Skip to main content

The Role of Genetics in Cardiomyopathy

  • Living reference work entry
  • First Online:
Pediatric Cardiology

Abstract

Cardiomyopathies are a heterogeneous group of diseases of the myocardium associated with mechanical and/or electrical dysfunction that usually exhibit inappropriate ventricular hypertrophy or dilation and are due to a variety of causes that frequently are genetic. Hypertrophic cardiomyopathy (HCM) is generally transmitted as an autosomal dominant trait, mainly caused by mutations in genes encoding cardiac sarcomere proteins. Dilated cardiomyopathy (DCM) is the most common cause of pediatric cardiomyopathy, associated with over 50% of pediatric cardiomyopathy, and 25–30% have an identifiable familial component. Left ventricular noncompaction (LVNC) is a cardiomyopathy characterized by excessive reticulated trabecular wall formation, where children account for 9.5% of all patients. Restricted cardiomyopathy (RCM) is a rare form of pediatric cardiomyopathy with an incidence estimated at 4.5%. Recent progress has provided us novel insights in the field of cardiovascular genetics and in our understanding of the genetic basis of various cardiomyopathies. Increasing numbers in identification and validation of genetic markers of disease risk, disease progression, and response to therapy would eventually improve outcomes and genetic counseling for patients and their families.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Maron BJ, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association scientific statement from the council on Clinical cardiology, heart failure and transplantation committee; Quality of care and outcomes research and functional genomics and translational biology interdisciplinary working groups; and council on epidemiology and prevention. Circulation. 2006;113:1807–16. https://doi.org/10.1161/CIRCULATIONAHA.106.174287.

    Article  PubMed  Google Scholar 

  2. Elliott P, et al. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology working group on myocardial and pericardial diseases. Eur Heart J. 2008;29:270–6. https://doi.org/10.1093/eurheartj/ehm342.

    Article  PubMed  Google Scholar 

  3. Arbustini E, et al. The MOGE(S) classification of cardiomyopathy for clinicians. J Am Coll Cardiol. 2014;64:304–18. https://doi.org/10.1016/j.jacc.2014.05.027.

    Article  PubMed  Google Scholar 

  4. Akhtar M, Elliott P. The genetics of hypertrophic cardiomyopathy. Glob Cardiol Sci Pract. 2018;36 https://doi.org/10.21542/gcsp.2018.36.

  5. Richard P, et al. Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation. 2003;107:2227–32. https://doi.org/10.1161/01.CIR.0000066323.15244.54.

    Article  PubMed  Google Scholar 

  6. Lopes LR, Rahman MS, Elliott PM. A systematic review and meta-analysis of genotype-phenotype associations in patients with hypertrophic cardiomyopathy caused by sarcomeric protein mutations. Heart. 2013;99:1800–11. https://doi.org/10.1136/heartjnl-2013-303939.

    Article  PubMed  Google Scholar 

  7. Erdmann J, et al. Mutation spectrum in a large cohort of unrelated consecutive patients with hypertrophic cardiomyopathy. Clin Genet. 2003;64:339–49. https://doi.org/10.1034/j.1399-0004.2003.00151.x.

    Article  CAS  PubMed  Google Scholar 

  8. Seidman JG, Seidman C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell. 2001;104:557–67. https://doi.org/10.1016/s0092-8674(01)00242-2.

    Article  CAS  PubMed  Google Scholar 

  9. Kimura A. Molecular basis of hereditary cardiomyopathy: abnormalities in calcium sensitivity, stretch response, stress response and beyond. J Hum Genet. 2010;55:81–90. https://doi.org/10.1038/jhg.2009.138.

    Article  CAS  PubMed  Google Scholar 

  10. Landstrom AP, Ackerman MJ. Mutation type is not clinically useful in predicting prognosis in hypertrophic cardiomyopathy. Circulation. 2010;122:2441–9; discussion 2450. https://doi.org/10.1161/CIRCULATIONAHA.110.954446.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bos JM, Towbin JA, Ackerman MJ. Diagnostic, prognostic, and therapeutic implications of genetic testing for hypertrophic cardiomyopathy. J Am Coll Cardiol. 2009;54:201–11. https://doi.org/10.1016/j.jacc.2009.02.075.

    Article  CAS  PubMed  Google Scholar 

  12. Chien KR. Genotype, phenotype: upstairs, downstairs in the family of cardiomyopathies. J Clin Invest. 2003;111:175–8. https://doi.org/10.1172/JCI17612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Authors/Task Force, Elliott PM, et al. ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014;35(2733–2779):2014. https://doi.org/10.1093/eurheartj/ehu284.

    Article  Google Scholar 

  14. Maron B, Clinical J. Course and Management of Hypertrophic Cardiomyopathy. N Engl J Med. 2018;379:1977. https://doi.org/10.1056/NEJMc1812159.

    Article  PubMed  Google Scholar 

  15. Marian AJ, Braunwald E. Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy. Circ Res. 2017;121:749–70. https://doi.org/10.1161/CIRCRESAHA.117.311059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Coats CJ, Elliott PM. Genetic biomarkers in hypertrophic cardiomyopathy. Biomark Med. 2013;7:505–16. https://doi.org/10.2217/bmm.13.79.

