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Abstract. To systematically cop complex systems engineering in Inter-
net of Things, this paper looks into a technological challenge to effectively
and efficiently integrate computing and wireless networking. One aspect
is how machine learning and artificial intelligence to influence wireless
networking, and another aspect is how wireless networking to enhance
artificial intelligence computing. Finally, a holistic computing and net-
working architecture is introduced to examine implementation of holistic
computing and wireless networking.
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1 Introduction

Internet of Things (IoT) is well known to involve technology of computing, con-
trol, and wireless networking, under wide-range of application scenarios. Com-
plex systems engineering of IoT complicates efficient realization of IoT systems.
While control of intelligent systems such as robots is widely implemented by
artificial intelligence (AI) computing, holistic integration of computing and net-
working emerges a critical technology for future IoT. This article presents a
unique aspect to look into this new technological paradigm, we first review the
applications of machine learning (ML) in the wireless networking of IoT systems
(in Sect. 2), then turn to a particular scenario of applying AI and ML into smart
factory of networking (in Sect. 3). By investigating the facilitation of ML in wire-
less networks and the requirements of wireless networking into multi-agent AI
systems, the possible picture of holistic integration of AI computing and wire-
less networking in IoT, particularly involving mobile agents such as autonomous
vehicles, mobile robots, smart factory, has been initially investigated in this
paper.
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2 Applications of ML in IoT Wireless Networking

Currently, a vary of remarkable developments of the network, notably wireless
networks, are breaking the boundaries between virtual and reality and evolve
narrow cyber towards the Internet of Things (IoT). The terminals of the inter-
net are no longer limited to PCs, mobile phones. TVs, lamps, mirrors, water
heaters, air conditioners, taxis, elevators, workstations and so on are all surpris-
ingly connected to the Internet. The interconnection of all things dramatically
facilitates people’s work and life. And wireless sensor networks (WSN), the main
part of IoT, extend human physiological perception limits. These vast changes
also pose profound challenges to theoretical research.

Unlike a series of “excellent” features of traditional wireless communication
systems, IoT has been a significant impact on wireless communication technolo-
gies. For example, the number of network nodes has increased dramatically, the
network topology has become more dynamic, links and interference have become
denser, and network transmission has demand fluctuates sharply, etc. Recently,
Machine Learning, particularly Reinforcement Learning, has been used as an
emerging tool to effectively address the above problems and challenges. Differ-
ent from classic convex optimization or optimization methods, ML shows excit-
ing performance in solving complicated mathematical structures and instability
decisions.

According to our investigation of published articles, the current research
directions of applying ML in IoT can roughly divide into three categories: MAC
protocol design, cache and offload in MEC scenarios, and network security.
Besides, there are some explorations for unique scenarios and particular prob-
lems that not included in this list. (The framework is shown in Fig. 1).

2.1 MAC Protocol: Wireless Access, Routing and Others

Modern networks, particularly IoT, become more decentralized and ad-hoc and
more dynamic in topology and routing. In IoT, entities such as sensors and
mobile users need to make independent decisions, e.g., multi-routing selections,
channel selections, to achieve their own goals, e.g., throughput maximization.
However, this is challenging due to the dynamic and the uncertainty of net-
work status. The reinforcement learning represented by Q-learning and Deep
Q-learning Network (DQN) can intuitively adapt to the design requirements of
such mac protocols. Therefore, extensive research has been carried out in this
direction, such as dynamic wireless access schemes, dynamic routing, multi-point
cooperative communication, etc.

Focus on multiple Access for Heterogeneous Wireless Networks, [54] proposed
and investigated a MAC protocol based on deep reinforcement learning for het-
erogeneous wireless networking, referred to as Deep-reinforcement Learning Mul-
tiple Access (DLMA). A salient feature of DLMA is that it can learn to achieve
an overall objective (e.g., α-fairness objective) by a series of state-action-reward
observations while operating in the heterogeneous environment. In particular,
it can achieve near-optimal performance with respect to the objective without
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Fig. 1. The appli of Machine Learning for IoT wireless network

knowing the detailed operating mechanisms of the coexisting MAC. For dynamic
routing implementation issues, [49] devises the off-policy Qssp algorithm and the
on-policy SARSAssp algorithm to solve the routing problem in Wireless Sensor
Networks. Specifically, the authores tackle the stochastic shortest path problem
using reinforcement learning schemes by modeling the path searching procedure
as an appropriate discounted Markov decision process. [41] considers the multi-
hop routing algorithm plays an important role in the exploration and monitoring
of deep-sea environments. For this A proposed a routing algorithm based on the
Q-learning for 3D under water WSN. Combined with defined distance and energy
paths, the researchers derived the iterative formula of the Q-table. The proposed
QL-EDR algorithm can extend the network lifetime and improve the efficiency
of the data collection, compared to the conventional protocol. In addition, the
authors defined a regulatory factor to adjust the network performance. Accord-
ing to the realistic demands, choose appropriate values of factor to improve the
network throughput, to reduce the average end-to-end delay or to prolong the
network lifetime.

