
Imbalanced Data Stream Classification
Using Hybrid Data Preprocessing

Barbara Bobowska(B), Jakub Klikowski(B), and Micha�l Woźniak(B)
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Abstract. Imbalanced data streams have gained significant popular-
ity among the researchers in recent years. This area of research is not
only still greatly underdeveloped, but there are also numerous inher-
ent difficulties that need to be addressed when creating algorithms that
could be utilized in such dynamic environment and achieve satisfactory
results when it comes to their predictive abilities. In this paper, a novel
algorithm that combines both over- and under-sampling techniques in
order to create a more robust classifier dedicated to imbalanced data
streams is proposed. The efficiency and high predictive quality of the
proposed method have been confirmed on the basis of extensive experi-
mental research carried out on the real and the computer-generated data
streams.
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1 Introduction

In the last couple of years, a sharp rise in products and systems using machine
learning to enhance their performance is observed. Many of the applications
such as predicting user behavior on social platforms like Twitter, or client activ-
ity on online stores fall into the category of imbalanced data stream classification
[24]. When designing methods for data stream classification one has to take into
account the characteristics of a data stream such as the sequential manner that
the data arrives, over which one has no control when it comes to the order of
the arriving samples, as well as the fact that the size of the stream could be pos-
sibly infinite. Due to that requirement, it is impossible to process the upcoming
data in multiple passes and such the samples can be processed once [26]. Fur-
thermore, one has to consider the rapid rate at which the data arrives, at the
same time ensuring that the processing of the data stream is done in a timely
fashion such that the delay in the performance of the algorithm is minimal.
Data streams can exhibit a change in data and target concepts over time (so-
called Non-stationary data streams) [16,26]. Such a phenomenon is called concept
drift [12] and it is quite common i.e. the change of popular topics on Twitter.
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Due to the concept drift the performance of the classifier can degrade over time
and as such the classifier has to be trained incrementally to accommodate the
changes of concepts of non-stationary data streams. Moreover, the proportion
between classes is often skewed with one class being over-represented. In cases
where the imbalance ratio is present traditional accuracy driven methods are
not applicable especially when misclassification of the minority class examples is
much more costly, as is often the case i.e. fraud detection [24]. It is worth men-
tioning that not only the imbalance ratio can influence the performance of the
classifier. Some examples can be easy to classify even when the IR is high if the
classes are separated from each other the decision boundary and be determined
with ease. However, it has been observed that instances of the minority class
have a tendency to create sparsely spread throughout the object space clusters,
often surrounded by majority class examples [4]. The presence of noise and out-
liers is another difficulty factor that needs to be addressed. In [3,15] authors
created preprocessing methods with those issues in mind.

Data streams may be processed either in blocks or one instance at a time. One
of the most important issues in learning from the data stream is when to update
the classifier [22]. Most researchers distinguish between two approaches: active
and passive. In the former, the update is performed only if drift is detected while
the later updates the classifier continuously regardless if the drift was detected
or not [9]. In order to satisfy the time and memory requirements, a forgetting or
data management mechanism must be used. One of the most popular approaches
to forgetting is using sliding windows, which can be either sequence based, where
the size of the window is defined by a number of instances and time stamp based
where the window is defined by a certain duration time. In the simplest example
sliding windows are of fixed size, and include only the most recent examples. The
oldest samples in a window are discarded in favor of new ones. Some methods
implement sliding windows of varying size depending on the response from drift
detectors [2].

The main contributions of this work are as follows:

– Proposition of the two novel imbalanced data stream classifiers (DSC-R and
DSC-S) which employ under- and oversampling techniques for balancing data.

– Experimental evaluation of the proposed algorithms and their comparison
with state-of-art methods.