    Article  CAS  PubMed  Google Scholar 

  17. Teekakirikul P, et al. Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-beta. J Clin Invest. 2010;120:3520–9. https://doi.org/10.1172/JCI42028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burke MA, Cook SA, Seidman JG, Seidman CE. Clinical and mechanistic insights into the genetics of cardiomyopathy. J Am Coll Cardiol. 2016;68:2871–86. https://doi.org/10.1016/j.jacc.2016.08.079.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Maron BJ, Maron MS, Semsarian C. Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. J Am Coll Cardiol. 2012;60:705–15. https://doi.org/10.1016/j.jacc.2012.02.068.

    Article  PubMed  Google Scholar 

  20. Harris SP, Lyons RG, Bezold KL. In the thick of it: HCM-causing mutations in myosin binding proteins of the thick filament. Circ Res. 2011;108:751–64. https://doi.org/10.1161/CIRCRESAHA.110.231670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Morita H, et al. Shared genetic causes of cardiac hypertrophy in children and adults. N Engl J Med. 2008;358:1899–908. https://doi.org/10.1056/NEJMoa075463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Charron P, et al. Genetic counselling and testing in cardiomyopathies: a position statement of the European Society of Cardiology Working Group on myocardial and pericardial diseases. Eur Heart J. 2010;31:2715–26. https://doi.org/10.1093/eurheartj/ehq271.

    Article  PubMed  Google Scholar 

  23. Carrier L, et al. Organization and sequence of human cardiac myosin binding protein C gene (MYBPC3) and identification of mutations predicted to produce truncated proteins in familial hypertrophic cardiomyopathy. Circ Res. 1997;80:427–34.

    Article  CAS  PubMed  Google Scholar 

  24. Ingles J, et al. Nonfamilial Hypertrophic Cardiomyopathy: Prevalence, Natural History, and Clinical Implications. Circ Cardiovasc Genet, 2017;10 https://doi.org/10.1161/CIRCGENETICS.116.001620.

  25. Olivotto I, et al. Microvascular function is selectively impaired in patients with hypertrophic cardiomyopathy and sarcomere myofilament gene mutations. J Am Coll Cardiol. 2011;58:839–48. https://doi.org/10.1016/j.jacc.2011.05.018.

    Article  PubMed  Google Scholar 

  26. Girolami F, et al. Clinical features and outcome of hypertrophic cardiomyopathy associated with triple sarcomere protein gene mutations. J Am Coll Cardiol. 2010;55:1444–53. https://doi.org/10.1016/j.jacc.2009.11.062.

    Article  CAS  PubMed  Google Scholar 

  27. Fujita T, et al. Sarcomere gene mutations are associated with increased cardiovascular events in left ventricular hypertrophy: results from multicenter registration in Japan. JACC Heart Fail. 2013;1:459–66. https://doi.org/10.1016/j.jchf.2013.08.007.

    Article  PubMed  Google Scholar 

  28. Lopes LR, et al. Novel genotype-phenotype associations demonstrated by high-throughput sequencing in patients with hypertrophic cardiomyopathy. Heart. 2015;101:294–301. https://doi.org/10.1136/heartjnl-2014-306387.

    Article  CAS  PubMed  Google Scholar 

  29. Olivotto I, et al. Myofilament protein gene mutation screening and outcome of patients with hypertrophic cardiomyopathy. Mayo Clin Proc. 2008;83:630–8. https://doi.org/10.4065/83.6.630.

    Article  CAS  PubMed  Google Scholar 

  30. van Velzen HG, et al. Value of genetic testing for the prediction of long-term outcome in patients with hypertrophic cardiomyopathy. Am J Cardiol. 2016;118:881–7. https://doi.org/10.1016/j.amjcard.2016.06.038.

    Article  PubMed  Google Scholar 

  31. Kawas RF, et al. A small-molecule modulator of cardiac myosin acts on multiple stages of the myosin chemomechanical cycle. J Biol Chem. 2017;292:16571–7. https://doi.org/10.1074/jbc.M117.776815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Redfield MM, et al. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA. 2003;289:194–202. https://doi.org/10.1001/jama.289.2.194.

    Article  PubMed  Google Scholar 

  33. Hershberger RE, Hedges DJ, Morales A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol. 2013;10:531–47. https://doi.org/10.1038/nrcardio.2013.105.

    Article  CAS  PubMed  Google Scholar 

  34. Baldasseroni S, et al. Left bundle-branch block is associated with increased 1-year sudden and total mortality rate in 5517 outpatients with congestive heart failure: a report from the Italian network on congestive heart failure. Am Heart J. 2002;143:398–405. https://doi.org/10.1067/mhj.2002.121264.

    Article  PubMed  Google Scholar 

  35. Rosenbaum AN, Agre KE, Pereira NL. Genetics of dilated cardiomyopathy: practical implications for heart failure management. Nat Rev Cardiol. 2019; https://doi.org/10.1038/s41569-019-0284-0.

  36. Cahill TJ, Ashrafian H, Watkins H. Genetic cardiomyopathies causing heart failure. Circ Res. 2013;113:660–75. https://doi.org/10.1161/CIRCRESAHA.113.300282.

    Article  CAS  PubMed  Google Scholar 

  37. Burkett EL, Hershberger RE. Clinical and genetic issues in familial dilated cardiomyopathy. J Am Coll Cardiol. 2005;45:969–81. https://doi.org/10.1016/j.jacc.2004.11.066.

    Article  CAS  PubMed  Google Scholar 

  38. Jefferies JL, Towbin JA. Dilated cardiomyopathy. Lancet. 2010;375:752–62. https://doi.org/10.1016/S0140-6736(09)62023-7.