[62] works on improving the packet transmission efficiency using Cognitive
networks. A Q-learning-based transmission scheduling mechanism using deep
learning for the cognitive radio-based IoT is proposed to solve the problem of
how to achieve the appropriate strategy to transmit packets of different buffers
through multiple channels to maximize the system throughput. [23,43] have
also tried machine learning applications in the field of IoT congestion control,
and has gained some valuable experience. [57] proposed a cooperative spectrum
sensing algorithm for cognitive radio networks. By implementing DQN based
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on upper confidence bounds with Hoeffding-style to improve the exploration
efficiency, the proposed algorithm can achieve better reward performance with
faster convergence speed than the conventional algorithms based on Q-learning
with ε-greedy.

We note that most of the research in this direction models the network state
of IoT as MDP. In addition, the DQN method receives more attention than other
algorithms. The future network will involve multiple network slides, and these
network slides have multiple conflicting goals, which brings many challenges to
the traditional resource management mechanism and network standard formu-
lation that are worthy of in-depth study.

2.2 MEC: Caching and Offloading

MEC is one of the key scenarios of IoT, and the intra-network cache can effec-
tively reduce duplicate content transmission. Research on wireless caching shows
that by caching content in wireless devices, you can significantly reduce access
latency, energy consumption, and overall traffic. This direction has also attracted
many studies. As each node’s storage, computing, and energy consumption capa-
bilities are limited, how to coordinate collaboration between nodes, such as deci-
sion cache content, has become a focus of attention.

Most recent studies focus on “attention” tagging of content and tasks and
caching and calculation offload allocation based on importance. But there are
still many attempts to provide new ideas for research. [25] cares about that rare
wireless network resources are difficult to meet the influx of a huge number of
terminal devices. Specifically, the authors use two potential recurrent neural net-
work approaches, the echo state network (ESN) and the long short-term memory
(LSTM) network, to make predictions about user mobility and content popular-
ity. Finally, use DQN algorithm to make cached decisions for prediction results.
[61] formulated the cache replacement problem as a MDP problem and proposed
a DRL-based caching policy. In the model S, A and reward are definded as values
of information about cached/arrived data items, the caching action selected by
the edge node and the sum utility of all data items which are requested, respec-
tively. [44] tries to simultaneously tackle the issues of content caching strategy,
computation offloading policy, and radio resource allocation, in fog computing.
Authors use the actor-critic reinforcement learning framework to solve the joint
decision-making problem with the objective of minimizing the average end-to-
end delay, due to wireless signals and service requests have stochastic properties.
The deep neural network (DNN) is employed as the function approximator to
estimate the value functions in the critical part due to the extremely large state
and action space in the problem. The actor part uses another DNN to represent
a parameterized stochastic policy and improves the policy with the help of the
critic.

At the same time, some scholars have also noticed the connectivity of the
MEC devices in this scenario. [29] focus on the connectivity solutions espe-
cially for those covering the wide remote areas in the scale of kilometer squares.
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Although many low-power wide-area network technologies are supposed to sup-
port long-range low-power wireless communication, underneath star topology
limits the scalability of the networks due to the need for a central hub. To
provide connectivity to a wider area, the authors propose to build the mesh
topology upon these LPWAN technologies and propose a distributed as well
as energy-efficient reinforcement learning based routing algorithm for the wide-
area wireless mesh IoT networks. [16]’s goal is to acquire an online algorithm
that optimally adapts task offloading decisions and wireless resource allocations
to the time-varying wireless channel conditions. This requires quickly solving
hard combinatorial optimization problems within the channel coherence time,
which is hardly achievable with conventional numerical optimization methods.
The authors propose a Deep Reinforcement learning-based Online Offloading
(DROO) framework that implements a deep neural network as a scalable solution
that learns the binary offloading decisions from the experience. It eliminates the
need for solving combinatorial optimization problems, and thus greatly reduces
the computational complexity especially in large-size networks.

MEC scenarios involve very complicated system analysis, which is due a uni-
fied study on caching, offloading, networking, and transmission control. Strong
couplings among mobile users with heterogeneities in application demand, QoS
provisioning, mobility pattern, radio access interface, and wireless resources also
cause for above. A model-free reinforcement learning approach becomes a promis-
ing candidate to manage huge state space and optimization variables.

2.3 IoT Security and Reliability

In IoT, physical devices, sensors, appliances, and other different objects can com-
municate with each other without the need for human intervention in IoT. And
IoT has many critical and non-critical applications. The security of IoT became
a crucial problem. Future networks become more decentralized and ad-hoc in
nature which is vulnerable to various attacks such as Denial-of-Service (DoS)
and cyber-physical attacks. Recently, the DQL has been used as an effective
solution to avoid and prevent the attacks [31].

In [52], the Markov game framework is employed to model and analyze the
anti-jamming defense problem. Based on Q-learning, the authors development a
collaborative multi-agent anti-jamming algorithm. As machine learning and arti-
ficial intelligence can be used for the protection of devices by analyzing traffic or
devices behavior, the [48] development a model of increasing security of wireless
environment for IoT appliance through creating a fingerprint by Machine Learn-
ing algorithm. The experimental result shows that the model is able to detect
anomaly flooding traffic in Wi-Fi networks based on characteristic patterns that
separate normal traffic from malicious activity.