The article is organized as follows. Sections 1 and 2 present a brief introduc-
tion to the problem of imbalance data stream classification and a quick overview
of the state-of-the-art algorithms dedicated to it. Section 3 offers an in-depth
explanation of the proposed solution. Section 4 showcases the results of the com-
puter experiments, comparing the proposed algorithm to different techniques for
imbalanced data classification, proving the usefulness of the developed algorithm.
Section 5 presents the conclusions and describes possible future improvements to
the proposed method.
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2 Related Works

Studies over the years presented algorithms dedicated to data stream analysis.
Very fast decision tree (VFDT) proposed by Domingos and Hulten [13] was among
the first methods for stream analysis, that to this day has been a basis for many
modifications. VFDT utilizes the Hoeffding bound in order to calculate the proper
number of examples needed to select the split-node. The algorithm incrementally
creates a tree form fromadata streamensuring that once the exampleswere used to
update the tree they are negligible and can be removed. The aforementioned modi-
fications include ideas such as pruningmechanisms or utilizing slidingwindows and
drift detectors in order to better the algorithms in case of non-stationary streams
[10]. Worth noting are several methods using ensembles of classifiers. Weighted
Majority Algorithm [18] adjusts the weights of the classifiers in the ensemble so
that the weight of an expert that misclassified an instance is decreased accord-
ingly to the user-specified value. A modification of the method with an added pro-
cedure which adds new classifiers to the ensemble when the overall performance
is unsatisfactory called Dynamic Weighted Majority (DWM) was introduced in
[14]. In Accuracy Weighted Ensemble (AWE) a new classifier is added only if the
ensemble’s size is not exceeded [25] while in Learn++.NSE [8] such a constraint
is not applied. In Learn++.CDS Ditzler and Polikar combine their previous work
Learn++.NSE with SMOTE sampling in order to better address the data imbal-
ance and later replacing SMOTE with an original bagging-based method of data
balancing [7]. In SEA [23] a new classifier candidate is evaluated to determine
whether or not it is worth including into the ensemble at the cost of replacing some
other classifier already in the ensemble. Other approaches such as OUSEnsem-
ble (Over Under Sampling Ensemble) [11] make use of sampling techniques. The
stream is divided into blocks that consist of examples from both majority and
minority class. The idea is to propagate all the instances of the minority class from
the previous block and under-sample the majority examples in the current block
such that the desired imbalance ratio is acquired. Afterwards, from the resultant
subset, datasets later used to build component classifiers for the ensemble, are cre-
ated by propagating all instances of the minority class to each of the datasets while
each example from the majority class is propagated to only one dataset. Proposed
by Chen and He the Selectively Recursive Approach (SERA) [5] uses a Maha-
lanobis distance to determine which of the examples from the minority class in
the previous block are most similar to the minority examples in the current block.
Based on that a limited number of minority class examples is selected and added
to the majority class examples in the current block. Chen and He later designed a
Recursive Ensemble Approach (REA) [6]. In REA minority class examples from
the previous block that are nearest neighbors of minority class examples from the
current block are added in order to balance the given training block. Both REA
and SERAproved tomake more accurate predictions than the method proposed by
[19]. A Chunk-based ensemble approach, proposed by Wang et al. called KMean-
Clustering [25] utilizes k-mean clustering in order to under-sample the majority
class, by using the centroids created in the clustering process to resample the
majority instances.
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3 The Deterministic Sampling Classifier

The proposed method, called Deterministic Sampling Classifier (DSC), for data
stream classification, processes the upcoming data in chunks. Each chunk is
used in two operations. Firstly, the instances of the majority class present in
the currently processed block are under-sampled in order to produce a balanced
class representation in a data chunk (Fig. 1).

Fig. 1. Proposed method flow diagram

The resulting data (referred to in the Fig. 1 as NEW STORED DATA) is
then stored in a memory buffer (DATA STORAGE). Secondly, that same block
of data is combined with a part of the data from the buffer, called OLD STORED
DATA, using GET NEW CHUNK, which copies the data from the currently pro-
cessed block and the GET DATA method, which takes OLD STORED DATA
from the DATA STORAGE buffer. OLD STORED DATA, consists of all the pre-
viously accumulated under-sampled chunks. When a new chunk of data arrives
the data from NEW STORED DATA are moved to the OLD STORED DATA
part of the buffer. The DATA STORAGE is of fixed size. When the buffer is
full, the oldest examples are removed from it. Afterward, the imbalance ratio of
the data block created as a result of the GET NEW CHUNK and GET DATA
is calculated, and if the value is lower than 0.45, an oversampling of the minor-
ity class is performed, and then a classification model is trained. Otherwise,
the algorithm accepts the chunk as properly balanced and uses it to train the
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model right away. The implementation allows one to choose sampling algorithms
of their liking. In this paper, the authors created two versions of the method
DSC-S (Deterministic Sampling Classifier-SMOTE) and DSC-R (Determinis-
tic Sampling Classifier-Random). For the DSC-R method the chosen sampling
methods were: random over- and under-sampling and for the DSC-S: SMOTE
and NearMiss (implementation from the imbalanced-learn library [17]) for over-
and under-sampling accordingly.