    Article  PubMed  Google Scholar 

  39. Michels VV, et al. The frequency of familial dilated cardiomyopathy in a series of patients with idiopathic dilated cardiomyopathy. N Engl J Med. 1992;326:77–82. https://doi.org/10.1056/NEJM199201093260201.

    Article  CAS  PubMed  Google Scholar 

  40. Grunig E, et al. Frequency and phenotypes of familial dilated cardiomyopathy. J Am Coll Cardiol. 1998;31:186–94. https://doi.org/10.1016/s0735-1097(97)00434-8.

    Article  CAS  PubMed  Google Scholar 

  41. Hershberger RE, et al. Genetic evaluation of cardiomyopathy: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2018;20:899–909. https://doi.org/10.1038/s41436-018-0039-z.

    Article  PubMed  Google Scholar 

  42. Lakdawala NK, et al. Genetic testing for dilated cardiomyopathy in clinical practice. J Card Fail. 2012;18:296–303. https://doi.org/10.1016/j.cardfail.2012.01.013.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ganesh SK, et al. Genetics and genomics for the prevention and treatment of cardiovascular disease: update: a scientific statement from the American Heart Association. Circulation. 2013;128:2813–51. https://doi.org/10.1161/01.cir.0000437913.98912.1d.

    Article  PubMed  Google Scholar 

  44. Pugh TJ, et al. The landscape of genetic variation in dilated cardiomyopathy as surveyed by clinical DNA sequencing. Genet Med. 2014;16:601–8. https://doi.org/10.1038/gim.2013.204.

    Article  CAS  PubMed  Google Scholar 

  45. Haas J, et al. Atlas of the clinical genetics of human dilated cardiomyopathy. Eur Heart J. (2015) ;36 : 1123–1135a. https://doi.org/10.1093/eurheartj/ehu301.

  46. Mahon NG, et al. Echocardiographic evaluation in asymptomatic relatives of patients with dilated cardiomyopathy reveals preclinical disease. Ann Intern Med. 2005;143:108–15. https://doi.org/10.7326/0003-4819-143-2-200507190-00009.

    Article  PubMed  Google Scholar 

  47. Fatkin D, et al. Evaluation of left ventricular enlargement as a marker of early disease in familial dilated cardiomyopathy. Circ Cardiovasc Genet. 2011;4:342–8. https://doi.org/10.1161/CIRCGENETICS.110.958918.

    Article  PubMed  Google Scholar 

  48. Tobita T, et al. Genetic basis of cardiomyopathy and the genotypes involved in prognosis and left ventricular reverse remodeling. Sci Rep. 2018;8:1998. https://doi.org/10.1038/s41598-018-20114-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bagnall RD, et al. Whole genome sequencing improves outcomes of genetic testing in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2018;72:419–29. https://doi.org/10.1016/j.jacc.2018.04.078.

    Article  PubMed  Google Scholar 

  50. Li L, Bainbridge MN, Tan Y, Willerson JT, Marian AJ. A Potential Oligogenic Etiology of Hypertrophic Cardiomyopathy: A Classic Single-Gene Disorder. Circ Res. 2017;120:1084–90. https://doi.org/10.1161/CIRCRESAHA.116.310559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Heinig M, et al. Natural genetic variation of the cardiac transcriptome in non-diseased donors and patients with dilated cardiomyopathy. Genome Biol. 2017;18:170. https://doi.org/10.1186/s13059-017-1286-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tatman PD, et al. Pediatric dilated cardiomyopathy hearts display a unique gene expression profile. JCI Insight. 2017;2 https://doi.org/10.1172/jci.insight.94249.

  53. Nomura S, et al. Cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure. Nat Commun. 2018;9:4435. https://doi.org/10.1038/s41467-018-06639-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Meder B, et al. Epigenome-Wide Association Study Identifies Cardiac Gene Patterning and a Novel Class of Biomarkers for Heart Failure. Circulation. 2017;136:1528–44. https://doi.org/10.1161/CIRCULATIONAHA.117.027355.

    Article  CAS  PubMed  Google Scholar 

  55. Gilsbach R, et al. Distinct epigenetic programs regulate cardiac myocyte development and disease in the human heart in vivo. Nat Commun. 2018;9:391. https://doi.org/10.1038/s41467-017-02762-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cusanovich DA, et al. A single-cell atlas of in vivo mammalian chromatin accessibility. Cell. 65;174:1309–1324 e1318. https://doi.org/10.1016/j.cell.2018.06.052.

  57. Colak D, et al. Integrated left ventricular global transcriptome and proteome profiling in human end-stage dilated cardiomyopathy. PLoS One. 2016;11:e0162669. https://doi.org/10.1371/journal.pone.0162669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lau E, et al. Integrated omics dissection of proteome dynamics during cardiac remodeling. Nat Commun. 2018;9:120. https://doi.org/10.1038/s41467-017-02467-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Doll S, et al. Region and cell-type resolved quantitative proteomic map of the human heart. Nat Commun. 2017;8:1469. https://doi.org/10.1038/s41467-017-01747-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chavez JD, et al. Chemical Crosslinking Mass Spectrometry Analysis of Protein Conformations and Supercomplexes in Heart Tissue. Cell Syst. 2018;6:136–141 e135. https://doi.org/10.1016/j.cels.2017.10.017.

