employed the pre-trained BioBERT [11] model and the technique of fine-
tuning, in order to better fit the results to our dataset.

Pre-processing and Augmentation. We needed to build the training data in
the form of a SQuAD task. To do so, it was necessary to create a unique context,
formed by the concatenation of the snippets. The exact answer had to be inside
of this context. Indeed, SQuAD models need also the index of the answer inside
the context, found by lower-casing both the answer and the context. At the end
of the process, a JSON file is created, where each question has this format, e.g.:

Transformer Models for Question Answering at BioASQ 2019 721

{77qas77: [{
”question”: ”Which is the target protein
of the drug nivolumab?”

7id”: 756af9f130a360a5e450000157

7answers”: [{” text”: ”plasma membrane”
7answer_start”: 827}],
”is_impossible”: 7 false”}],
“context”: 7...7

}

The field is_impossible is used to define a test/validation question (when is
“false”, means that there is no exact answer inside the context).

As already mentioned in the description of the dataset, some factoid ques-
tions have more than one answer, to avoid misinterpretation. Each of them has
been cloned a number of times equal to the provided exact answers, but with a
different id.

For the final training, the dataset was augmented with the second and the
fifth version of the BioASQ challenge data, available thanks to [11] and the
BioASQ team itself. Unfortunately, the two datasets were the only others avail-
able, so there was no possibility to integrate more training sets of past editions.

Post-processing and Evaluation. Up to 5 possible answers are allowed in a
submission and the evaluation metrics for the factoid task is the MRR (Mean
Reciprocal Rank). This means that the system should aim to produce exact
answers with a confident estimate since an answer at a lower ranking position is
highly penalized.

By analyzing the answers returned by the model on the validation set, we
decided to introduce two post-processing steps:

— Parentheses’ fix: correcting or removing a sentence that has unbalanced open
or closed parenthesis.

— Dashes’ fix: if there is an answer with a dashed word in the first position
(e.g.“S-adenosyl-L-methionine”), a variant without dashes is added in the
last ranking position (in order to minimize the misinterpretation of the answer
given by the system).

Due to the complexity of the model, the evaluation of the fine-tuning was
done only by varying the number of epochs (and only with a very small batch
size). A validation set of 127 answers was created from the given training set, in
order to validate the model.

722 M. Resta et al.

3.4 Model for Summary and Ideal Questions

Since there are no exact answers in the summary questions, they have been
treated with the ideal answers of the entire dataset. Similarly to the factoid
system, BERT, BioBert and SQuAD approach have been used also for the gen-
eration of the ideal answers.

Nevertheless, the answer does not have to appear (always) inside the context,
but it has to be a completely “original” summary of the paragraph, related to the
question. OpenAT’s GPT architecture [16] is promising, but the released model
has fewer parameters than BERT and its later more sophisticated version, GPT-
2, has not been released by its authors.

Our idea was to keep exploiting BERT model, in order to find the most
attentive part of the context.

Pre-processing and Augmentation. In order to select as answer the most
relevant part of the text and at the same time follow the structure of the SQuAD
approach, we exploit the same evaluation metric used in the BioASQ ideal
answer’s task, ROUGE [12]. In fact, the answer_start index is found by calcu-
lating the ROUGE score between the returned answer and all the sentences of
the snippets. The same idea was also used in the testing/validating phase. In
addition, the dataset of the second and the fifth version of the BioASQ challenge
were also added to the training, as we did for the factoid question model.

Post-processing and Evaluation. The post-processing phase aims mainly at
finding the proper sentence within the text of the full answer returned by the
model, and ROUGE metric has been used between all the sentences. Our model
achieved a ROUGE-2 score of 0.4137 on the validation set. We tried increasing
the number of epochs, but the score did not improve.

We tried also to build the answer starting from the factoid model but the
results were worse (ROUGE-2 score of 0.0345).

4 Results

The competition benchmarks were split into 5 batches. We participated in batch
3, 4 and 5 shown in Tables4, 5 and 6 respectively. Below results are reported
for each of the submissions and the ranks obtained against other participating
systems.

Transformer Models for Question Answering at BioASQ 2019 723

Table 4. Batch 3 results. Best result indicates the best scoring system across all
participant systems. The score is the average of each question type. Highest scores are
in bold.

Type ‘ Metric System ‘ Best result
QA-1 |QA-2 |QA-3| QA-4| QA-5 BioBERT-DMIS
Yes/No | Accuracy 0.8261 | 0.8696 | - - - 0.6087
F1 Yes 0.9000 | 0.9231 |- - — 0.7429
F1 No 0.3333 | 0.5714 | - - - 0.1818
Macro-F1 0.6167 | 0.7473 | - - - 0.4623
List Mean Prec. | — - — - - 0.4267
Recall - - - - - 0.3058
F-Measure |— - - - - 0.3298
Factoid | Strict acc. |- - - - - 0.6207
Lenient acc. | — - - - - 0.4724
MRR — - - - — 0.4267
Average 0.2055 |0.2491 |- - - 0.4215

Table 5. Batch 4 results. Best result indicates the best scoring system across all
participant systems. The score is the average of each question type. Highest scores are
in bold.

Type ‘Metric System Best Result
QA-1 |QA-2 |QA-3 |QA-4 |QA-5|BioBERT-DMIS
Yes/No | Accuracy 0.7391 |0.7391 |0.8261 0.8696 | - 0.7391
F1 Yes 0.8421 | 0.8421 | 0.8889 | 0.9143 | — 0.8125
F1 No 0.2500 |0.2500 | 0.6000 | 0.7273|— 0.5714
Macro-F1 0.5461 |0.5461 |0.7444 0.8208 — 0.6920
List Mean Prec. |0.1442 | 0.1442 |0.1442 |0.1442 |- 0.4841
Recall 0.6268 | 0.6268 | 0.6268 | 0.6268 | — 0.5051
F-Measure |0.2163 | 0.2163 |0.2163 |0.2163 |— 0.4604
Factoid | Strict acc. | 0.2059 |0.2059 |0.2059 |0.2059 |- 0.882
Lenient acc. | 0.3824 | 0.3824 |0.3824 |0.3824 |- 0.8235
MRR 0.2730 |0.2730 |0.2730 |0.2730 |— 0.6912
Average 0.3451 |0.3451 |0.4112 | 0.4367 |— 0.6145

4.1 1Ideal Answers

Table 7 summarizes the results obtained by our systems in the ideal answer type
of questions. The Manual Scores were not yet published at the time of this
writing.

724 M. Resta et al.

Table 6. Batch 5 results. Best result indicates the best scoring system across all
participant systems. The score is the average of each question type. Highest scores are
in bold.

Type ‘Metric System Best result
QA-1 |QA-2 |QA-3 |QA-4 |QA-5 |BioBERT-DMIS-3
Yes/No|Accuracy |0.5429 |0.5429 |0.6857 0.7143 |0.8000 |0.8286
F1 Yes 0.6800 |0.6800 |0.7556 |0.7727 |0.8293 0.8500

F1 No 0.2000 |0.2000 |0.5600 [0.6154 |0.7586 |0.8000
Macro-F1 |0.4400 |0.4400 0.6578 0.6941 |0.7939 |0.8250
List Mean Prec. [0.1713 |0.1713 |0.1713 |0.1713 |0.1713 |0.5653
Recall 0.5873/0.5873/0.5873/0.5873|0.5873|0.4131
F-Measure |0.2537 |0.2537 |0.2537 0.2537 |0.2537 |0.4619
Factoid | Strict acc. [0.0857 |0.0857 |0.0857 |0.0857 |0.0857 |0.2857
Lenient acc.|0.1714 |0.1714 |0.1714 |0.1714 |0.1714 |0.4286
MRR 0.1152 |0.1152 |0.1152 |0.1152 |0.1152 |0.3452
Average 0.2696 |0.2696 |0.3422 |0.3543 |0.3876 |0.5440

Table 7. Rouge scores on Ideal Answers. Best result indicates the best scoring system.

Batches | Automatic Scores Manual Scores Best Result (MQ-4)
Rouge-2 | Rouge-SU4 | Readability | Recall | Precision | Repetition | Rouge-2 | Rouge-SU4

Batch 4 | 0.3511 0.3638 - - - - 0.5177 | 0.5246

Batch 5| 0.4265 0.4275 - - - - 0.5035 | 0.5070

5 Conclusions

Our participation in task B of the BioASQ 2019 competition focused mainly on
answering the yesno questions.

We started developing our system just 5 days before the scheduled release
of the first test set. Despite the time constraints, our yes-no answering systems
achieved top scores ones in Batch 3 and Batch 4 and ranked second in Batch 5.
We exploited an ensemble of classifiers, whose input was obtained by processing
questions and snippets though transformer-based language models. Our app-
roach was incremental, we tried to exploit simpler word embeddings first, and
as soon as they showed limitations due to task complexity, we moved to more
powerful embeddings. Contextual embeddings obtained from deep models like
ELMo and transformer-based language model (BERT) provided better results
thanks to the built in attention mechanisms and to their ability to capture long
term dependencies. These deep models are the core of our submitted systems,
BERT specifically is employed for three out of four question types. Questions
and snippets were processed separately. Concatenating them before processing
might allow exploiting better the attention mechanism.

Transformer Models for Question Answering at BioASQ 2019 725

Submissions for factoid and list achieved lower scores. The latter type of
question were more challenging given the presence of duplicate entities, lexical
variation among entities, and the number of entities to be returned as answer.
We noticed by inspecting a number of question that sci-spacy was able to extract
almost all the required answer items, among noisy entities. Based on this empiri-
cal observation, we decided to try the described approach instead of a more com-
putationally demanding fine-tuning of BERT. We had several ideas under devel-
opment for improving these answers that we could not complete in time for the
submission deadline: using tf-idf as main ranking metrics, removing duplicated
entities using a clustering algorithm on their vector representation, improved
entity extraction from parse trees.

The overall ranking of our submissions on all question types was fourth in
Batch 4 and third in Batch 5.

The approach to semantic question answering using classifiers on top of
transformer-based language models has proved quite effective and there are still
margins for improvements.

Acknowledgments. The experiments were run on a server equipped with 4 Nvidia
P100 GPUs, partly funded by the University of Pisa under grant “Grandi Attrezzature
2016”.

References

1. GBIF—The Global Biodiversity Information Facility (2019). https://www.gbif.
org/

2. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). Software available from http://tensorflow.org/

3. Akbik, A., Blythe, D., Vollgraf, R.: Contextual string embeddings for sequence
labeling. In: 27th International Conference on Computational Linguistics, COLING
2018, pp. 1638-1649 (2018)

4. Chollet, F., et al.: Keras (2015). https://github.com/fchollet /keras

5. Chelba, C., et al.: One billion word benchmark for measuring progress in statistical
language modeling (2014)

6. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidi-
rectional transformers for language understanding. CoRR abs/1810.04805 (2018).
http://arxiv.org/abs/1810.04805

7. Balikas, G., Krithara, A., Partalas, 1., Paliouras, G.: BioASQ: a challenge on large-
scale biomedical semantic indexing and question answering (2015)

8. Wishart Research Group. https://www.drugbank.ca/

9. HGNC: HUGO Gene Nomenclature Committee at the European Bioinformatics
Institute. http://www.genenames.org/

10. MacArthur Lab: Lists of gene lists. https://github.com/macarthur-lab/gene _lists

11. Lee, J., et al.: BioBERT: a pre-trained biomedical language representation model
for biomedical text mining. arXiv preprint arXiv:1901.08746 (2019)

12. Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. In: Text
Summarization Branches Out (2004)

https://www.gbif.org/
https://www.gbif.org/
http://tensorflow.org/
https://github.com/fchollet/keras
http://arxiv.org/abs/1810.04805
https://www.drugbank.ca/
http://www.genenames.org/
https://github.com/macarthur-lab/gene_lists
http://arxiv.org/abs/1901.08746

726

13.

14.

15.

16.

17.

18.

M. Resta et al.

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. CoRR abs/1310.4546
(2013)

Neumann, M., King, D., Beltagy, I., Ammar, W.: ScispaCy: fast and robust models
for biomedical natural language processing. CoRR abs/1902.07669 (2019). http://
arxiv.org/abs/1902.07669

Peters, M.E., et al.: Deep contextualized word representations. In: Proceedings of
NAACL (2018)

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language
models are unsupervised multitask learners. OpenAl Blog 1, 8 (2019)

Rajpurkar, P., Jia, R., Liang, P.: Know what you don’t know: unanswerable ques-
tions for squad. CoRR abs/1806.03822 (2018). http://arxiv.org/abs/1806.03822
Zhu, Y., et al.: Aligning books and movies: towards story-like visual explanations
by watching movies and reading books. arXiv preprint arXiv:1506.06724 (2015)

http://arxiv.org/abs/1902.07669
http://arxiv.org/abs/1902.07669
http://arxiv.org/abs/1806.03822
http://arxiv.org/abs/1506.06724

	Transformer Models for Question Answering at BioASQ 2019
	1 Introduction
	2 Dataset
	3 Models
	3.1 Models for YesNo Questions
	3.2 Models for List Questions
	3.3 Model for Factoid Questions
	3.4 Model for Summary and Ideal Questions

	4 Results
	4.1 Ideal Answers

	5 Conclusions
	References