4 Experimental Evaluation

The quality of the proposed algorithms was evaluated on the basis of computer
experiments, using 26 real and 60 synthetic data streams. The evaluation proce-
dure used in order to assess the predictive performance of a data stream classifier
was conducted by interleaving testing with training (test-then-train) [16]. Each
block is first used to test the classifier and afterward it is used for training.
As a measure of comparison, the following methods were used: OUSEnsem-
ble, KMeanClustering, REA, Learn++.CDS, Learn++.NIE and MLPClassifier
(Multi-layer Perceptron classifier), using a k-NN as a base classifier. The algo-
rithms were implemented in Python using Scikit-learn [20] and imbalanced-learn
[17] libraries1. The selected real streams were downloaded from the KEEL [1] and
PROMISE Software Engineering Repository [21]. The chosen datasets consisted
of multidimensional binary classification problems with the imbalance ratio rang-
ing from 1 to 39. The datasets were described in Table 1. The results were ana-
lyzed using the KEEL software evaluation tool [1]. Non-parametrical statistical
tests were performed namely the Friedman Test as well as a Nemenyi’s Post-Hoc
Procedure. The metrics chosen were F-score, Gmean and AUC score. Tables 2,
3 and 4 present the obtained results. The table presents the obtained results
as the mean value for each of the metrics, as well as, the information on those
methods that performed poorly in comparison with the method named in the
column, placed directly below the score. For instance, given the abalone-17-vs-
7-8-9-10 dataset, the DSC-R algorithm performed statistically better than the
3rd, 5th, the 7th and 8th algorithm in the table (read from left to right). The
obtained results prove the usefulness of the proposed algorithms. For the F-score
the proposed DSC-R and DSC-S algorithms along with the REA algorithm have
the best results. What is interesting the MLPC algorithm performed consistently
the worst. For the Gmean the results are similar. The methods introduced in the
paper perform favorably in comparison with other algorithms, the Learn++.CDS
and Learn++.NIE techniques, as well as REA, have comparable results to the
DSC-R and DSC-S methods. Lastly, the results in Table 4 representing the results
for AUC score indicate the proposed algorithm obtained satisfactory results,

1 Repository link: https://github.com/w4k2/iot-ecml2019.

https://github.com/w4k2/iot-ecml2019
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with only the LCDS algorithm performing marginally better. It is worth men-
tioning, that the created methods are robust enough, so that imbalance ratio
(whether low or high) does not negatively impact their performance.

Table 1. Overview of datasets selected for experimental evaluation (source: KEEL and
PROMISE Software Engineering Repository).

Dataset imb. ratio samples features

abalone-17 vs 7-8-9-10 39 2338 8

australian 1 690 14

glass-0-1-2-3-vs-4-5-6 3 214 9

glass0 2 214 9

glass1 2 214 9

heart 1 270 13

jm1 4 10885 22

kc1 5 2109 22

kc2 4 522 22

kr-vs-k-three vs eleven 35 2935 6

kr-vs-k-zero-one vs draw 26 2901 6

page-blocks0 9 5472 10

pima 2 768 8

segment0 6 2308 19

shuttle-c0-vs-c4 14 1829 9

vehicle0 3 846 18

vowel0 10 988 13

wisconsin 2 683 9

yeast-0-2-5-6-vs-3-7-8-9 9 1004 8

yeast-0-2-5-7-9-vs-3-6-8 9 1004 8

yeast-0-3-5-9-vs-7-8 9 506 8

yeast-0-5-6-7-9-vs-4 9 528 8

yeast-2-vs-4 9 514 8

yeast1 2 1484 8

yeast3 8 1484 8
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Table 2. Overview of the results for F-score.

