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Abstract. Post-hoc model-agnostic interpretation methods such as par-
tial dependence plots can be employed to interpret complex machine
learning models. While these interpretation methods can be applied
regardless of model complexity, they can produce misleading and verbose
results if the model is too complex, especially w.r.t. feature interactions.
To quantify the complexity of arbitrary machine learning models, we
propose model-agnostic complexity measures based on functional decom-
position: number of features used, interaction strength and main effect
complexity. We show that post-hoc interpretation of models that mini-
mize the three measures is more reliable and compact. Furthermore, we
demonstrate the application of these measures in a multi-objective opti-
mization approach which simultaneously minimizes loss and complexity.

Keywords: Model complexity · Interpretable machine learning ·
Explainable AI · Accumulated Local Effects · Multi-objective
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1 Introduction

Machine learning models are optimized for predictive performance, but it is often
required to understand models, e.g., to debug them, gain trust in the predic-
tions, or satisfy regulatory requirements. Many post-hoc interpretation methods
either quantify effects of features on predictions, compute feature importances,
or explain individual predictions, see [17,24] for more comprehensive overviews.
While model-agnostic post-hoc interpretation methods can be applied regard-
less of model complexity [30], their reliability and compactness deteriorates when
models use a high number of features, have strong feature interactions and com-
plex feature main effects. Therefore, model complexity and interpretability are
deeply intertwined and reducing complexity can help to make model interpreta-
tion more reliable and compact. Model-agnostic complexity measures are needed
to strike a balance between interpretability and predictive performance [4,31].

Contributions. We propose and implement three model-agnostic measures of
machine learning model complexity which are related to post-hoc interpretabil-
ity. To our best knowledge, these are the first model-agnostic measures that
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describe the global interaction strength, complexity of main effects and number
of features. We apply the measures to different datasets and machine learning
models. We argue that minimizing these three measures improves the reliability
and compactness of post-hoc interpretation methods. Finally, we illustrate the
use of our proposed measures in multi-objective optimization.

2 Related Work and Background

In this section, we introduce the notation, review related work, and describe the
functional decomposition on which we base the proposed complexity measures.

Notation: We consider machine learning prediction functions f : R
p �→ R,

where f(x) is a prediction (e.g., regression output or a classification score). For
the decomposition of f , we write fS : R|S| �→ R, S ⊆ {1, . . . , p}, to denote a
function that maps a vector xS ∈ R

|S| with a subset of features to a marginal
prediction. If subset S contains a single feature j, we write fj . We refer to the
training data of the machine learning model with the tuples D = {(x(i), y(i))}ni=1

and refer to the value of the j-th feature from the i-th instance as x
(i)
j . We write

Xj to refer to the j-th feature as a random variable.

Complexity and Interpretability Measures: In the literature, model com-
plexity and (lack of) model interpretability are often equated. Many complexity
measures are model-specific, i.e., only models of the same class can be compared
(e.g., decision trees). Model size is often used as a measure for interpretabil-
ity (e.g., number of decision rules, tree depth, number of non-zero coefficients)
[3,16,20,22,31–34]. Akaikes Information Criterion (AIC) and the Bayesian Infor-
mation Criterion (BIC) are more widely applicable measures for the trade-off
between goodness of fit and degrees of freedom. In [26], the authors propose
model-agnostic measures of model stability. In [27], the authors propose expla-
nation fidelity and stability of local explanation models. Further approaches mea-
sure interpretability based on experimental studies with humans, e.g., whether
humans can predict the outcome of the model [8,13,20,28,35].

Functional Decomposition: Any high-dimensional prediction function can be
decomposed into a sum of components with increasing dimensionality:

f(x) =

Intercept
︷︸︸︷

f0 +

1st order effects
︷ ︸︸ ︷

p
∑

j=1

fj(xj) +

2nd order effects
︷ ︸︸ ︷

p
∑

j<k

fjk(xj , xk) + . . . +

p-th order effect
︷ ︸︸ ︷

f1,...,p(x1, . . . , xp) (1)

This decomposition is only unique with additional constraints regarding the
components. Accumulated Local Effects (ALE) were proposed in [1] as a tool
for visualizing feature effects (e.g., Fig. 1) and as unique decomposition of the
prediction function with components fS = fS,ALE . The ALE decomposition is
unique under an orthogonality-like property described in [1].
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The ALE main effect fj,ALE of a feature xj , j ∈ {1, . . . , p} for a prediction
function f is defined as

fj,ALE(xj) =
∫ xj

z0,j

E

[

∂f(X1, . . . , Xp)
∂Xj

∣

∣

∣

∣
Xj = zj

]

dzj − cj (2)

Here, z0,j is a lower bound of Xj (usually the minimum of xj) and the expectation
E is computed conditional on the value for xj and over the marginal distribution
of all other features. The constant cj is chosen so that the mean of fj,ALE(xj)
with respect to the marginal distribution of Xj is zero, so that the ALE compo-
nents sum to the full prediction function. By integrating the expected derivative
of f with respect to Xj the effect of xj on the prediction function f is isolated
from the effects of all other features. ALE main effects are estimated with finite
differences, i.e., access to the gradient of a prediction function is not required
(see [1]). We base our proposed measures on the ALE decomposition, because
ALE are computationally cheap (worst case O(n) per main effect), they can be
computed sequentially instead of simultaneously, they do not require knowledge
of the joint distribution, and several software implementations exist [2,25].

3 Functional Complexity

In this section, we motivate complexity measures based on functional decomposi-
tion. Based on Eq. 1, we decompose the prediction function into a constant (esti-
mated as f0 = 1

n

∑n
i=1 f(x(i))), main effects (estimated by ALE), and a remain-

der term containing interactions (i.e., the difference between the full model and
constant + main effects).

f(x) = f0 +
p

∑

j=1

MEC: How complex?
︷ ︸︸ ︷

fj,ALE(xj) +

IAS: Interaction strength?
︷ ︸︸ ︷

IA(x)

︸ ︷︷ ︸

NF: How many features were used?

(3)

This arrangement of components emphasizes a decomposition of the prediction
function into a main effect model and an interaction remainder. We can analyze
how well the main effect model itself approximates f by looking at the magni-
tude of the interaction measure IAS. The average main effect complexity (MEC)
captures how many parameters are needed to describe the one-dimensional main
effects on average. The number of features used (NF) describes how many fea-
tures were used in the full prediction function.

3.1 Number of Features (NF)

We propose an approach based on feature permutation to determine how many
features are used by a model. We regard features as “used” when changing a
feature changes the prediction. If available, the model-specific number of features
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is preferable. The model-agnostic version is useful when the prediction function
is only accessible via API or when the machine learning pipeline is complex.

The proposed procedure is formally described in Algorithm1. To estimate
whether the j-th feature was used, we sample instances from data D, replace
their j-th feature values with random values from the distribution of Xj (e.g., by
sampling xj from other instances from D), and observe whether the predictions
change. If the prediction of any sample changes, the feature was used.

Algorithm 1. Number of Features Used (NF)
Input: Number of samples M , data D

1 NF = 0
2 for j ∈ 1, . . . , p do

3 Draw M instances {x(m)}M
m=1 from dataset D

4 Create {x(m)∗}M
m=1 as a copy of {x(m)}M

m=1

5 for m ∈ 1, . . . , M do

6 Sample x
(new)
j from {x

(i)
j }n

i=1 with the constraint that x
(new)
j �= x

(m)
j

7 Set x
(m)∗
j = x

(new)
j

8 if f(x(m)∗) �= f(x(m)) for any m ∈ {1, . . . , M} then NF = NF + 1.

9 return NF

We tested the NF heuristic with the Boston Housing data. We trained
decision trees (CART) with maximum depths ∈ {1, 2, 10} leading to 1, 2
and 4 features used and an L1-regularized linear model with penalty λ ∈
{10, 5, 2, 1, 0.1, 0.001} leading to 0, 2, 3, 4, 11 and 13 features used. For each
model, we estimated NF with sample sizes M ∈ {10, 50, 500} and repeated
each estimation 100 times. For the elastic net models, NF was always equal
to the number of non-zero weights. For CART, the mean absolute differences
between NF and number of features used in the trees were 0.300 (M = 10),
0.020 (M = 50) and 0.000 (M = 500).

3.2 Interaction Strength (IAS)

Interactions between features mean that the prediction cannot be expressed as a
sum of independent feature effects, but the effect of a feature depends on values
of other features [24]. We propose to measure interaction strength as the scaled
approximation error between the ALE main effect model and the prediction
function f . Based on the ALE decomposition, the ALE main effect model is
defined as the sum of first order ALE effects:

fALE1st(x) = f0 + f1,ALE(x1) + . . . + fp,ALE(xp)

We define interaction strength as the approximation error measured with loss L:

IAS =
E(L(f, fALE1st))

E(L(f, f0))
≥ 0 (4)
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Here, f0 is the mean of the predictions and can be interpreted as the functional
decomposition where all feature effects are set to zero. IAS with the L2 loss
equals 1 minus the R-squared measure, where the true targets yi are replaced
with f(x(i)).

IAS =
∑n

i=1(f(x(i)) − fALE1st(x(i)))2
∑n

i=1(f(x(i)) − f0)2
= 1 − R2

If IAS = 0, then L(f, fALE1st) = 0, which means that the first order ALE model
perfectly approximates f and the model has no interactions.

3.3 Main Effect Complexity (MEC)

To determine the average shape complexity of ALE main effects fj,ALE , we
propose the main effect complexity (MEC) measure. For a single ALE main
effect, we define MECj as the number of parameters needed to approximate the
curve with piece-wise linear models. For the entire model, MEC is the average
MECj over all main effects, weighted with their variance. Figure 1 shows an ALE
plot (= main effect) and its approximation with two linear segments.

Fig. 1. ALE curve (solid line) approximated by two linear segments (dotted line).

We use piece-wise linear regression to approximate the ALE curve. Within the
segments, linear models are estimated with ordinary least squares. The break-
points that define the segments are found by greedy and exhaustive search along
the interval boundaries of the ALE curve. Greedy here means that we first opti-
mize the first breakpoint, then the second breakpoint with the first breakpoint
fixed and so on. We measure the degrees of freedom as the number of non-zero
coefficients for intercepts and slopes of the linear models. The approximation
allows some error, e.g., an almost linear main effect may have MECj = 1, even
if dozens of parameters would be needed to describe it perfectly. The approx-
imation quality is measured with R-squared (R2), i.e., the proportion of vari-
ance of fj,ALE that is explained by the approximation with linear segments. An
approximation has to reach an R2 ≥ 1− ε, where ε is the user defined maximum
approximation error. We also introduced parameter maxseg, the maximum num-
ber of segments. In the case that an approximation cannot reach an R2 ≥ 1 − ε
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with a given maxseg, MECj is computed with the maximum number of seg-
ments. The selected maximum approximation error ε should be small, but not
too small. We found ε between 0.01 and 0.1 visually meaningful (i.e. a subjec-
tively good approximation) and used ε = 0.05 throughout the paper. We apply
a post-processing step that greedily sets slopes of the linear segments to zero,
as long as R2 ∈ {1 − ε, 1}. The post-processing potentially decreases the MECj ,
especially for models with constant segments like decision trees. MECj is aver-
aged over all features to obtain the global main effect complexity. Each MECj is
weighted with the variance of the corresponding ALE main effect to give more
weight to features that contribute more to the prediction. Algorithm2 describes
the MEC computation in detail.

Algorithm 2. Main Effect Complexity (MEC).
Input: Model f , approximation error ε, max. segments maxseg, data D

1 Define R2(gj , fj,ALE) :=
∑n

i=1(gj(x
(i)
j ) − fj,ALE(x

(i)
j ))2/

∑n
i=1(fj,ALE(x

(i)
j ))2

2 for j ∈ {1, . . . , p} do
3 Estimate fj,ALE

// Approximate ALE with linear model

4 Fit gj(xj) = β0 + β1xj predicting fj,ALE(x
(i)
j ) from x

(i)
j , i ∈ 1, . . . , n

5 Set K = 1
// Increase nr. of segments until approximation is good enough

6 while K < maxseg AND R2(gj , fj,ALE) < (1 − ε) do
// Find intervals Zk through exhaustive search along ALE

curve breakpoints

// For categorical feature, set slopes β1,k to zero

7 gj(xj) =
∑K+1

k=1 Ixj∈Zk · (β0,k + β1,kxj)
8 Set K = K + 1

9 Greedily set slopes to zero while R2 > 1 − ε
// Sum of non-zero coefficients minus first intercept

10 MECj = K +
∑K

k=1 Iβ1,k>0 − 1

11 Vj = 1
n

∑n
i=1(fj,ALE(x(i)))2

12 return MEC = 1∑p
j=1 Vj

∑p
j=1 Vj · MECj

4 Application of Complexity Measures

In the following experiment, we train various machine learning models on dif-
ferent prediction tasks and compute the model complexities. The goal is to ana-
lyze how the complexity measures behave across different datasets and mod-
els. The dataset are: Bike Rentals [10] (n = 731; 3 numerical, 6 categorical fea-
tures), Boston Housing (n = 506; 12 numerical, 1 categorical features), (down-
sampled) Superconductivity [18] (n = 2000; 81 numerical, 0 categorical features)
and Abalone [9] (n = 4177; 7 numerical, 1 categorical features).
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Table 1. Model performance and complexity on 4 regression tasks for various learners:
linear models (lm), cross-validated regularized linear models (cvglmnet), kernel support
vector machine (ksvm), random forest (rf), gradient boosted generalized additive model
(gamboost), decision tree (cart) and decision tree with depth 2 (cart2).

Learner Bike Boston housing Superconductivity Abalone

MSE MEC IAS NF MSE MEC IAS NF MSE MEC IAS NF MSE MEC IAS NF

cart 905974 1.2 0.07 6 26.6 1.9 0.12 4 329.0 1.0 0.27 8 5.9 2.8 0.09 3

cart2 1307619 1.0 0.01 2 34.6 1.7 0.02 2 431.4 1.0 0.27 3 6.6 3.0 0.02 1

cvglmnet 686320 1.2 0.00 9 27.7 1.0 0.00 9 349.3 1.0 0.00 45 5.2 1.0 0.00 7

gamboost 531245 1.6 0.00 8 16.5 2.5 0.00 10 362.1 2.1 0.00 17 5.3 1.1 0.00 4

ksvm 403762 1.6 0.04 8 16.4 1.7 0.09 13 268.5 2.2 0.22 81 4.6 1.0 0.11 8

lm 636956 1.5 0.00 9 23.0 1.0 0.00 13 330.2 1.0 0.00 81 4.9 1.0 0.00 8

rf 460362 1.8 0.06 9 12.0 2.4 0.11 13 180.8 2.9 0.21 81 4.6 1.7 0.29 8

Table 1 shows performance and complexity of the models. As desired, the
main effect complexity for linear models is 1 (except when categorical features
with 2+ categories are present as in the bike data), and higher for more flexible
methods like random forests. The interaction strength (IAS) is zero for additive
models (boosted GAM, (regularized) linear models). Across datasets we observe
that the underlying complexity measured as the range of MEC and IAS across
the models varies. The bike dataset seems to be adequately described by only
additive effects, since even random forests, which often model strong interactions
show low interaction strength here. In contrast, the superconductivity dataset
is better explained by models with more interactions. For the abalone dataset
there are two models with low MSE: the support vector machine and the random
forest. We might prefer the SVM, since main effects can be described with single
numbers (MEC = 1) and interaction strength is low.

5 Improving Post-hoc Interpretation

Minimizing the number of features (NF), the interaction strength (IAS), and
the main effect complexity (MEC) improves reliability and compactness of post-
hoc interpretation methods such as partial dependence plots, ALE plots, feature
importance, interaction effects and local surrogate models.

Fewer Features, More Compact Interpretations. Minimizing the number
of features improves the readability of post-hoc analysis results. The computa-
tional complexity and output size of most interpretation methods scales with
O(NF), like feature effect plots [1,14] or feature importance [6,11]. As demon-
strated in Table 2, a model with fewer features has a more compact representa-
tion. If additionally IAS = 0, the ALE main effects fully characterize the pre-
diction function. Interpretation methods that analyze 2-way feature interactions
scale with O(NF2). A complete functional decomposition requires to estimate
∑NF

k=1

(
NF
k

)

components which has a computational complexity of O(2NF ).
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Less Interaction, More Reliable Feature Effects. Feature effect plots such
as partial dependence plots and ALE plots visualize the marginal relationship
between a feature and the prediction. The estimated effects are averages across
instances. The effects can vary greatly for individual instances and even have
opposite directions when the model includes feature interactions.

In the following simulation, we trained three models with different capabilities
of modeling interactions between features: a linear regression model, a support
vector machine (radial basis kernel, C = 0.05), and gradient boosted trees. We
simulated 500 data points with 4 features and a continuous target based on
[15]. Figure 2 shows an increasing interaction strength depending on the model
used. More interaction means that the feature effect curves become a less reliable
summary of the model behavior.

Fig. 2. The higher the interaction strength in a model (IAS increases from left to
right), the less representative the partial dependence plot (light thick line) becomes
for individual instances represented by their individual conditional expectation curves
(dark thin lines).

The Less Complex the Main Effects, the Better Summarizable. In linear
models, a feature effect can be expressed by a single number, the regression
coefficient. If effects are non-linear the method of choice is visualization [1,14].
Summarizing the effects with a single number (e.g., using average marginal effects
[23]) can be misleading, e.g., the average effect might be zero for U-shaped
feature effects. As a by-product of MEC, there is a third option: Instead of
reporting a single number, the coefficients of the segmented linear model can be
reported. Minimizing MEC means preferring models with main effects that can
be described with fewer coefficients, offering a more compact model description.

6 Application: Multi-objective Optimization

We demonstrate model selection for performance and complexity in a multi-
objective optimization approach. For this example, we predict wine quality (scale
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from 0 to 10) [7] from the wines physical-chemical properties such as alcohol and
residual sugar of 4870 white wines. It is difficult to know the desired compromise
between model complexity and performance before modeling the data. A solution
is multi-objective optimization [12]. We suggest searching over a wide spectrum
of model classes and hyperparameter settings, which allows to select a suitable
compromise between model complexity and performance.

We used the mlrMBO model-based optimization framework [19] with
ParEGO [21] (500 iterations) to find the best models based on four objec-
tives: number of features used (NF), main effect complexity (MEC), interaction
strength (IAS) and cross-validated mean absolute error (MAE) (5-fold cross-
validated). We optimized over the space of following model classes (and hyperpa-
rameters): CART (maximum tree-depth and complexity parameter cp), support
vector machine (cost C and inverse kernel width sigma), elastic net regression
(regularization alpha and penalization lambda), gradient boosted trees (maxi-
mum depth, number of iterations), gradient boosted generalized additive model
(number of iterations nrounds) and random forest (number of split features
mtry).

Results. The multi-objective optimization resulted in 27 models. The measures
had the following ranges: MAE 0.41–0.63, number of features 1–11, mean effect
complexity 1–9 and interaction strength 0–0.71. For a more informative visual-
ization, we propose to visualize the main effects together with the measures in
Table 2. The selected models show different trade-offs between the measures.

Table 2. A selection of four models from the Pareto optimal set, along with their ALE
main effect curves. From left to right, the columns show models with (1) lowest MAE,
(2) lowest MAE when MEC = 1, (3) lowest MAE when IAS =≤ 0.2, and (4) lowest
MAE with NF ≤ 7.

gbt (maxdepth:8,

nrounds:269)

svm (C:23.6979,

sigma:0.0003)

gbt (maxdepth:3,

nrounds:98)

CART

(maxdepth:14,

cp:0.0074)

MAE 0.41 0.58 0.52 0.59

MEC 4.2 1 4.5 2

IAS 0.64 0 0.2 0.2

NF 11 11 11 4

fixed.acidity

volatile.acidity

citric.acid

residual.sugar

chlorides

free.sulfur.dioxide

total.sulfur.dioxide

density

pH

sulphates

alcohol
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7 Discussion

We proposed three measures for machine learning model complexity based on
functional decomposition: number of features used, interaction strength and
main effect complexity. Due to their model-agnostic nature, the measures allow
model selection and comparison across different types of models and they can be
used as objectives in automated machine learning frameworks. This also includes
“white-box” models: For example, the interaction strength of interaction terms
in a linear model or the complexity of smooth effects in generalized additive mod-
els can be quantified and compared across models. We argued that minimizing
these measures for a machine learning model improves its post-hoc interpreta-
tion. We demonstrated that the measures can be optimized directly with multi-
objective optimization to make the trade-off between performance and post-hoc
interpretability explicit.

Limitations. The proposed decomposition of the prediction function and defi-
nition of the complexity measures will not be appropriate in every situation. For
example, all higher order effects are combined into a single interaction strength
measure that does not distinguish between two-way interactions and higher order
interactions. However, the framework of accumulated local effect decomposition
allows to estimate higher order effects and to construct different interaction mea-
sures. The main effect complexity measure only considers linear segments but
not, e.g., seasonal components or other structures. Furthermore, the complexity
measures quantify machine learning models from a functional point of view and
ignore the structure of the model (e.g., whether it can be represented by a tree).
For example, main effect complexity and interaction strength measures can be
large for short decision trees (e.g. in Table 1).

Implementation. The code for this paper is available at https://github.com/
compstat-lmu/paper 2019 iml measures. For the examples and experiments we
relied on the mlr package [5] in R [29].

Acknowledgements. This work is funded by the Bavarian State Ministry of Science
and the Arts in the framework of the Centre Digitisation.Bavaria (ZD.B) and supported
by the German Federal Ministry of Education and Research (BMBF) under Grant No.
01IS18036A. The authors of this work take full responsibilities for its content.

References

1. Apley, D.: Visualizing the effects of predictor variables in black box supervised
learning models. arXiv preprint arXiv:1612.08468 (2016)

2. Apley, D.: ALEPlot: accumulated local effects (ALE) plots and partial dependence
(PD) plots. CRAN (2017)

3. Askira-Gelman, I.: Knowledge discovery: comprehensibility of the results. In: Pro-
ceedings of the Thirty-First Hawaii International Conference on System Sciences,
vol. 5, pp. 247–255. IEEE (1998)

4. Bibal, A., Frénay, B.: Interpretability of machine learning models and representa-
tions: an introduction. In: Proceedings on ESANN, pp. 77–82 (2016)

https://github.com/compstat-lmu/paper_2019_iml_measures
https://github.com/compstat-lmu/paper_2019_iml_measures
http://arxiv.org/abs/1612.08468


Quantifying Model Complexity 203

5. Bischl, B., et al.: mlr: Machine learning in R. J. Mach. Learn. Res. 17(170), 1–5
(2016)

6. Casalicchio, G., Molnar, C., Bischl, B.: Visualizing the feature importance for black
box models. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G.
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