A wide variety of low-cost radio technologies, that being used to enable wire-
less communication in IoT, brings a security problem due to the fact that it
is very easy for a malicious user to perform passive wireless signal scanning on
these networks and use this information to launch identity-based attacks. In
[34], the authors propose a learning-based strategy to detect spoofing attacks
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in wireless sensor networks. Based on detailed analytical models for the mobile
radio channel, the proposed algorithm combines two classifiers to process and
analyze the instant samples of received signal strength to detect attacks. In [11],
a watermarking algorithm is proposed for dynamic authentication of IoT sig-
nals to detect cyber-attacks. The proposed watermarking algorithm, based on
a deep learning long short- term memory structure, enables the IoT devices to
extract a set of stochastic features from their generated signal and dynamically
watermark these features into the signal. This method enables the IoT gateway,
which collects signals from the IoT, to effectively authenticate the reliability of
the signals.

The sharp increase in interference caused by the dense network is also an
aspect that needs to be explored in depth. [14] considers the optimization of
the cache-enabled opportunistic interference alignment network as a so complex
problem. The results in the literature were demonstrated that the performance of
cache-enabled opportunistic IA networks can be significantly improved by using
the proposed deep reinforcement learning approach.

We found that the research on reinforcement learning applied to network
security is mainly focused on anomaly detection and identity authentication, and
research on interference in network transmission needs to be further promoted.

2.4 Low-Power Operation and Sensor Networks

In addition to the above directions in which the studies are concentrated, scholars
have also conducted extensive explorations on the application of machine learn-
ing in wireless networks. Such as power supply problems in low power networks,
network structure update problems, etc.

Sensing devices operating in the upcoming IoT are likely to rely on the radio
frequency (RF) transmissions of a hybrid access point (HAP) for energy [51].
The HAP is also responsible for setting the sampling or monitoring time of these
devices according to their harvested energy. A challenging issue is that setting the
HAP’s charging time and also the sampling time of each device with imperfect
channel gains information. [51] also propose a scheme, through the improvement
of Actor-Critic algorithm, to minimize the sampling time of the device. Wireless
sensor network has the characteristics of scattered network requirements and
uneven information. [46] study the WSN-based field sensing and reconstruction
problem. The authors establish a two-layer learning framework based on rein-
forcement learning, and present the detailed design for an adaptive sampling
policy which can actively determine the most informative sensing location and
thus significantly reduce the communication cost.

3 Machine Learning in Smart Factory

A smart factory is an IoT system of particular interest. Factories, especially
manufacturing factories are embracing the notion of integrating cyber resources
such as computation, networking and physical processes together to drive the
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development of smart factory, which is Cyber-Physical Systems (CPS) [38,42].
Several technologies are believed to bring evolutionary changes to the traditional
factories in industry, they are: Internet of Things (IoT), Wireless Sensor Net-
works (WSN), Cloud Services and Artificial Intelligence [38,42,47]. The main
goal is to accommodate product variants and production number variance to
fulfill the demands from major customers down to individual customers. That
requires the real-time collection of relevant information, a fast reintegration of
resources within the factory and an optimized re-setup or reconfiguration solu-
tion of physical entities within the factory [40]. In addition to that, the call for
sustainability requirement smart factory to improve the utility of raw materials
and energy [40], even a higher efficiency of supply chain, product packing and
logistics among factories.

The integration of cyber resources and physical entities happens on top of
automated manufacturing equipped factories. By regarding each physical entity
after integration a system, the whole CPS is actually a system of systems. The
integration of cyber resources and physical entities is considered in two ways:
vertical integration that emphasis on the real-time information collection and
control, and horizontal integration that emphasis on cooperation among physical
entities [40,59].

Fig. 2. A horizontal integration towards smart factory.

3.1 Computing and Networking Systems in Smart Factories

By regarding each physical entity after integrating a system, the whole CPS is
actually a system of systems. As shown in Fig. 2, illustrative systems includ-
ing product design, materials supply (raw materials), energy use to drive the
manufacturing, entities in manufacturing process, product test (inspection),
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maintenance of the factory, logistic (local logistic within the factory dealing
with semi-products, packing and shipping of the finished products), local fog
nodes(including storage, computing and etc.), cloud service (including cloud
storage, cloud computing and etc.) and backbone network (with internet access)
are considered to be the import systems in smart factories [38]. Paper [4,38]
expounded data powered “smart design” in future industry. The sensing devices
integrated to the traditional factory brings tremendous amount of data from
every stage of manufacturing. After proper data processing and visualization, the
designers could refine the manufacturing processes, part design and etc towards
more flexible and energy saving manufacturing. Paper [4,17,38] discussed the
supply chain in smart factory. Since the fact that the production requirement
is dynamic in the smart factory age, the short-term supply system paves a
solid foundation of smart manufacturing. Paper [17] proposed a multi-objective,
multi-stage flexible flow-shop scheduling model for fast response supply chain
and manufacture agent collaboration. Resource and energy efficiency is another
important indicators toward next generation industry in that it’s directly related
to the profit and environment. Smart energy supply gives energy consumption
data as a feedback to the designer and management to improve the plant orga-
nization and production design [19,42,59]. A lot of paper in literature focus on
Multi-agent System (MAS) in manufacturing system. Paper [17,39] proposed
algorithms for scheduling in MAS considering efficiency and dynamic. Paper
[10,27,36] adopt Machine Learning (ML), Reinforcement Learning (RL) and
Deep Learning (DL) to give solutions to MAS task allow cation and scheduling
considering the load balancing and efficiency. Paper [24] proposed a deep learning
based inspection system with high accuracy, which can find the possible defective
products. Paper [35] gives a good vision of smart factory maintenance consid-
ering the task offloading, path planning, and access point selection in mobile
scenario. Besides, paper [45] introduced ML based mechanical tool wearing pre-
diction, which is a good addition to the smart maintenance. Local logistics is
also important part of smart factory. Paper [38,40] discussed about raw material
distribution and (semi-)product collection and delivery within smart factory. In
the framework proposed in Fig. 2, the edge devices, local fog nodes and cloud
all have the capability of computing. Paper [24] and [27] give a possible solution
that utilize the edge and fog computation. The good side is edge/fog computing
delivers lower latency than cloud computing in practical application. Of course,
data intensive and complicated deep learning algorithms may still good to be
executed on the cloud, but edge computing and fog computing are more in line
with the needs of smart factories for real-time environment and requirement
changes.

3.2 Vertical Integration

As shown in Fig. 3, seven important elements in traditional factory could all
get integrated with WSN, actuators, computing and AI to become a system.
Each one of four technology is a layer put on top of traditional element, so it’s
called vertical integration. After equipped with WSN, the traditional element in
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Fig. 3. A vertical integration towards smart factory.

addition to the backbone network and fog or cloud becomes a IoT system. After
equipped with actuator (either software or physical part that could control the
entity), the traditional element becomes a cloud controlled IoT system. After the
integration of computing capability and AI algorithms (software), the traditional
element becomes a complete local AI agent. For example, the energy meter in
the energy supply system will keep monitoring the energy consumption data and
then upload to cloud storage. The related designer could utilize those data for
further refining the design of the product in purpose of green manufacturing.
Another example is, after collecting maintenance data from the cloud service,
the AI on the cloud send an instruction that one of the robots in manufactur-
ing need to get maintenance. Therefore, the other robots will get more tasks to
make up that change for the overall goal. In this example, the actuator is the
software running on manufacturing robots. Like just mentioned, the IoT integra-
tion brings data that hard to access in traditional factory. This makes machine
learning, deep learning and reinforcement learning based AI integration possible
to facilitate the smart manufacturing.

3.3 Horizontal Integration

As shown in Fig. 2, after the vertical integration, seven systems are connected
to the backbone network of the smart factory. Also, they play a part of the
smart factory network. The connections indicate the physical interaction that
could happen in the smart factory, of course, along with data exchange. For
example, the AI agent within the manufacturing system find the materials are
running out. It could send material requirement to the material supply system.
The material supply system then prepares the materials and send requirement
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to the local logistic system. The logistic system then initiates a material dis-
tribution. Another example is all the machine related systems (manufacturing,
product test, logistics and etc.) may need daily maintenance. They send their
daily running statistics and AI agent in maintenance system will analysis those
data and gives a cost-optimized and energy efficient maintenance schedule. This
kind of integration emphasis the interaction among systems in smart factory,
making a better quality, higher efficiency automation possible. Horizontal inte-
gration is vital especially when there are human involved in the overall work
flow or the vertical integration is incomplete considering the cost. The reason is
that, when there are human involved or incompleteness of vertical integration,
some data are not available to the cloud service. For example, in a factory, the
local logistics has to be done by human. However, the output of human part,
that is, the delivery of the raw material is dynamic because of the variance of
working efficiency. At the same time, no measurement will be acquired directly
from human in terms of, for example, the working efficiency considering the
privacy. Thus, those measurement could be acquired from the next, fully inte-
grated process of the manufacturing by interaction: the manufacturing robot
received the raw materials, as a variable in the whole manufacturing. Therefore,
the horizontal integration requires sensing and data exchange among systems in
the smart factory, which will need extra sensors or related parts. Other reasons
such as latency of a centralized cloud based control, failure of the data collec-
tion system and etc. brings the necessarily of the horizontal integration. Paper
[3] introduces a Parallel Reinforcement Learning (PRL) based IoT system to
reduce the learning time of Reinforcement Learning (RL) considering the com-
munication overhead. The simulation based on the multi-agent system in smart
factory gives a good vision of horizontal integration.

4 Future Networking and Computing Architecture

The holistic networking and computing architecture can be facilitated from two
aspects: (1) machine learning for communications and networks (2) networking
for AI agents to form a networked multi-agent system, which will be detailed in
the following two sub-sections.

4.1 State-of-the-Art Applications of Machine Learning to Future
Wireless Network Architecture

Future wireless network architecture accommodating machine learning (ML)
emerges as an important technology for next decades, while ITU-T forming a
focus group (FG) to study from 2018 to 2020. When incorporating ML func-
tionalities into network architecture, there are two mechanisms to execute ML
algorithms: online ML and offline ML. The online ML computing means the ML
functionality is embedded into networking algorithms or protocols, and thus must
be implemented into the corresponding network entities. On the other hand, if
the ML functionality is executed then used to assist network functionalities, it
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is known as offline ML computing that can be executed in a co-locating com-
puting facility connected to the corresponding network entities. The offline ML
can be also computed in another far-away computing facility and then transfer
the model of learning to the target network entity. As shown in Fig. 4, the ML
computing can be executed and co-located with the user equipment (UE) or
agents, radio access network (RAN), or core network (CN), in addition to the
cloud. The emerging edge computing or edge artificial intelligence (AI) [33] can
be considered co-locating with RAN.

Fig. 4. Alternatives, agent computing with UE, edge computing co-locating with RAN,
and cloud computing through CN to implement machine learning or AI in the wireless
network architecture

Generally speaking, ML can be applied in a few possible networking and
communication scenarios:

– Channel State Information (CSI): CSI is critical to air-interface technology
for networking algorithms and physical layer communication, which has been
considered to be inferred or estimated with the aid of deep learning [18,53],
or calibration the channel models for preferred CSI [1].

– User Behavior: User behavior such as human/vehicular mobility patterns can
be useful to network management and mobility management functionalities
[7], and autonomous system operation [8], through big data analysis by ML
or reinforcement learning [28].

– Traffic Prediction: Deep packet inspection, network intelligence, and user
mobility patterns, can be used to predict wireless network traffic for more
efficient network/radio resource allocation [20,55].

– Cybersecurity: ML might be one of the most attractive tools to enhance
network security, detect attacks and intrusions to networks [13,56].

– Anticipatory Networking Mechanism: Except using reinforcement learning or
multi-armed bandit mechanisms for radio resource or network resource allo-
cation [32,58], existing applications of ML to wireless networking is gener-
ally offline learning to assist or enhance existing solutions. However, another
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advantage of ML is to develop predictive networking mechanism via online
learning such that ML can enable networking functionalities that are nor pos-
sible before. One of such rare examples is the anticipatory mobility manage-
ment using Naive Bayesian and recursive belief update [6,26] as online learn-
ing to enable proactive communication and virtual cell for ultra-low latency
wireless networking, where anticipatory is widely adopted in AI.

4.2 Networked Multi-agent Systems

In addition to apply ML to wireless networks, another question of AI computing
and wireless networking arises: what is the desirable wireless networking for
agents using ML? More precisely, how to design a wireless network for agents of
machine intelligence, say a multi-robot system (MRS) or a multi-agent system
(MAS).

Legg and Hutter gave an informal definition of machine intelligence in [22]:
Intelligence measures an agent’s ability to achieve goals in a wide range of envi-
ronments. Distributed artificial intelligence (DAI) has been brought into atten-
tion in AI research well over 3 decades [2], which has two common sub-disciplines:
distributed problem solving (DPS) and multi-agent system (MAS). DPS typi-
cally decomposes task into several not completely independent sub-problems
that can be executed on different processors and then synthesizes a solution.
On the other hand, MAS considers an agent is an intelligent entity, which can
be a robot or an AV, with goals and actions in an operating environment. In
state-of-the-art CPS/IoT that are highly parallel in computing, a MAS typically
represents a complex system of multiple agents and the mechanism for coor-
dination of agents’ behaviors. Please recall that Demazeau inspiringly defined
MAS consisting of four major aspects: agents, environments, interactions, and
organization [9]. When RL deals with agent’s action and environment, commu-
nication for decisions was brought into MAS of agents using RL by modeling as
partially observed MDP [37,50]. Though communication or exchange of actions
by agents has been studied in MAS and DAI for a long time, the features of wire-
less networks have been hardly considered in literature. In [37], finite number of
communication channels with so-called fast communication was considered for
information sharing among a team of cooperative agents. [12,30,60] indirectly
considered the communication in MAS. However, realistic wireless communica-
tions and networking has not well taken into consideration, nor impacts on ML
mechanisms.

An interesting study looks into collective behavior of autonomous vehicles
moving across a region of Manhattan streets, by treating the behavior of each
autonomous vehicle as an agent using reinforcement learning. It is shown that
wireless networking reduces average delay [21]. In such wireless networking, dif-
ferent from human-to-human personal communication, the reward map and pol-
icy of another autonomous vehicle in the interaction range would be useful infor-
mation to exchange. The age of such information is critical and thus ultra low-
latency wireless networking is highly preferred, in which the real-time ALOHA
has been considered as multiple access. For collaborative robots that each has
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own machine learning algorithms (such as moving actions and planning) to exe-
cute toward a common goal, wireless networking would be extremely beneficial
to collective efficiency [5]. A lot of issues remain open in such networked MAS,
such as network topology [15] and innovative machine learning for networked
MAS.

5 Conclusions

Holistic integration and interaction of AI computing and wireless networking for
IoT systems still has a long way to develop. This paper initially brings up the
literature survey and in-depth discussions toward this ultimate goal. Many open
issues still require remarkable technological innovations in the future.
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3. Camelo, M., Claeys, M., Latré, S.: Parallel reinforcement learning with minimal
communication overhead for IoT environments. IEEE Internet Things J. 7, 1387–
1400 (2019)

4. Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M., Yin, B.: Smart factory of Industry
4.0: key technologies, application case, and challenges. IEEE Access 6, 6505–6519
(2017)

5. Chen, K.C., Hung, H.M.: Wireless robotic communication for collaborative multi-
agent systems. In: ICC 2019-2019 IEEE International Conference on Communica-
tions (ICC), pp. 1–7. IEEE (2019)

6. Chen, K.C., Zhang, T., Gitlin, R.D., Fettweis, G.: Ultra-low latency mobile net-
working. IEEE Netw. 33(2), 181–187 (2018)

7. Chih-Lin, I., Sun, Q., Liu, Z., Zhang, S., Han, S.: The big-data-driven intelligent
wireless network: architecture, use cases, solutions, and future trends. IEEE Veh.
Technol. Mag. 12(4), 20–29 (2017)

8. Cui, Q., et al.: Big data analytics and network calculus enabling intelligent man-
agement of autonomous vehicles in a smart city. IEEE Internet Things J. 6(2),
2021–2034 (2018)

9. Demazeau, Y.: From interactions to collective behaviour in agent-based systems.
In: Proceedings of the 1st European Conference on Cognitive Science, Saint-Malo.
Citeseer (1995)

10. Elango, M., Nachiappan, S., Tiwari, M.K.: Balancing task allocation in multi-
robot systems using K-means clustering and auction based mechanisms. Expert
Syst. Appl. 38(6), 6486–6491 (2011)

11. Ferdowsi, A., Saad, W.: Deep learning for signal authentication and security in mas-
sive Internet-of-Things systems. IEEE Trans. Commun. 67(2), 1371–1387 (2019)

12. Ge, X., Han, Q.L.: Distributed formation control of networked multi-agent sys-
tems using a dynamic event-triggered communication mechanism. IEEE Trans.
Ind. Electron. 64(10), 8118–8127 (2017)



232 K.-C. Chen et al.

13. He, D., Liu, C., Quek, T.Q., Wang, H.: Transmit antenna selection in MIMO
wiretap channels: a machine learning approach. IEEE Wirel. Commun. Lett. 7(4),
634–637 (2018)

14. He, Y., et al.: Deep-reinforcement-learning-based optimization for cache-enabled
opportunistic interference alignment wireless networks. IEEE Trans. Veh. Technol.
66(11), 10433–10445 (2017)

15. Hsiao, J.H., Chen, K.C.: Communication methodology to control a distributed
multi-agent system. In: ICC 2019–2019 IEEE International Conference on Com-
munications (ICC), pp. 1–6. IEEE (2019)

16. Huang, L., Bi, S., Zhang, Y.J.: Deep reinforcement learning for online computation
offloading in wireless powered mobile-edge computing networks. IEEE Trans. Mob.
Comput., 1 (2019)

17. Ivanov, D., Dolgui, A., Sokolov, B., Werner, F., Ivanova, M.: A dynamic model and
an algorithm for short-term supply chain scheduling in the smart factory Industry
4.0. Int. J. Prod. Res. 54(2), 386–402 (2016)

18. Jiang, Z., He, Z., Chen, S., Molisch, A.F., Zhou, S., Niu, Z.: Inferring remote chan-
nel state information: Cramér-Rae lower bound and deep learning implementation.
In: 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–7. IEEE
(2018)

19. Kang, H.S., et al.: Smart manufacturing: past research, present findings, and
future directions. Int. J. Precis. Eng. Manuf.-Green Technol. 3(1), 111–128 (2016).
https://doi.org/10.1007/s40684-016-0015-5

20. Kim, J., Hwang, G.: Adaptive bandwidth allocation based on sample path pre-
diction with gaussian process regression. IEEE Trans. Wirel. Commun. 18(10),
4983–4996 (2019)

21. Ko, E., Chen, K.C.: Wireless communications meets artificial intelligence: an illus-
tration by autonomous vehicles on Manhattan streets. In: 2018 IEEE Global Com-
munications Conference (GLOBECOM), pp. 1–7. IEEE (2018)

22. Legg, S., Hutter, M.: Universal intelligence: a definition of machine intelligence.
Mind. Mach. 17(4), 391–444 (2007). https://doi.org/10.1007/s11023-007-9079-x

23. Lei, L., Xu, H., Xiong, X., Zheng, K., Xiang, W., Wang, X.: Multiuser resource
control with deep reinforcement learning in IoT edge computing. IEEE Internet
Things J. 6(6), 10119–10133 (2019)

24. Li, L., Ota, K., Dong, M.: Deep learning for smart industry: efficient manufacture
inspection system with fog computing. IEEE Trans. Ind. Inf. 14(10), 4665–4673
(2018)

25. Li, L., Xu, Y., Yin, J., Liang, W., Li, X., Chen, W., Han, Z.: Deep reinforcement
learning approaches for content caching in cache-enabled D2D networks. IEEE
Internet Things J. 7(1), 544–557 (2020)

26. Lin, C.Y., Chen, K.C., Wickramasuriya, D., Lien, S.Y., Gitlin, R.D.: Anticipatory
mobility management by big data analytics for ultra-low latency mobile network-
ing. In: 2018 IEEE International Conference on Communications (ICC), pp. 1–7.
IEEE (2018)

27. Lin, C.C., Deng, D.J., Chih, Y.L., Chiu, H.T.: Smart manufacturing scheduling
with edge computing using multi-class deep Q network. IEEE Trans. Ind. Inform.
15, 4276–4284 (2019)

28. Liu, X., Liu, Y., Chen, Y., Hanzo, L.: Trajectory design and power control for
multi-UAV assisted wireless networks: a machine learning approach. IEEE Trans.
Veh. Technol. 68, 7957–7969 (2019)

29. Liu, Y., Tong, K.F., Wong, K.K.: Reinforcement learning based routing for energy
sensitive wireless mesh IoT networks. Electron. Lett. 55(17), 966–968 (2019)

https://doi.org/10.1007/s40684-016-0015-5
https://doi.org/10.1007/s11023-007-9079-x


Toward Holistic Integration of Computing and Wireless Networking 233

30. Liu, Z., Dai, J., Wu, B., Lin, H.: Communication-aware motion planning for multi-
agent systems from signal temporal logic specifications. In: 2017 American Control
Conference (ACC), pp. 2516–2521. IEEE (2017)

31. Mamdouh, M., Elrukhsi, M.A.I., Khattab, A.: Securing the Internet of Things and
wireless sensor networks via machine learning: a survey. In: 2018 International
Conference on Computer and Applications (ICCA), pp. 215–218. IEEE, Beirut,
August 2018

32. Nguyen, D.D., Nguyen, H.X., White, L.B.: Reinforcement learning with network-
assisted feedback for heterogeneous RAT selection. IEEE Trans. Wirel. Commun.
16(9), 6062–6076 (2017)

33. Park, J., Samarakoon, S., Bennis, M., Debbah, M.: Wireless network intelligence
at the edge. Proc. IEEE 107(11), 2204–2239 (2019)

34. Pinto, E.M.d.L., Lachowski, R., Pellenz, M.E., Penna, M.C., Souza, R.D.: A
machine learning approach for detecting spoofing attacks in wireless sensor net-
works. In: 2018 IEEE 32nd International Conference on Advanced Information
Networking and Applications (AINA), pp. 752–758. IEEE, Krakow, May 2018

35. Rahman, A., Jin, J., Cricenti, A.L., Rahman, A., Kulkarni, A.: Communication-
aware cloud robotic task offloading with on-demand mobility for smart factory
maintenance. IEEE Trans. Ind. Inf. 15(5), 2500–2511 (2018)

36. Shiue, Y.R., Lee, K.C., Su, C.T.: Real-time scheduling for a smart factory using a
reinforcement learning approach. Comput. Ind. Eng. 125, 604–614 (2018)

37. Stein, S., Williamson, S.A., Jennings, N.R.: Decentralised channel allocation and
information sharing for teams of cooperative agents. In: Proceedings of the 11th
International Conference on Autonomous Agents and Multiagent Systems, vol. 1,
pp. 231–238. International Foundation for Autonomous Agents and Multiagent
Systems (2012)

38. Tao, F., Qi, Q., Liu, A., Kusiak, A.: Data-driven smart manufacturing. J. Manuf.
Syst. 48, 157–169 (2018)

39. Tereshchuk, V., Stewart, J., Bykov, N., Pedigo, S., Devasia, S., Banerjee, A.G.: An
efficient scheduling algorithm for multi-robot task allocation in assembling aircraft
structures. arXiv preprint arXiv:1902.08905 (2019)

40. Thoben, K.D., Wiesner, S., Wuest, T.: “Industrie 4.0” and smart manufacturing-a
review of research issues and application examples. Int. J. Autom. Technol. 11(1),
4–16 (2017)

41. Wang, S., Shin, Y.: Efficient routing protocol based on reinforcement learning
for magnetic induction underwater sensor networks. IEEE Access 7, 82027–82037
(2019)

42. Wang, S., Wan, J., Li, D., Zhang, C.: Implementing smart factory of Industrie 4.0:
an outlook. Int. J. Distrib. Sens. Netw. 12(1), 3159805 (2016)

43. Wang, Z., Zhang, J., Zhang, X., Wang, W.: Reinforcement learning based conges-
tion control in satellite Internet of Things. In: 2019 11th International Conference
on Wireless Communications and Signal Processing (WCSP), pp. 1–6. IEEE, Xi’an,
October 2019

44. Wei, Y., Yu, F.R., Song, M., Han, Z.: Joint optimization of caching, computing, and
radio resources for fog-enabled IoT using natural actor-critic deep reinforcement
learning. IEEE Internet Things J. 6(2), 2061–2073 (2019)

45. Wu, D., Jennings, C., Terpenny, J., Gao, R.X., Kumara, S.: A comparative study on
machine learning algorithms for smart manufacturing: tool wear prediction using
random forests. J. Manuf. Sci. Eng. 139(7), 071018 (2017)

http://arxiv.org/abs/1902.08905


234 K.-C. Chen et al.

46. Wu, H., Zhang, Z., Jiao, C., Li, C., Quek, T.Q.S.: Learn to sense: a meta-learning-
based sensing and fusion framework for wireless sensor networks. IEEE Internet
Things J. 6(5), 8215–8227 (2019)

47. Wuest, T., Weimer, D., Irgens, C., Thoben, K.D.: Machine learning in manufac-
turing: advantages, challenges, and applications. Prod. Manuf. Res. 4(1), 23–45
(2016)

48. Xia, F., Song, H., Xu, C.: Securing the wireless environment of IoT. In: 2018 IEEE
International Conference of Safety Produce Informatization (IICSPI), pp. 315–318.
IEEE, Chongqing, December 2018

49. Xia, W., Di, C., Guo, H., Li, S.: Reinforcement learning based stochastic shortest
path finding in wireless sensor networks. IEEE Access 7, 157807–157817 (2019)

50. Xuan, P., Lesser, V., Zilberstein, S.: Communication decisions in multi-agent coop-
eration: model and experiments. In: Proceedings of the Fifth International Confer-
ence on Autonomous Agents, pp. 616–623. ACM (2001)

51. Yang, C., Chin, K.W., He, T., Liu, Y.: On sampling time maximization in wireless
powered Internet of Things. IEEE Trans. Green Commun. Netw. 3(3), 641–650
(2019)

52. Yao, F., Jia, L.: A collaborative multi-agent reinforcement learning anti-jamming
algorithm in wireless networks. IEEE Wirel. Commun. Lett. 8(4), 1024–1027 (2019)

53. Ye, H., Li, G.Y., Juang, B.H.: Power of deep learning for channel estimation and
signal detection in OFDM systems. IEEE Wirel. Commun. Lett. 7(1), 114–117
(2017)

54. Yu, Y., Wang, T., Liew, S.C.: Deep-reinforcement learning multiple access for
heterogeneous wireless networks. IEEE J. Sel. Areas Commun. 37(6), 1277–1290
(2019)

55. Zhang, C., Zhang, H., Qiao, J., Yuan, D., Zhang, M.: Deep transfer learning for
intelligent cellular traffic prediction based on cross-domain big data. IEEE J. Sel.
Areas Commun. 37(6), 1389–1401 (2019)

56. Zhang, L., Restuccia, F., Melodia, T., Pudlewski, S.M.: Taming cross-layer attacks
in wireless networks: a Bayesian learning approach. IEEE Trans. Mob. Comput.
18(7), 1688–1702 (2018)

57. Zhang, Y., Cai, P., Pan, C., Zhang, S.: Multi-agent deep reinforcement learning-
based cooperative spectrum sensing with upper confidence bound exploration.
IEEE Access 7, 118898–118906 (2019)

58. Zhao, P., Tian, H., Cheny, K.C., Fan, S., Nie, G.: Context-aware TDD configuration
and resource allocation for mobile edge computing. IEEE Trans. Commun. 68,
1118–1131 (2019)

59. Zheng, P., et al.: Smart manufacturing systems for Industry 4.0: conceptual frame-
work, scenarios, and future perspectives. Front. Mech. Eng. 13(2), 137–150 (2018).
https://doi.org/10.1007/s11465-018-0499-5

60. Zhou, L., Yang, P., Chen, C., Gao, Y.: Multiagent reinforcement learning with
sparse interactions by negotiation and knowledge transfer. IEEE Trans. Cybern.
47(5), 1238–1250 (2016)

61. Zhu, H., Cao, Y., Wei, X., Wang, W., Jiang, T., Jin, S.: Caching transient data for
Internet of Things: a deep reinforcement learning approach. IEEE Internet Things
J. 6(2), 2074–2083 (2019)

62. Zhu, J., Song, Y., Jiang, D., Song, H.: A new deep-Q-learning-based transmission
scheduling mechanism for the cognitive Internet of Things. IEEE Internet Things
J. 5(4), 2375–2385 (2018)

https://doi.org/10.1007/s11465-018-0499-5

	Toward Holistic Integration of Computing and Wireless Networking
	1 Introduction
	2 Applications of ML in IoT Wireless Networking
	2.1 MAC Protocol: Wireless Access, Routing and Others
	2.2 MEC: Caching and Offloading
	2.3 IoT Security and Reliability
	2.4 Low-Power Operation and Sensor Networks

	3 Machine Learning in Smart Factory
	3.1 Computing and Networking Systems in Smart Factories
	3.2 Vertical Integration
	3.3 Horizontal Integration

	4 Future Networking and Computing Architecture
	4.1 State-of-the-Art Applications of Machine Learning to Future Wireless Network Architecture
	4.2 Networked Multi-agent Systems

	5 Conclusions
	References




