
CHAPTER 2

Getting Past Logic

In law, as we saw in Chapter 1, the contrast between formalism and induc-
tivism was evident practically from the moment jurists began to consider
that logic might not explain everything about the law. The contrast con-
tinues to define lines that run through legal studies and judicial politics,
especially in the United States and also to an extent in other common
law jurisdictions. The lines are readily discernible. Volumes of literature
and on-going disputes are gathered on one side or the other. People
who think about and practice law have identified themselves in adversarial
terms by reference to which side of those lines they stand on. In com-
puting, as we also noted in Chapter 1, the lines are not drawn in quite
such clear relief. They are certainly not the reference point for the intel-
lectual identity of opposing camps of computer scientists. The conceptual
shift that underpins the emergence of machine learning has had enormous
impact, but it has not been an object of sustained discourse, much less of
pitched ideological battle. Computer scientists thus, perhaps, enjoy a cer-
tain felicity in their professional relations, but they also are probably less
alert to the distinction that machine learning introduces between their
present endeavors and what they were doing before.

We will examine in the three chapters immediately after this the ingre-
dients that go into making machine learning so different from traditional
algorithm-based programming. The ingredients are data (Chapter 3), pat-
tern finding (Chapter 4), and prediction (Chapter 5). Before examining
these, we wish to consider further the contrast between machine learning
and what came before. The rise of legal realism was explicitly a challenge
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to what came before in law, and, so, the contrast was patent. With the
emergence of induction-driven machine learning, the contrast ought to
be no less clear, but people continue to miss it. Getting past logic is nec-
essary, if one is to get at what’s new about machine learning—and at why
this kind of computing presents special challenges when it comes to values
in society at large.

2.1 Formalism in Law

and Algorithms in Computing

Legal formalists start with the observation, to which few would object,
that law involves rules. They identify the task in law, whether performed
by a lawyer or a judge, to be that of applying the rules to facts, again
in itself an unobjectionable, or at least unremarkable, proposition. Where
formalism is distinctive is in its claim that these considerations supply a
complete understanding of the law. “Legal reasoning,” said the late twen-
tieth century critical legal scholar Roberto Unger, “is formalistic when
the mere invocation of rules and deduction of conclusions from them
is believed sufficient for every authoritative legal choice.”1 An impor-
tant correlate follows from such a conception of the law.2 The formal-
ists say that, if the task of legal reasoning is performed correctly, mean-
ing in accordance with the logic of the applicable rules, the lawyer or
judge reaches the correct result. The result might consist in a judgment
(adopted by a judge and binding on parties in a dispute) or in a briefing
(to her client by a lawyer), but whatever the forum or purpose, the result
comes from a logical operation, not differing too much from the appli-
cation of a mathematical axiom. In the formalists’ understanding, it thus
follows that the answer given to a legal question, whether by a lawyer
or by a judge, is susceptible of a logical process of review. An erroneous
result can be identified by tracing back the steps that the lawyer or judge
was to have followed and finding a step in the operation where that tech-
nician made a mistake. Why a correct judgment is correct thus can be
explained by reference to the rules and reasoning on which it is based;
and an incorrect one can be diagnosed much the same way.

In Oliver Wendell Holmes, Jr.’s day, though legal formalism already
had a long line of distinguished antecedents such as Blackstone (whom we
quoted in our Prologue), one contemporary of Holmes, C. C. Langdell,
Dean and Librarian of the Harvard Law School, had come to be specially
associated with it. Holmes himself identified the Dean as arch-exponent
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of this mode of legal reasoning. In a book review in 1880, he referred to
Langdell, who was a friend and colleague, as “the greatest living legal the-
ologian.”3 The compliment was a back-handed one when spoken among
self-respecting rationalists in the late nineteenth century. In private cor-
respondence around the same time, Holmes called Langdell a jurist who
“is all for logic and hates any reference to anything outside of it.”4 A
later scholar, from the vantage of the twenty-first century, has suggested
that Langdell was less a formalist than Holmes and others made him out
to be but nevertheless acknowledges the widespread association and the
received understanding: “[l]egal formalism [as associated with Langdell]
consisted in the view that deductive inference from objective, immutable
legal principles determines correct decisions in legal disputes.”5