    Article  CAS  Google Scholar 

  61. Kuzmanov U, et al. Global phosphoproteomic profiling reveals perturbed signaling in a mouse model of dilated cardiomyopathy. Proc Natl Acad Sci U S A. 2016;113:12592–7. https://doi.org/10.1073/pnas.1606444113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dey S, DeMazumder D, Sidor A, Foster DB, O’Rourke B. Mitochondrial ROS Drive Sudden Cardiac Death and Chronic Proteome Remodeling in Heart Failure. Circ Res. 2018;123:356–71. https://doi.org/10.1161/CIRCRESAHA.118.312708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bilic P, et al. Serum proteome profiling in canine idiopathic dilated cardiomyopathy using TMT-based quantitative proteomics approach. J Proteome. 2018;179:110–21. https://doi.org/10.1016/j.jprot.2018.03.007.

    Article  CAS  Google Scholar 

  64. Roura S, et al. Proteomic signature of circulating extracellular vesicles in dilated cardiomyopathy. Lab Investig. 2018;98:1291–9. https://doi.org/10.1038/s41374-018-0044-5.

    Article  CAS  PubMed  Google Scholar 

  65. West JA, et al. A targeted metabolomics assay for cardiac metabolism and demonstration using a mouse model of dilated cardiomyopathy. Metabolomics. 2016;12:59. https://doi.org/10.1007/s11306-016-0956-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tuunanen H, et al. Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation. 2006;114:2130–7. https://doi.org/10.1161/CIRCULATIONAHA.106.645184.

    Article  CAS  PubMed  Google Scholar 

  67. Alexander D, Lombardi R, Rodriguez G, Mitchell MM, Marian AJ. Metabolomic distinction and insights into the pathogenesis of human primary dilated cardiomyopathy. Eur J Clin Investig. 2011;41:527–38. https://doi.org/10.1111/j.1365-2362.2010.02441.x.

    Article  Google Scholar 

  68. Oechslin EN, Attenhofer Jost CH, Rojas JR, Kaufmann PA, Jenni R. Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol. 2000;36:493–500. https://doi.org/10.1016/s0735-1097(00)00755-5.

    Article  CAS  PubMed  Google Scholar 

  69. Pignatelli RH, et al. Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation. 2003;108:2672–8. https://doi.org/10.1161/01.CIR.0000100664.10777.B8.

    Article  PubMed  Google Scholar 

  70. Chin TK, Perloff JK, Williams RG, Jue K, Mohrmann R. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation. 1990;82:507–13. https://doi.org/10.1161/01.cir.82.2.507.

    Article  CAS  PubMed  Google Scholar 

  71. Jenni R, Rojas J, Oechslin E. Isolated noncompaction of the myocardium. N Engl J Med. 1999;340:966–7. https://doi.org/10.1056/NEJM199903253401215.

    Article  CAS  PubMed  Google Scholar 

  72. Ichida F, et al. Clinical features of isolated noncompaction of the ventricular myocardium: long-term clinical course, hemodynamic properties, and genetic background. J Am Coll Cardiol. 1999;34:233–40. https://doi.org/10.1016/s0735-1097(99)00170-9.

    Article  CAS  PubMed  Google Scholar 

  73. Wang C, et al. A wide and specific spectrum of genetic variants and genotype-phenotype correlations revealed by next-generation sequencing in patients with left ventricular noncompaction. J Am Heart Assoc. 2017;6 https://doi.org/10.1161/JAHA.117.006210.

  74. van Waning JI, et al. Genetics, Clinical features, and long-term outcome of noncompaction cardiomyopathy. J Am Coll Cardiol. 2018;71:711–22. https://doi.org/10.1016/j.jacc.2017.12.019.

    Article  PubMed  Google Scholar 

  75. Beaton A, Mocumbi AO. Diagnosis and Management Of Endomyocardial Fibrosis. Cardiol Clin. 2017;35:87–98. https://doi.org/10.1016/j.ccl.2016.08.005.

    Article  PubMed  Google Scholar 

  76. Towbin JA. Inherited cardiomyopathies. Circ J. 2014;78:2347–56. https://doi.org/10.1253/circj.cj-14-0893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kholova I, Niessen HW. Amyloid in the cardiovascular system: a review. J Clin Pathol. 2005;58:125–33. https://doi.org/10.1136/jcp.2004.017293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Morita H, Seidman J, Seidman CE. Genetic causes of human heart failure. J Clin Invest. 2005;115:518–26. https://doi.org/10.1172/JCI24351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Veselka J, Anavekar NS, Charron P. Hypertrophic obstructive cardiomyopathy. Lancet. 2017;389:1253–67. https://doi.org/10.1016/S0140-6736(16)31321-6.

    Article  PubMed  Google Scholar 

  80. Mogensen J, et al. Frequency and clinical expression of cardiac troponin I mutations in 748 consecutive families with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2004;44:2315–25. https://doi.org/10.1016/j.jacc.2004.05.088.

    Article  CAS  PubMed  Google Scholar 

  81. Moolman JC, et al. Sudden death due to troponin T mutations. J Am Coll Cardiol. 1997;29:549–55. https://doi.org/10.1016/s0735-1097(96)00530-x.

    Article  CAS  PubMed  Google Scholar 

  82. Watkins H, et al. Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy. N Engl J Med. 1995;332:1058–64. https://doi.org/10.1056/NEJM199504203321603.