Dataset 1 2 3 4 5 6 7 8

DSC-R DSC-S KMC LCDS LNIE REA OUSE MLPC

abalone-17-vs-7-8-9-10 0.237 0.208 0.060 0.250 0.046 0.176 0.072 0.000

3,5,7,8 3,5,7,8 8 3,5,7,8 – – 8 –

australian 0.571 0.601 0.444 0.514 0.604 0.518 0.602 0.000

3,8 3,6,8 8 8 3,4,6,8 8 3,4,6,8 –

electricity-normalized 0.631 0.623 0.580 0.588 0.598 0.575 0.593 0.324

3,4,5,6,7,8 3,4,6,7,8 8 8 8 8 8 –

glass-0-1-2-3-vs-4-5-6 0.765 0.801 0.781 0.814 0.768 0.782 0.452 0.000

7,8 7,8 7,8 7,8 7,8 7,8 8 –

glass0 0.662 0.673 0.592 0.640 0.516 0.597 0.473 0.000

5,7,8 5,7,8 7,8 7,8 8 8 8 –

glass1 0.687 0.649 0.576 0.517 0.558 0.412 0.573 0.000

4,5,6,8 6,8 6,8 8 6,8 8 6,8 –

heart 0.583 0.569 0.489 0.569 0.641 0.538 0.580 0.144

8 8 8 8 3,8 8 8 –

jm1 0.395 0.390 0.182 0.399 0.372 0.331 0.317 0.170

3,7,8 3,7,8 – 3,6,7,8 3,8 3,8 3,8 –

kc1 0.387 0.394 0.186 0.377 0.394 0.331 0.311 0.127

3,7,8 3,6,7,8 – 3,7,8 3,7,8 3,8 3,8 –

kc2 0.532 0.560 0.198 0.511 0.509 0.467 0.380 0.389

3 3,7,8 – 3 3 3 3 3

kr-vs-k-three-vs-eleven 0.701 0.847 0.256 0.730 0.408 0.836 0.335 0.000

3,5,7,8 1,3,4,5,7,8 8 3,5,7,8 3,8 1,3,4,5,7,8 8 –

kr-vs-k-zero-one-vs-draw 0.673 0.804 0.395 0.773 0.591 0.785 0.367 0.000

3,7,8 1,3,5,7,8 8 1,3,5,7,8 3,7,8 1,3,5,7,8 8 –

page-blocks0 0.541 0.576 0.252 0.359 0.335 0.533 0.352 0.323

3 3,4,5,7,8 – – – 3,7 – –

pima 0.601 0.578 0.508 0.539 0.536 0.581 0.518 0.370

3,5,7,8 8 8 8 8 8 8 –

segment0 0.671 0.792 0.405 0.587 0.339 0.580 0.294 0.123

3,4,5,6,7,8 1,3,4,5,6,7,8 7,8 3,5,7,8 8 3,5,7,8 8 –

shuttle-c0-vs-c4 0.995 0.995 0.923 0.960 0.931 0.995 0.955 0.202

3,5,7,8 3,5,7,8 8 8 8 3,5,7,8 8 –

vehicle0 0.812 0.824 0.653 0.744 0.563 0.758 0.563 0.257

3,5,7,8 3,4,5,7,8 8 5,7,8 8 5,7,8 8 –

vowel0 0.682 0.753 0.274 0.553 0.272 0.553 0.251 0.059

3,5,7,8 3,4,5,6,7,8 8 3,5,7,8 8 3,5,7,8 8 –

wisconsin 0.966 0.951 0.708 0.942 0.941 0.949 0.862 0.019

3,8 3,8 8 3,8 3,8 3,8 3,8 –

yeast-0-2-5-6-vs-3-7-8-9 0.446 0.393 0.358 0.362 0.389 0.514 0.257 0.073

7,8 8 8 8 8 3,4,7,8 8 –

yeast-0-2-5-7-9-vs-3-6-8 0.667 0.710 0.580 0.675 0.590 0.722 0.366 0.000

7,8 3,5,7,8 7,8 7,8 7,8 3,5,7,8 8 –

yeast-0-3-5-9-vs-7-8 0.251 0.288 0.222 0.265 0.145 0.403 0.185 0.018

8 8 8 8 – 3,5,7,8 8 –

yeast-0-5-6-7-9-vs-4 0.350 0.432 0.327 0.428 0.257 0.379 0.176 0.000

7,8 7,8 7,8 7,8 8 7,8 8 –

yeast-2-vs-4 0.615 0.670 0.581 0.569 0.571 0.702 0.389 0.000

7,8 7,8 8 8 8 7,8 8 –

yeast1 0.527 0.495 0.520 0.504 0.430 0.476 0.498 0.000

8 8 8 8 8 8 8 –

yeast3 0.566 0.589 0.429 0.573 0.436 0.644 0.314 0.100

7,8 7,8 8 7,8 8 7,8 8 –
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Table 3. Overview of the results for Gmean score.