Whether or not Langdell saw that to be the only way the law func-
tions, Holmes certainly did not, and the asserted contrast between the
two defined lines which remain familiar in jurisprudence to this day. In
his own words, Holmes rejected “the notion that the only force at work
in the development of the law is logic.”6 By this, he did not mean that
“the principles governing other phenomena [do not] also govern the
law.”7 Holmes accepted that logic plays a role in law: “[t]he processes of
analogy, discrimination, and deduction are those in which [lawyers] are
most at home. The language of judicial decision is mainly the language of
logic.”8 That deductive logic and inductive reasoning co-exist in law may
already have been accepted, at least to a degree, in Holmes’s time.9 What
Holmes rejected, instead, was “the notion that a [legal system]… can be
worked out like mathematics from some general axioms of conduct.”10 It
was thus that Holmes made sport of a “very eminent judge” who said “he
never let a decision go until he was absolutely sure that it was right” and
of those who treat a dissenting judgment “as if it meant simply that one
side or the other were not doing their sums right, and if they would take
more trouble, agreement inevitably would come.”11 If the strict formal-
ist thought that all correctness and error in law are readily distinguished
and their points of origin readily identified, then Holmes thought that
formalism as legal theory was lacking.

The common conception of computer science is analogous to the for-
malist theory of law. Important features of that conception are writing
a problem description as a formal specification; devising an algorithm,
i.e. a step-by-step sequence of instructions that can be programmed on
a computer; and analyzing the algorithm, for example to establish that
it correctly solves the specified problem. “The term algorithm is used in
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computer science to describe a … problem-solving method suitable for
implementation as a computer program. Algorithms are the stuff of com-
puter science: they are central objects of study in the field.”12 In some
areas the interest is in devising an algorithm to meet the specification.
For example, given the problem statement Take a list of names and sort
them alphabetically, the computer scientist might decompose it recursively
into to sort a list, first sort the first half, then sort the second half, then merge
the two halves, and then break these instructions down further into ele-
mentary operations such as swap two particular items in the list. In other
areas the interest is in the output of the algorithm. For example, given the
problem statement Forecast the likely path of the hurricane, the computer
scientist might split a map into cells and within each cell solve simple
equations from atmospheric science to predict how wind speed changes
from minute to minute. In either situation, the job of the computer sci-
entist is to codify a task into simple steps, each step able to be (i) executed
on a computer, and (ii) reasoned about, for example to debug why a com-
puter program has generated an incorrect output (i.e. an incorrect result).
The steps are composed in source code, and scrutinizing the source code
can disclose how the program worked or failed. Success and failure are
ready to see. The mistakes that cause failure, though sometimes frustrat-
ingly tangled in the code, are eventually findable by a programmer keen
enough to find them.

2.2 Getting Past Algorithms

Machine learning however neither works like algorithmic code nor is to be
understood as if it were algorithmic code. Outputs from machine learning
are not effectively explained by considering only the source code involved.
Kroll et al., whom we will consider more closely in a moment, in a dis-
cussion of how to make algorithms more accountable explain:

Machine learning… is particularly ill-suited to source code analysis because
it involves situations where the decisional rule itself emerges automatically
from the specific data under analysis, sometimes in ways that no human
can explain. In this case, source code alone teaches a reviewer very little,
since the code only exposes the machine learning method used and not
the data-driven decision rule.13
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In machine learning, the job of the computer scientist is to assemble
a training dataset and to program a system that is capable of learning
from that data. The outcome of training is a collection of millions of
fine-tuned parameter values that configure an algorithm. The algorithms
that computer scientists program in modern machine learning are embar-
rassingly simple by the standards of classic computer science, but they
are enormously rich and expressive by virtue of their having millions of
parameters.

The backbone of machine learning is a simple method, called gradi-
ent descent .14 It is through gradient descent that the system arrives at
the optimum settings for these millions of parameters. It is how the sys-
tem achieves its fine-tuning. To be clear, it is not the human programmer
who fine tunes the system; it is a mathematical process that the human
programmer sets in motion that does the fine-tuning. Thus built on its
backbone of gradient descent, machine learning has excelled at tasks such
as image classification and translation, tasks where formal specification and
mathematical logic have not worked. These achievements justify the enco-
mia that this simple method has received. “Gradient descent can write
code better than you.”15 After training, i.e. after configuring the algo-
rithm by setting its parameter values, the final stage is to invoke the algo-
rithm to make decisions on instances of new data. It is an algorithm that
is being invoked, in the trivial sense that it consists of simple steps which
can be executed on a computer; but its behavior cannot be understood
by reasoning logically about its source code, since its source code does
not include the learnt parameter values.

Moreover, it is futile to try to reason logically about the algorithm
even given all the parameter values. Such an analysis would be as futile as
analyzing a judge’s decision from electroencephalogram readings of her
brain. There are just too many values for an analyst to make sense of.
Instead, machine-learnt algorithms are evaluated empirically, by measur-
ing how they perform on test data. Computer scientists speak of “black-
box” and “white-box” analysis of an algorithm. In white-box analysis we
consider the internal structure of an algorithm, whereas in black-box anal-
ysis we consider only its inputs and outputs. Machine-learnt algorithms
are evaluated purely on the basis of which outputs they generate for which
inputs, i.e. by black-box analysis. Where computer scientists have sought
to address concerns about discrimination and fairness, they have done so
with black-box analysis as their basis.16 In summary, a machine learning
“algorithm” is better thought of as an opaque embodiment of its training
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dataset and evaluation criterion, not as a logical rules-based procedure.
Problems with which machine learning might be involved (such as unfair
discrimination) thus are not to be addressed as if it were a logical rules-
based procedure.

2.3 The Persistence of Algorithmic Logic

Yet people continue to address machine learning as if it were just that—a
logical rules-based procedure not different in kind from traditional com-
puter programming based on algorithmic logic. This inadequate way of
addressing machine learning—addressing it as though the source code of
an algorithm is responsible for producing the outputs—is not limited to
legal discourse. It is however very much visible there. Formal, algorithmic
descriptions of machine learning are ubiquitous in legal literature.17 The
persistence of algorithmic logic in descriptions of how computers work is
visible even among legal writers who otherwise acknowledge that machine
learning is different.18

Even Kroll et al., who recognize that machine learning “is particularly
ill-suited to source code analysis,” still refer to “a machine [that] has been
‘trained’ through exposure to a large quantity of data and infers a rule
from the patterns it observes.”19 To associate machine learning with “a
rule from the patterns it observes” will lead an unwary reader to conclude
that the machine has learnt a cleanly stated rule in the sense of law or of
decision trees. In fact, the machine has done no such thing. What it has
done is find a pattern which is “well beyond traditional interpretation,”
these being the much more apt words that Kroll et al. themselves use to
acknowledge the opacity of a machine learning mechanism.20

Kroll and his collaborators have addressed at length the challenges in
analyzing the computer systems on which society increasingly relies. We
will turn in Chapters 6–8 to extend our analogy between two revolutions
to some of the challenges. A word is in order here about the work of Kroll
et al., because that work highlights both the urgency of the challenges and
the traps that the persistence of algorithmic logic presents.

There are many white-box tools for analyzing algorithms, for example
based on mathematical analysis of the source code. Kroll et al. devote the
bulk of their paper on Accountable Algorithms (2017) to white-box soft-
ware engineering tools and to the related regulatory tools that can be used
to ensure accountability. The persistence of algorithmic logic here, again,
may lead to a trap: the unwary reader thinks machine learning algorithms
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are per se algorithms; here are tools for making algorithms accountable;
therefore we can make machine learning accountable. Kroll et al. mark
the trap with a warning flag, but it is a rather small one. They concede
in a footnote that all the white-box techniques they discuss simply do
not apply to machine learning mechanisms and that the best that can be
done is to regulate the decision to use machine learning: “Although some
machine learning systems produce results that are difficult to predict in
advance and well beyond traditional interpretation, the choice to field
such a system instead of one which can be interpreted and governed is
itself a decision about the system’s design.”21 This isn’t saying how to
understand machine learning better. It’s saying not to use machine learn-
ing. The result, if one were to follow Kroll et al., would be to narrow the
problem set to a much easier question—what to do about systems that
use only traditional algorithmic logic.

Indeed, it is the easier question that occupies most of Kroll et al.’s
Accountable Algorithms. Forty-five pages of it discuss white-box analysis
that doesn’t apply to machine learning systems. Eighteen pages then con-
sider black-box analysis. An exploration of black-box analysis is more to
the point—the point being to analyze machine learning.

But a trap is presented there as well. The pages on black-box analy-
sis are titled “Designing algorithms to ensure fidelity to substantive pol-
icy choices.” Black-box analysis by definition is agnostic as to the design
of the “algorithms” that are producing the results it analyzes. Black-box
analysis is concerned with the output of the system, not with the inner
workings that generate the output. To suggest that “[d]esigning algo-
rithms” the right way will “ensure fidelity” to some external value is to
fall into the algorithmic trap. It is to assume that algorithmic logic is at
work, when the real challenge involves machine learning systems, the dis-
tinctive feature of which is that they operate outside that logic. Black-box
analysis, which Kroll et al. suggest relies upon the design of an algorithm,
in fact works just as well in analyzing decisions made by a flock of dys-
peptic parrots.

Kroll in a later paper expands the small flag footnote and draws a dis-
tinction between systems and algorithms.22 As Kroll uses the words, the
system includes the human sociotechnical context—the power dynamics
and the human values behind the design goals, and so on—whereas the
algorithm is the technical decision-making mechanism embedded in the
system. It is the “system,” in the sense that he stipulates, that mainly
concerns him.23 Kroll argues that a machine learning “system” is neces-
sarily scrutable, since it is a system built by human engineers, and human
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choices can always be scrutinized. But, once more, this is an observation
that would apply just as much if the engineers’ choice was to use the
parrot flock. It is the essence of the black-box that we know only what
output it gives, whether a name, a color, a spatial coordinate, or a squawk.
We don’t know how it arrived at the output. In so far as Kroll addresses
machine learning itself, he does not offer tools to impart scrutability to
it but, instead, only this: “the question of how to build effective white-
box testing regimes for machine learning systems is far from settled.”24

To say that white-box testing doesn’t produce “settled” answers to black-
box questions is an understatement. And the problem it understates is the
very problem that activists and political institutions are calling on com-
puter scientists to address: how to test a machine learning system to assure
that it does not have undesirable effects. What one is left with, in talking
about machine learning this way, is a hope: namely, a hope that machine
learning, even though it may be the most potent mechanism yet devised
for computational operations, will not be built into “systems” by the
many individuals and institutions who stand to profit from its use. Explo-
ration of white-box, logical models of scrutability reveals little or nothing
about machine learning. Insistence on such exploration only highlights
the persistence of algorithmic logic notwithstanding the revolution that
this technology represents.

Many accounts of machine learning aimed at non-specialists display
these shortcomings. Lawyers, as a particular group of non-specialist, are
perhaps particularly susceptible to misguided appeals to logical models of
computing. It is true that statutory law has been compared to computer
source code25; lawyers who are at heart formalists may find the compar-
ison comforting.26 It is also true that an earlier generation of software
could solve certain fairly hard legal problems, especially where a statutory
and regulatory regime, like the tax code, is concerned. Machine learning,
however, is not limited in its applications to tasks that, like calculating a
tax liability, are themselves algorithmic (in the sense that a human oper-
ator can readily describe the tasks as a logical progression applying fixed
rules to given facts). Computer source code is not the characteristic of
machine learning that sets it apart from the kind of computing that came
before. Lawyers must let go the idea that logic—the stepwise deduction
of solutions by applying a rule—is what’s at work in the machine learning
age. Herein, we posit, reading Holmes has a salutary effect.

Holmes made clear his position by contrasting it against that taken by
jurists of what we might, if anachronistically, call the algorithmic school,
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that is to say the formalists. In Lochner v. New York, perhaps his most
famous dissent, Holmes stated, “General propositions do not decide con-
crete cases.”27 This was to reject deductive reasoning in plain terms and
in high profile. Whether or not we think that is a good way to think
about law,28 it is precisely how we must think if we are to understand
machine learning; machine learning demands that we think beyond logic.
Computer scientists themselves, as much as lawyers and other laypersons,
ought to recognize this conceptual transition, for it is indispensable to the
emergence of machine learning which is now transforming their field and
so much beyond.

With the contrast in mind between formal ways of thinking about law
and about computing, we now will elaborate on the elements of post-
logic thinking that law and computing share: data, pattern finding, and
prediction.
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