    Article  CAS  PubMed  Google Scholar 

  83. Fujino N, et al. A novel mutation Lys273Glu in the cardiac troponin T gene shows high degree of penetrance and transition from hypertrophic to dilated cardiomyopathy. Am J Cardiol. 2002;89:29–33. https://doi.org/10.1016/s0002-9149(01)02158-0.

    Article  CAS  PubMed  Google Scholar 

  84. Kokado H, et al. Clinical features of hypertrophic cardiomyopathy caused by a Lys183 deletion mutation in the cardiac troponin I gene. Circulation. 2000;102:663–9. https://doi.org/10.1161/01.cir.102.6.663.

    Article  CAS  PubMed  Google Scholar 

  85. Regitz-Zagrosek V, Erdmann J, Wellnhofer E, Raible J, Fleck E. Novel mutation in the alpha-tropomyosin gene and transition from hypertrophic to hypocontractile dilated cardiomyopathy. Circulation. 2000;102:E112–6. https://doi.org/10.1161/01.cir.102.17.e112.

    Article  CAS  PubMed  Google Scholar 

  86. Bos JM, Ackerman MJ. Z-disc genes in hypertrophic cardiomyopathy: stretching the cardiomyopathies? J Am Coll Cardiol. 2010;55:1136–8. https://doi.org/10.1016/j.jacc.2009.12.016.

    Article  CAS  PubMed  Google Scholar 

  87. Knoll R, et al. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell. 2002;111:943–55. https://doi.org/10.1016/s0092-8674(02)01226-6.

    Article  CAS  PubMed  Google Scholar 

  88. Olson TM, et al. Metavinculin mutations alter actin interaction in dilated cardiomyopathy. Circulation. 2002;105:431–7. https://doi.org/10.1161/hc0402.102930.

    Article  CAS  PubMed  Google Scholar 

  89. Villard E, et al. Mutation screening in dilated cardiomyopathy: prominent role of the beta myosin heavy chain gene. Eur Heart J. 2005;26:794–803. https://doi.org/10.1093/eurheartj/ehi193.

    Article  CAS  PubMed  Google Scholar 

  90. Geisterfer-Lowrance AA, et al. A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell. 1990;62:999–1006. https://doi.org/10.1016/0092-8674(90)90274-i.

    Article  CAS  PubMed  Google Scholar 

  91. Watkins H, et al. Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N Engl J Med. 1992;326:1108–14. https://doi.org/10.1056/NEJM199204233261703.

    Article  CAS  PubMed  Google Scholar 

  92. Lopes LR, Elliott PM. A straightforward guide to the sarcomeric basis of cardiomyopathies. Heart. 2014;100:1916–23. https://doi.org/10.1136/heartjnl-2014-305645.

    Article  CAS  PubMed  Google Scholar 

  93. Keren A, Syrris P, McKenna WJ. Hypertrophic cardiomyopathy: the genetic determinants of clinical disease expression. Nat Clin Pract Cardiovasc Med. 2008;5:158–68. https://doi.org/10.1038/ncpcardio1110.

    Article  CAS  PubMed  Google Scholar 

  94. Barefield D, et al. Haploinsufficiency of MYBPC3 exacerbates the development of hypertrophic cardiomyopathy in heterozygous mice. J Mol Cell Cardiol. 2015;79:234–43. https://doi.org/10.1016/j.yjmcc.2014.11.018.

    Article  CAS  PubMed  Google Scholar 

  95. Marston S, et al. Evidence from human myectomy samples that MYBPC3 mutations cause hypertrophic cardiomyopathy through haploinsufficiency. Circ Res. 2009;105:219–22. https://doi.org/10.1161/CIRCRESAHA.109.202440.

    Article  CAS  PubMed  Google Scholar 

  96. Woo A, et al. Mutations of the beta myosin heavy chain gene in hypertrophic cardiomyopathy: critical functional sites determine prognosis. Heart. 2003;89:1179–85. https://doi.org/10.1136/heart.89.10.1179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yang Q, et al. In vivo modeling of myosin binding protein C familial hypertrophic cardiomyopathy. Circ Res. 1999;85:841–7. https://doi.org/10.1161/01.res.85.9.841.

    Article  CAS  PubMed  Google Scholar 

  98. Razumova MV, et al. Effects of the N-terminal domains of myosin binding protein-C in an in vitro motility assay: evidence for long-lived cross-bridges. J Biol Chem. 2006;281:35846–54. https://doi.org/10.1074/jbc.M606949200.

    Article  CAS  PubMed  Google Scholar 

  99. Lan F, et al. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell. 2013;12:101–13. https://doi.org/10.1016/j.stem.2012.10.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Guinto PJ, Haim TE, Dowell-Martino CC, Sibinga N, Tardiff JC. Temporal and mutation-specific alterations in Ca2+ homeostasis differentially determine the progression of cTnT-related cardiomyopathies in murine models. Am J Physiol Heart Circ Physiol. 2009;297:H614–26. https://doi.org/10.1152/ajpheart.01143.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Marsiglia JD, et al. Screening of MYH7, MYBPC3, and TNNT2 genes in Brazilian patients with hypertrophic cardiomyopathy. Am Heart J. 2013;166:775–82. https://doi.org/10.1016/j.ahj.2013.07.029.