Dataset 1 2 3 4 5 6 7 8

DSC-R DSC-S KMC LCDS LNIE REA OUSE MLPC

abalone-17-vs-7-8-9-10 0.782 0.818 0.541 0.684 0.102 0.282 0.536 0.000

3,5,6,7,8 3,5,6,7,8 5,8 5,6,8 – – 5,8 –

australian 0.622 0.640 0.433 0.557 0.187 0.580 0.100 0.000

3,5,7,8 3,4,5,6,7,8 5,7,8 3,5,7,8 8 3,5,7,8 – –

electricity-normalized 0.682 0.676 0.639 0.644 0.510 0.635 0.284 0.393

3,4,5,6,7,8 3,4,5,6,7,8 5,7,8 5,7,8 7,8 5,7,8 – 7

glass-0-1-2-3-vs-4-5-6 0.865 0.892 0.836 0.905 0.869 0.869 0.165 0.000

7,8 7,8 7,8 7,8 7,8 7,8 – –

glass0 0.739 0.756 0.588 0.720 0.287 0.697 0.071 0.000

3,5,7,8 3,5,7,8 5,7,8 5,7,8 8 5,7,8 – –

glass1 0.750 0.717 0.560 0.600 0.254 0.526 0.127 0.000

3,4,5,6,7,8 3,4,5,6,7,8 5,7,8 5,7,8 8 5,7,8 – –

heart 0.623 0.618 0.518 0.589 0.346 0.566 0.284 0.205

3,8 3,8 8 8 – 8 – –

jm1 0.660 0.666 0.275 0.675 0.630 0.557 0.369 0.291

3,6,7,8 3,6,7,8 – 3,6,7,8 3,7,8 3,7,8 – –

kc1 0.651 0.670 0.278 0.655 0.658 0.557 0.391 0.204

3,6,7,8 3,6,7,8 – 3,6,7,8 3,6,7,8 3,7,8 8 –

kc2 0.717 0.772 0.230 0.711 0.715 0.618 0.259 0.347

3,7,8 3,7,8 – 3,7,8 3,7,8 3,7 – –

kr-vs-k-three-vs-eleven 0.988 0.985 0.911 0.981 0.836 0.985 0.933 0.000

3,7,8 3,7,8 8 3,7,8 8 3,7,8 8 –

kr-vs-k-zero-one-vs-draw 0.970 0.965 0.898 0.932 0.873 0.933 0.935 0.000

3,5,7,8 3,5,8 8 8 8 8 8 –

page-blocks0 0.850 0.848 0.543 0.586 0.649 0.812 0.805 0.447

3,4,5,8 3,4,5,8 – – – 3,8 3,8 –

pima 0.690 0.673 0.590 0.634 0.400 0.670 0.197 0.482

3,4,5,7,8 3,5,7,8 5,7,8 5,7,8 7 3,5,7,8 – 7

segment0 0.911 0.934 0.719 0.848 0.585 0.851 0.415 0.242

3,4,5,6,7,8 3,4,5,6,7,8 5,7,8 3,5,7,8 7,8 3,5,7,8 8 –

shuttle-c0-vs-c4 0.995 0.995 0.949 0.963 0.950 0.995 0.996 0.304

8 8 8 8 8 8 3,5,8 –

vehicle0 0.916 0.901 0.819 0.881 0.723 0.882 0.708 0.380

3,5,7,8 3,5,7,8 5,7,8 5,7,8 8 5,7,8 – –

vowel0 0.937 0.938 0.523 0.797 0.634 0.790 0.634 0.224

3,4,5,7,8 3,4,5,7,8 8 3,5,7,8 8 3,8 8 –

wisconsin 0.974 0.960 0.747 0.953 0.950 0.957 0.781 0.042

3,8 3,8 8 3,8 3,8 3,8 8 –

yeast-0-2-5-6-vs-3-7-8-9 0.761 0.661 0.685 0.709 0.683 0.745 0.511 0.178

7,8 8 7,8 7,8 8 7,8 8 –

yeast-0-2-5-7-9-vs-3-6-8 0.862 0.848 0.827 0.879 0.839 0.875 0.681 0.000

7,8 7,8 7,8 7,8 7,8 7,8 8 –

yeast-0-3-5-9-vs-7-8 0.617 0.650 0.517 0.596 0.339 0.651 0.470 0.069

8 7,8 8 8 – 8 8 –

yeast-0-5-6-7-9-vs-4 0.750 0.822 0.777 0.783 0.612 0.694 0.485 0.000

7,8 7,8 7,8 7,8 8 8 8 –

yeast-2-vs-4 0.827 0.826 0.801 0.830 0.723 0.847 0.731 0.000

8 8 8 8 8 8 8 –

yeast1 0.634 0.616 0.599 0.612 0.330 0.593 0.344 0.000

5,7,8 5,7,8 5,7,8 5,7,8 8 5,7,8 8 –

yeast3 0.871 0.855 0.815 0.841 0.773 0.875 0.698 0.197

7,8 7,8 8 7,8 8 5,7,8 8 –
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Table 4. Overview of the results for AUC score.

Dataset 1 2 3 4 5 6 7 8

DSC-R DSC-S KMC LCDS LNIE REA OUSE MLPC

abalone-17-vs-7-8-9-10 0.997 0.989 0.684 0.999 0.828 0.967 0.789 0.329

3,5,6,7,8 3,5,6,7,8 8 3,5,6,7,8 3,8 3,5,7,8 3,8 –

australian 0.827 0.829 0.551 0.819 0.662 0.803 0.578 0.448

3,5,7,8 3,5,7,8 8 3,5,7,8 3,7,8 3,5,7,8 8 –

electricity-normalized 0.961 0.961 0.927 0.974 0.871 0.971 0.551 0.671

3,5,7,8 3,5,7,8 5,7,8 1,2,3,5,6,7,8 7,8 1,2,3,5,7,8 – 7

glass-0-1-2-3-vs-4-5-6 0.988 0.989 0.894 0.989 0.879 0.984 0.731 0.722

7,8 7,8 8 7,8 8 7,8 – –

glass0 0.937 0.929 0.792 0.930 0.724 0.881 0.628 0.675

3,5,7,8 3,5,7,8 5,7 3,5,7,8 – 5,7,8 – –

glass1 0.913 0.918 0.681 0.830 0.668 0.790 0.546 0.669

3,5,6,7,8 3,5,6,7,8 – 5,7 – 7 – –

heart 0.846 0.855 0.728 0.877 0.662 0.860 0.632 0.374

3,5,7,8 3,5,7,8 8 3,5,7,8 8 3,5,7,8 8 –

jm1 0.866 0.862 0.398 0.906 0.788 0.858 0.720 0.467

3,5,7,8 3,5,7,8 – 1,2,3,5,6,7,8 3,7,8 3,5,7,8 3,8 –

kc1 0.865 0.860 0.405 0.902 0.786 0.858 0.734 0.399

3,5,7,8 3,5,7,8 – 1,2,3,5,6,7,8 3,7,8 3,5,7,8 3,8 –

kc2 0.877 0.889 0.487 0.908 0.832 0.882 0.769 0.757

3,8 3,7,8 – 3,7,8 3 3,7,8 3 3

kr-vs-k-three-vs-eleven 1.000 1.000 0.981 1.000 0.987 1.000 0.978 0.968

3,5,7,8 3,5,7,8 – 3,5,7,8 7,8 3,5,7,8 – –

kr-vs-k-zero-one-vs-draw 1.000 1.000 0.972 1.000 0.982 0.999 0.981 0.691

3,5,7,8 3,5,6,7,8 8 3,5,6,7,8 8 3,5,7,8 8 –

page-blocks0 0.994 0.994 0.850 0.999 0.962 0.992 0.913 0.734

3,5,7,8 3,5,7,8 – 1,2,3,5,6,7,8 3,7,8 3,5,7,8 – –

pima 0.870 0.871 0.736 0.890 0.725 0.850 0.645 0.508

3,5,7,8 3,5,7,8 7,8 3,5,7,8 7,8 3,5,7,8 8 –

segment0 0.996 0.997 0.859 0.993 0.831 0.975 0.794 0.628

3,5,6,7,8 3,4,5,6,7,8 7,8 3,5,6,7,8 7,8 3,5,7,8 8 –

shuttle-c0-vs-c4 1.000 1.000 0.999 1.000 0.500 1.000 0.999 0.480

5,8 5,8 5,8 5,8 – 5,8 5,8 –

vehicle0 0.988 0.990 0.881 0.987 0.834 0.970 0.841 0.767

3,5,6,7,8 3,5,6,7,8 8 3,5,7,8 – 3,5,7,8 – –

vowel0 0.997 0.999 0.852 0.999 0.862 0.989 0.870 0.260

3,5,6,7,8 3,5,6,7,8 8 3,5,6,7,8 8 3,5,7,8 8 –

wisconsin 0.998 0.997 0.929 0.997 0.716 0.995 0.958 0.081

7,8 7,8 8 7,8 8 7,8 8 –

yeast-0-2-5-6-vs-3-7-8-9 0.951 0.943 0.789 0.989 0.807 0.929 0.803 0.444

3,5,7,8 3,5,7,8 8 1,2,3,5,6,7,8 8 3,5,7,8 8 –

yeast-0-2-5-7-9-vs-3-6-8 0.983 0.979 0.896 0.997 0.925 0.978 0.900 0.252

3,5,7,8 3,5,7,8 8 2,3,5,6,7,8 8 3,5,7,8 8 –

yeast-0-3-5-9-vs-7-8 0.947 0.940 0.659 0.989 0.741 0.889 0.730 0.270

3,5,7,8 3,5,7,8 8 3,5,6,7,8 8 3,5,7,8 8 –

yeast-0-5-6-7-9-vs-4 0.984 0.975 0.867 0.994 0.891 0.965 0.828 0.089

3,5,7,8 3,5,7,8 8 3,5,6,7,8 8 3,5,7,8 8 –

yeast-2-vs-4 0.987 0.986 0.906 1.000 0.911 0.982 0.891 0.326

3,7,8 3,7,8 8 1,2,3,5,6,7,8 8 3,7,8 8 –

yeast1 0.887 0.885 0.768 0.922 0.754 0.877 0.655 0.339

3,5,7,8 3,5,7,8 7,8 3,5,7,8 7,8 3,5,7,8 8 –

yeast3 0.987 0.984 0.919 0.996 0.953 0.982 0.904 0.380

3,5,7,8 3,5,7,8 8 1,2,3,5,6,7,8 7,8 3,5,7,8 8 –
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5 Conclusions and Future Directions

The proposed in this paper methods for imbalanced stream classification DSC-R
and DSC-S performed favorably in comparison with other dedicated algorithms.
The evaluation of the predictive abilities of the techniques was conducted on
the basis of computer experiments. The obtained results were analyzed using
statistical tests and for all the chosen metrics F-score, Gmean and AUC score,
the proposed methods obtained satisfactory results, comparable to algorithms
such as REA or Learn++.CDS or Learn++.NIE. The algorithm utilizes memory
buffer in order to propagate the instances from the previous block that were
chosen as the representatives. Since the buffer is of fixed size, after it is full some
instances must be removed from it. In the current implementation, the oldest
examples are deleted. A more advanced “forgetting” mechanism, that could favor
the instances from the minority class and only the instances from the majority
that are the best representatives could be introduced in order to further improve
the performance of the classifier. Additionally testing other sampling methods
for under- and over-sampling may prove to produce better results.
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