
Learning Parsers for Technical Drawings

Dries Van Daele1(B), Nicholas Decleyre2, Herman Dubois2, and Wannes Meert1

1 Department of CS, KU Leuven, Leuven, Belgium
dries.vandaele@cs.kuleuven.be

2 Saint-Gobain Mobility | Engineered Components (Seals), Kontich, Belgium

Abstract. From a set of technical drawings, we learn a parser program
to interpret the tabular data contained in such a drawing. This enables
automatic reasoning and learning on top of a database of technical draw-
ings. For example to help designers find or complete designs more easily.

Keywords: Inductive Logic Programming · Technical drawings

1 Introduction

Technical drawings are the main method in engineering to (visually) communi-
cate how a new machine or component functions or is constructed. They are the
result of a design process starting from a set of specifications that the final prod-
uct needs to comply with. This design process follows a number of strict and soft
rules (e.g., material choice as a function of temperature). Figure 1 shows a typical
example containing both a 2D and 3D visualisation of the object, and a mate-
rial list in tabular form specifying its parts and properties. They are carefully
crafted documents that act as key deliverables at the end of a design process.
As such, they contain a wealth of information. Furthermore, information is laid
out according to generally applied conventions.

Fig. 1. A technical drawing with high-
lighted tabular data

Engineering companies have a
large database of previous designs,
potentially going back decades. They
are often underutilized because pre-
vious designs can only be search for
by title or by a limited set of tex-
tual annotations. Ideally, however, this
database can also be used to: (1) given
a technical drawing, finding other rel-
evant drawings in a large database of
previous designs; (2) given a partial
description, finding designs that would
complete the partial design. In this
work we present an approach that can
extract the knowledge in a technical

c© Springer Nature Switzerland AG 2020
P. Cellier and K. Driessens (Eds.): ECML PKDD 2019 Workshops, CCIS 1167, pp. 51–56, 2020.
https://doi.org/10.1007/978-3-030-43823-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43823-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-43823-4_5


52 D. Van Daele et al.

drawing and thus improve the search capabilities significantly to achieve the
aforementioned tasks.

To be able to use the data encapsulated in technical drawings, we need to
parse the information contained in them, and translate this to a representation
that can be handled by automated systems. Furthermore, such a system should
be able to deal with both recent digital drawings and historical analog drawings.
The latter is important because a great amount of information is captured in
legacy drawings. Ideally, extracting the information can be done using a parser,
thus a small computer program. The main challenge is that writing and main-
taining such a parser is a time-consuming and expensive task. Furthermore, it
is error prone since this requires an expert to explain subtle rules to an analyst
or a programmer. The approach we present here will learn such parsers directly
from expert feedback on the original drawing and allow its output to be used in
automated tasks such as searching relevant designs.

We apply Inductive Logic Programming (ILP) to extract structured infor-
mation from technical drawings, and propose a bootstrapping approach that
boosts performance during multitask learning. The feedback used for learning
takes the form of annotated technical drawings. Providing such annotations is
a trivial task for domain experts. The required number of drawings that need
to be annotated is mainly dependent on the number of variations or templates
that need to be recognized. Fortunately, since all technical drawings within an
organisation are expected to be (loosely) based on a limited set of templates,
the number of drawings that need to be annotated is also limited.

In this work we introduce two contributions. First, we introduce the use of
ILP to learn parsers from data and expert knowledge to interpret a technical
drawing and produce a formal representation. Second, we introduce a novel boot-
strapping learning strategy for ILP. The efficacy of this method is demonstrated
in experiments on a real-world data set.

2 Identifying Technical Drawing Elements

Archived technical drawings are digitized to varying degrees. Because of this, we
consider as a baseline the case where the technical drawing is represented as a
bitmap image. A first step involves partitioning the image into its main segments
using DBSCAN [2]. The resulting segments are identified using a CNN classifier.
Segments identified as tables are further processed using a contour detection
algorithm [4]. This enables the extraction of all individual cells. These cells are
further processed by a parser that is learned from examples (see Sect. 3).

3 Inductive Logic Programs for Parsing

The data contained in a technical drawing is laid out in a manner that facilitates
human interpretation. Tabular data in particular tends to have its data organised
both spatially and through explicit annotation. Common examples of spatial
structuring involve assigning related cells to common rows or columns, while



Learning Parsers for Technical Drawings 53

assigning unrelated cells to different subtables or distant cells. Particularly useful
are cells that contain unambiguous keywords such as attribute names. These are
helpful to gain insight in the structure of a table. They serve as anchors to cells
that are less distinctive on their own but can be described relatively to anchored
cells.