    Article  CAS  PubMed  Google Scholar 

  102. Tran Vu MT, et al. Presence of hypertrophic cardiomyopathy related gene mutations and Clinical manifestations in Vietnamese patients with hypertrophic cardiomyopathy. Circ J. 2019;83:1908–16. https://doi.org/10.1253/circj.CJ-19-0190.

    Article  PubMed  Google Scholar 

  103. Pasquale F, et al. Long-term outcomes in hypertrophic cardiomyopathy caused by mutations in the cardiac troponin T gene. Circ Cardiovasc Genet. 2012;5:10–7. https://doi.org/10.1161/CIRCGENETICS.111.959973.

    Article  CAS  PubMed  Google Scholar 

  104. Ferrantini C, et al. Pathogenesis of hypertrophic cardiomyopathy is mutation rather than disease specific: a comparison of the cardiac troponin T E163R and R92Q mouse models. J Am Heart Assoc. 2017;6 https://doi.org/10.1161/JAHA.116.005407.

  105. Gimeno JR, et al. Hypertrophic cardiomyopathy. A study of the troponin-T gene in 127 Spanish families. Rev Esp Cardiol. 2009;62:1473–7.

    Article  PubMed  Google Scholar 

  106. Lombardi R, et al. Differential interactions of thin filament proteins in two cardiac troponin T mouse models of hypertrophic and dilated cardiomyopathies. Cardiovasc Res. 2008;79:109–17. https://doi.org/10.1093/cvr/cvn078.

    Article  CAS  PubMed  Google Scholar 

  107. Maass AH, Ikeda K, Oberdorf-Maass S, Maier SK, Leinwand LA. Hypertrophy, fibrosis, and sudden cardiac death in response to pathological stimuli in mice with mutations in cardiac troponin T. Circulation. 2004;110:2102–9. https://doi.org/10.1161/01.CIR.0000144460.84795.E3.

    Article  CAS  PubMed  Google Scholar 

  108. Tardiff JC, et al. Cardiac troponin T mutations result in allele-specific phenotypes in a mouse model for hypertrophic cardiomyopathy. J Clin Invest. 1999;104:469–81. https://doi.org/10.1172/JCI6067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Palmer BM, et al. Differential cross-bridge kinetics of FHC myosin mutations R403Q and R453C in heterozygous mouse myocardium. Am J Physiol Heart Circ Physiol. 2004;287:H91–9. https://doi.org/10.1152/ajpheart.01015.2003.

    Article  CAS  PubMed  Google Scholar 

  110. Tyska MJ, et al. Single-molecule mechanics of R403Q cardiac myosin isolated from the mouse model of familial hypertrophic cardiomyopathy. Circ Res. 2000;86:737–44. https://doi.org/10.1161/01.res.86.7.737.

    Article  CAS  PubMed  Google Scholar 

  111. Vikhorev PG, et al. Abnormal contractility in human heart myofibrils from patients with dilated cardiomyopathy due to mutations in TTN and contractile protein genes. Sci Rep. 2017;7:14829. https://doi.org/10.1038/s41598-017-13675-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gramlich M, et al. Stress-induced dilated cardiomyopathy in a knock-in mouse model mimicking human titin-based disease. J Mol Cell Cardiol. 2009;47:352–8. https://doi.org/10.1016/j.yjmcc.2009.04.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Herman DS, et al. Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 2012;366:619–28. https://doi.org/10.1056/NEJMoa1110186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tayal U, et al. Phenotype and Clinical outcomes of titin cardiomyopathy. J Am Coll Cardiol. 2017;70:2264–74. https://doi.org/10.1016/j.jacc.2017.08.063.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Gerull B, et al. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat Genet. 2002;30:201–4. https://doi.org/10.1038/ng815.

    Article  CAS  PubMed  Google Scholar 

  116. Norton N, et al. Exome sequencing and genome-wide linkage analysis in 17 families illustrate the complex contribution of TTN truncating variants to dilated cardiomyopathy. Circ Cardiovasc Genet. 2013;6:144–53. https://doi.org/10.1161/CIRCGENETICS.111.000062.

    Article  CAS  PubMed  Google Scholar 

  117. Sylvius N, et al. In vivo and in vitro examination of the functional significances of novel Lamin gene mutations in heart failure patients. J Med Genet. 2005;42:639–47. https://doi.org/10.1136/jmg.2004.023283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Fatkin D, et al. Missense mutations in the rod domain of the Lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med. 1999;341:1715–24. https://doi.org/10.1056/NEJM199912023412302.

    Article  CAS  PubMed  Google Scholar 

  119. Parks SB, et al. Lamin a/C mutation analysis in a cohort of 324 unrelated patients with idiopathic or familial dilated cardiomyopathy. Am Heart J. 2008;156:161–9. https://doi.org/10.1016/j.ahj.2008.01.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. van Tintelen JP, et al. High yield of LMNA mutations in patients with dilated cardiomyopathy and/or conduction disease referred to cardiogenetics outpatient clinics. Am Heart J. 2007;154:1130–9. https://doi.org/10.1016/j.ahj.2007.07.038.

    Article  CAS  PubMed  Google Scholar 

  121. Dalakas MC, et al. Desmin myopathy, a skeletal myopathy with cardiomyopathy caused by mutations in the desmin gene. N Engl J Med. 2000;342:770–80. https://doi.org/10.1056/NEJM200003163421104.

    Article  CAS  PubMed  Google Scholar 

  122. Li D, et al. Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation. 1999;100:461–4. https://doi.org/10.1161/01.cir.100.5.461.

    Article  CAS  PubMed  Google Scholar 

  123. Begay RL, et al. FLNC gene splice mutations cause dilated cardiomyopathy. JACC Basic Transl Sci. 2016;1:344–59. https://doi.org/10.1016/j.jacbts.2016.05.004.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Selcen D, et al. Mutation in BAG3 causes severe dominant childhood muscular dystrophy. Ann Neurol. 2009;65:83–9. https://doi.org/10.1002/ana.21553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Brega A, Narula J, Arbustini E. Functional, structural, and genetic mitochondrial abnormalities in myocardial diseases. J Nucl Cardiol. 2001;8:89–97. https://doi.org/10.1067/mnc.2001.112755.

    Article  CAS  PubMed  Google Scholar 

  126. Zaragoza MV, Brandon MC, Diegoli M, Arbustini E, Wallace DC. Mitochondrial cardiomyopathies: how to identify candidate pathogenic mutations by mitochondrial DNA sequencing, MITOMASTER and phylogeny. Eur J Hum Genet. 2011;19:200–7. https://doi.org/10.1038/ejhg.2010.169.

    Article  CAS  PubMed  Google Scholar 

  127. Anan R, et al. Cardiac involvement in mitochondrial diseases. A study on 17 patients with documented mitochondrial DNA defects. Circulation. 1995;91:955–61. https://doi.org/10.1161/01.cir.91.4.955.

    Article  CAS  PubMed  Google Scholar 

  128. Ichida F, et al. Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation. 2001;103:1256–63. https://doi.org/10.1161/01.cir.103.9.1256.

    Article  CAS  PubMed  Google Scholar 

  129. Captur G, Nihoyannopoulos P. Left ventricular non-compaction: genetic heterogeneity, diagnosis and clinical course. Int J Cardiol. 2010;140:145–53. https://doi.org/10.1016/j.ijcard.2009.07.003.

    Article  PubMed  Google Scholar 

  130. Meyers DE, Basha HI, Koenig MK. Mitochondrial cardiomyopathy: pathophysiology, diagnosis, and management. Tex Heart Inst J. 2013;40:385–94.

    PubMed  PubMed Central  Google Scholar 

  131. Bernier FP, et al. Diagnostic criteria for respiratory chain disorders in adults and children. Neurology. 2002;59:1406–11. https://doi.org/10.1212/01.wnl.0000033795.17156.00.

    Article  CAS  PubMed  Google Scholar 

  132. Porto AG, et al. Clinical spectrum of PRKAG2 syndrome. Circ Arrhythm Electrophysiol. 2016;9:e003121. https://doi.org/10.1161/CIRCEP.115.003121

  133. Murphy RT, et al. Adenosine monophosphate-activated protein kinase disease mimicks hypertrophic cardiomyopathy and Wolff-Parkinson-white syndrome: natural history. J Am Coll Cardiol. 2005;45:922–30. https://doi.org/10.1016/j.jacc.2004.11.053.

    Article  CAS  PubMed  Google Scholar 

  134. Arad M, et al. Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N Engl J Med. 2005;352:362–72. https://doi.org/10.1056/NEJMoa033349.

    Article  CAS  PubMed  Google Scholar 

  135. Arad M, et al. Transgenic mice overexpressing mutant PRKAG2 define the cause of Wolff-Parkinson-white syndrome in glycogen storage cardiomyopathy. Circulation. 2003;107:2850–6. https://doi.org/10.1161/01.CIR.0000075270.13497.2B.

    Article  CAS  PubMed  Google Scholar 

  136. Hinson JT, et al. Integrative analysis of PRKAG2 cardiomyopathy iPS and microtissue models identifies AMPK as a regulator of metabolism, survival, and fibrosis. Cell Rep. 2016;17:3292–304. https://doi.org/10.1016/j.celrep.2016.11.066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Danon MJ, et al. Lysosomal glycogen storage disease with normal acid maltase. Neurology. 1981;31:51–7. https://doi.org/10.1212/wnl.31.1.51.

    Article  CAS  PubMed  Google Scholar 

  138. Spada M, et al. High incidence of later-onset fabry disease revealed by newborn screening. Am J Hum Genet. 2006;79:31–40. https://doi.org/10.1086/504601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sweet ME, Mestroni L, Taylor MRG. Genetic infiltrative cardiomyopathies. Heart Fail Clin. 2018;14:215–24. https://doi.org/10.1016/j.hfc.2017.12.003.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Nakao S, et al. An atypical variant of Fabry’s disease in men with left ventricular hypertrophy. N Engl J Med. 1995;333:288–93. https://doi.org/10.1056/NEJM199508033330504.

    Article  CAS  PubMed  Google Scholar 

  141. Sado DM, et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging. 2013;6:392–8. https://doi.org/10.1161/CIRCIMAGING.112.000070.

    Article  PubMed  Google Scholar 

  142. Yamamoto S, et al. Focal reduction in cardiac (123)I-Metaiodobenzylguanidine uptake in patients with Anderson-Fabry disease. Circ J. 2016;80:2550–1. https://doi.org/10.1253/circj.CJ-16-0690.

    Article  PubMed  Google Scholar 

  143. Felis A, Whitlow M, Kraus A, Warnock DG, Wallace E. Current and investigational therapeutics for Fabry disease. Kidney Int Rep. 2020;5:407–13. https://doi.org/10.1016/j.ekir.2019.11.013.