The application at hand does not only require us to parse a table, but also
demands that we learn how to interpret its spatial organisation. A small com-
puter program is required to parse these custom drawings. Programming a parser
for each type of drawing is not only an expensive and time consuming task to
build and maintain, but also prone to errors. Various errors are potentially intro-
duced while programming a parser. First, the structure of such technical draw-
ings needs to be explained to a non-expert, i.e. a programmer, who interprets
the instructions. Second, the tables are typically not simple rectangular tables.
They thus require a non-trivial parser that is difficult to understand. Third, a
design can change over time requiring periodic maintenance and lead to soft-
ware erosion. Ideally, these parsers would thus be programmed automatically
based on the expert’s knowledge. This is possible by means of machine learning
techniques that learn programs from examples. The examples in this setting are
obtained by annotating technical drawings, a task that is trivial for a domain
expert.

The highly relational nature of tabular data and the ease with which tables
can sensibly be navigated by visiting adjacent cells suggests the use of Inductive
Logic Programming. ILP systems are particularly suitable for learning small
programs from complex input data. Two advantages of learning programs using
ILP we benefit from in this work are the ability to learn recursive definitions
(e.g., row n is defined by row n+1) and to reuse learned target labels (e.g., first
learning what a header row is helps to define what a content row is).

3.1 Standard ILP

An inductive logic programming system learns from relational data a set of defi-
nite clauses. Given background knowledge B, positive examples E+ and negative
examples E−, it attempts to construct a program H consisting of definite clauses
such that B ∧ H entail all, or as many as possible, examples in E+, and none,
or as few as possible, of those in E−.

We thus need to supply three types of inputs. First, a set of training data,
examples E, that contains the properties to describe a cell in a technical drawing.
An example can be:

– Cell text: The textual contents of each cell. Tesseract 4.0 is used to recognize
cell contents [3].

– Cell location: The cell’s bounding box information (i.e. (x, y) coordinates and
cell width and height).

Second, a label for each cell (e.g., author, bill of materials, quantity). A cell
can be annotated with multiple labels (e.g., a cell can be a quantity in the bill



54 D. Van Daele et al.

of materials). Depending on which target label we want to learn, we split the set
of examples E in a tuple (E+, E−) where E+ contains the examples associated
with a cell that has the target label and E− those examples that do not. For
standard ILP, the learning task is defined for one target label, so we repeat the
standard ILP task for each label in the set of labels.

Third, we can provide background knowledge B that contains generally appli-
cable knowledge for the problem at hand and remains unchanged across exam-
ples. In this case we provide:

– Relative cell positions. Relations capturing which cells are adjacent to each
other, and in which direction (horizontally or vertically) based on their bound-
ing boxes.

– Numerical order. The successor relationship. Although not essential, it is
useful for learning concise, recursive rules.

The output of ILP, the program H, is a set of definite clauses of the form
‘author(A) :- cell contains(A, drawn)’ which can be read as the rule ‘Cell
A contains the author if it contains the word ‘drawn”.

3.2 ILP with Bootstrapping

It is expected that learning programs to properly parse the target labels in P
will prove simple for some targets and more challenging for others. We propose
a bootstrapping extension that supports the construction of sophisticated pro-
grams by allowing them to employ the simpler ones in their definition. This is
loosely inspired by the ideas raised in [1], but applied to the ILP setting.

This corresponds to a variation of the previously discussed ILP set-up where
a dependency graph G is used. The nodes in this directed acyclic graph each
represent a possible target label and the edges represent dependencies between
those labels. A dependency indicates that one target label might have a natural
description in function of another. Although we allow for this dependency graph
to be specified manually, our method defaults to a fully automated approach
where standard ILP is first applied to learn programs for each target. Then tar-
gets are ranked according to the ascending F1 score of their programs on the
training data. Each target in the list then has all subsequent targets as its depen-
dencies. Finally, ILP with bootstrapping learns targets in the order specified by a
correct evaluation order of G, and extends the background knowledge B for each
target with the programs constructed to parse its dependent target labels. When
learning program H using bootstrapping to capture a particular target label l,
we define its extended background knowledge B′ = B ∧ (

∧
i∈descendants(G,l) Hi),

where Hi is the program trained for target label i.

4 Experiments

4.1 Learning Set-Up

The ILP system Aleph is used to learn possibly recursive programs that parse
the chosen targets from the tabular data, ranging from the document’s author



Learning Parsers for Technical Drawings 55

(a) A table excerpt from a technical drawing. Its header and materials are highlighted.

% Mater ia l s hypothes i s
mate r i a l s (A,B) :−

zero (A) ,
above below (B,C) ,
header (C) .

mate r i a l s (A,B) :−
succ (C,A) ,
above below (B,D) ,
mate r i a l s (C,D) .

% Header hypothes i s
header (A) :−

above below (A,B) ,
c e l l c o n t a i n s (B, ‘LIST ’ ) .

(b) header/1 covers any cell located directly above a cell containing the word ‘LIST’.
materials/2 parses the indexed parts of the materials table. Its first argument is the
index and its second argument represents the cell. materials/2 consists of two clauses.
The first clause anchors the table by considering row 0 to consist of the cells above
the header. It employs header/1 in its definition. The second, recursive clause indicates
that the index is incremented for each row located above another.

Fig. 2. Figure a provides an illustration of the materials table and its header. Listing
b shows the associated program learned using bootstrapping.

and its approval date to the attributes covered in the materials table and its
indexed components.

Training data consists of a set of fully labeled technical drawings. A cus-
tom data labeling tool with a web-based graphical interface was constructed to
support domain experts in labeling drawings.

Using this tool, 30 technical drawings with on average 50 cells were labeled
with 14 different labels. For each target label, examples that contain that label
form its positive example set, while negative examples are automatically derived
by taking the complement of all possible examples for that target with its positive
example set.

The labeled data is split in a training set consisting of 10 drawings, and a test
set containing the remaining 20. Since the choice of training data can heavily
affect the capability for finding rules that properly generalize, experiments are
repeated 5 times on random samples of the training data. Because the order in
which training examples are presented can also affect the rules identified by the
coverage-based algorithm employed by Aleph, repeat experiments are performed
even when all training data is available for learning, as a sample then corresponds
to a different order in which the examples are presented to the learner.



56 D. Van Daele et al.

4.2 Results

Fig. 3. The performance measured using
the F1 score of programs learning materi-
als/2. Min/max shading is included to indi-
cate the range of performance between the
best and worst-performing program over 5
repetitions.

Figure 3 visualizes the performance
with which cell labels and their appro-
priate index are correctly identified.
This shows that only a few anno-
tated designs are required for the
bootstrapping method to learn per-
fect parsers for all labels whereas
standard ILP fails to learn a perfect
parser. Furthermore, it highlights how
ILP with bootstrapping compared to
Standard ILP is less sensitive to over-
fitting when presented with additional
training data. This robustness of ILP
with bootstrapping lends itself well
to incremental learning. Both sub-
tle and drastic variations in template
design can be handled by providing
the learner with a representative sam-
ple as training data. Learning perfect parsers for simple labels such as author or
approval date can be achieved by both standard ILP and the bootstrap method
with only a few training examples. More interesting is to look at the most compli-
cated label, the indexed components (materials in Fig. 2a). The best performing
program constructed using standard ILP consists of 14 clauses and yields 17 false
negatives. Bootstrap learning, however, succeeds at learning a completely accu-
rate, concise program (see Fig. 2b) whenever more than three technical drawings
are provided in the training set. The poor performance when using only a few
drawings is due to poor generalization. More specific, in these drawings the
materials tables provided for training each consisted only of a single component
and there was no pressure on the inductive learner to learn the recursive rule
necessary to capture the rows of larger tables.

References

1. Dechter, E., Malmaud, J., Adams, R.P., Tenenbaum, J.B.: Bootstrap learning via
modular concept discovery. In: Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence, IJCAI 2013, pp. 1302–1309. AAAI Press (2013)

2. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for dis-
covering clusters a density-based algorithm for discovering clusters in large spatial
databases with noise. In: Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, KDD 1996, pp. 226–231. AAAI Press (1996)

3. Smith, R.: An overview of the tesseract OCR engine. In: Proceedings of the Ninth
International Conference on Document Analysis and Recognition, ICDAR 2007, vol.
2, pp. 629–633. IEEE Computer Society, Washington (2007)

4. Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by
border following. Comput. Vis. Graph. Image Process. 30(1), 32–46 (1985)


	Learning Parsers for Technical Drawings
	1 Introduction
	2 Identifying Technical Drawing Elements
	3 Inductive Logic Programs for Parsing
	3.1 Standard ILP
	3.2 ILP with Bootstrapping

	4 Experiments
	4.1 Learning Set-Up
	4.2 Results

	References