    Article  PubMed  Google Scholar 

  144. Muntze J, et al. Oral chaperone therapy Migalastat for treating Fabry disease: enzymatic response and serum biomarker changes after 1 year. Clin Pharmacol Ther. 2019;105:1224–33. https://doi.org/10.1002/cpt.1321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Felice KJ, Alessi AG, Grunnet ML. Clinical variability in adult-onset acid maltase deficiency: report of affected sibs and review of the literature. Medicine (Baltimore). 1995;74:131–5. https://doi.org/10.1097/00005792-199505000-00002.

    Article  CAS  PubMed  Google Scholar 

  146. Colella P, Mingozzi F. Gene therapy for Pompe disease: the time is now. Hum Gene Ther. 2019;30:1245–62. https://doi.org/10.1089/hum.2019.109.

    Article  CAS  PubMed  Google Scholar 

  147. Aoki Y, Niihori T, Inoue S, Matsubara Y. Recent advances in RASopathies. J Hum Genet. 2016;61:33–9. https://doi.org/10.1038/jhg.2015.114.

    Article  CAS  PubMed  Google Scholar 

  148. Lin AE, et al. Clinical, pathological, and molecular analyses of cardiovascular abnormalities in Costello syndrome: a Ras/MAPK pathway syndrome. Am J Med Genet A. 2011;155A:486–507. https://doi.org/10.1002/ajmg.a.33857.

    Article  PubMed  Google Scholar 

  149. Umeki I, et al. Delineation of LZTR1 mutation-positive patients with Noonan syndrome and identification of LZTR1 binding to RAF1-PPP1CB complexes. Hum Genet. 2019;138:21–35. https://doi.org/10.1007/s00439-018-1951-7.

    Article  CAS  PubMed  Google Scholar 

  150. Pierpont ME, et al. Cardio-facio-cutaneous syndrome: clinical features, diagnosis, and management guidelines. Pediatrics. 2014;134:e1149–62. https://doi.org/10.1542/peds.2013-3189.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Kamdar F, Garry DJ. Dystrophin-deficient cardiomyopathy. J Am Coll Cardiol. 2016;67:2533–46. https://doi.org/10.1016/j.jacc.2016.02.081.

    Article  CAS  PubMed  Google Scholar 

  152. Rajdev A, Groh WJ. Arrhythmias in the muscular dystrophies. Card Electrophysiol Clin. 2015;7:303–8. https://doi.org/10.1016/j.ccep.2015.03.011.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Ho R, Nguyen ML, Mather P. Cardiomyopathy in Becker muscular dystrophy: overview. World J Cardiol. 2016;8:356–61. https://doi.org/10.4330/wjc.v8.i6.356.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Schade van Westrum SM, et al. Cardiac abnormalities in a follow-up study on carriers of Duchenne and Becker muscular dystrophy. Neurology. 2011;77:62–6. https://doi.org/10.1212/WNL.0b013e318221ad14.

    Article  CAS  PubMed  Google Scholar 

  155. Mounkes LC, Burke B, Stewart CL. The A-type lamins: nuclear structural proteins as a focus for muscular dystrophy and cardiovascular diseases. Trends Cardiovasc Med. 2001;11:280–5. https://doi.org/10.1016/s1050-1738(01)00126-8.

    Article  CAS  PubMed  Google Scholar 

  156. Bonne G, et al. Mutations in the gene encoding Lamin a/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet. 1999;21:285–8. https://doi.org/10.1038/6799.

    Article  CAS  PubMed  Google Scholar 

  157. Nigro V, Savarese M. Genetic basis of limb-girdle muscular dystrophies: the 2014 update. Acta Myol. 2014;33:1–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Muchir A, Worman HJ. Emery-Dreifuss muscular dystrophy. Curr Neurol Neurosci Rep. 2007;7:78–83. https://doi.org/10.1007/s11910-007-0025-3.

    Article  CAS  PubMed  Google Scholar 

  159. Wahbia K, Furlingb D. Cardiovascular manifestations of myotonic dystrophy. Trends Cardiovasc Med. 2020;30:232–8. https://doi.org/10.1016/j.tcm.2019.06.001232-238.

    Article  Google Scholar 

  160. Groeneweg JA, et al. Clinical Presentation, Long-Term Follow-Up, and Outcomes of 1001 Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy Patients and Family Members. Circ Cardiovasc Genet. 2015;8:437–46. https://doi.org/10.1161/CIRCGENETICS.114.001003.

    Article  CAS  PubMed  Google Scholar 

  161. Wada Y, Ohno S, Aiba T, Horie M. Unique genetic background and outcome of non-Caucasian Japanese probands with arrhythmogenic right ventricular dysplasia/cardiomyopathy. Mol Genet Genomic Med. 2017;5:639–51. https://doi.org/10.1002/mgg3.311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Asatryan B, Medeiros-Domingo A. Translating emerging molecular genetic insights into clinical practice in inherited cardiomyopathies. J Mol Med. 2018;96:993–1024. https://doi.org/10.1007/s00109-018-1685-y.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Yamagishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kodo, K., Yamagishi, H. (2023). The Role of Genetics in Cardiomyopathy. In: Abdulla, Ri., et al. Pediatric Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-42937-9_74-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42937-9_74-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42937-9

  • Online ISBN: 978-3-030-42937-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics