Skip to main content

Pediatric Physical Activity Promotion, Exercise Therapy and Cardiac Rehabilitation

  • Living reference work entry
  • First Online:
Pediatric Cardiology

Abstract

The field of pediatric cardiology historically focused on exercise restriction due to perceived safety concerns with relatively little attention paid to physical activity promotion. Over time, the care of pediatric patients with congenital, acquired, and arrhythmic heart disease has evolved. With better survival and refined risk stratification, providers now also aim to improve patient quality of life and long-term health. Physical activity can improve both. Regular exercise participation supports physical, mental, and social health throughout the lifespan. Lifestyle habits that impact health develop at a young age. Exercise counseling should be part of every pediatric heart disease patient’s care. Some patients with more complex congenital heart disease, heart failure, arrhythmias and/or additional comorbidities may benefit from formal exercise consultation, evaluation, and prescription with input from appropriate specialists. Pediatric cardiac rehabilitation formalizes the exercise program and has been shown to be safe and effective at improving cardiorespiratory fitness in youth with heart disease. This chapter discusses how to promote safe and appropriate physical activity for all children, adolescents, and young adults with heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Benjamin EJ, Virani SS, Callaway CW, et al. Heart disease and stroke statistics – 2018 update: a report from the American Heart Association. Circulation. 2018;137:e67–e492.

    Article  PubMed  Google Scholar 

  2. Deanfield J, Thaulow E, Warnes C, Webb G, Kolbel F, Hoffman A, et al. Management of grown up congenital heart disease. Eur Heart J. 2003;24(11):1035–84.

    Article  PubMed  Google Scholar 

  3. Ferguson B. ACSM’s Guidelines for Exercise Testing and Prescription 9th Ed. 2014. J Can Chiropr Assoc. 2014;58(3):328.

    PubMed Central  Google Scholar 

  4. Dencker M, Thorsson O, Karlsson MK, Lindén C, Eiberg S, Wollmer P, et al. Gender differences and determinants of aerobic fitness in children aged 8–11 years. Eur J Appl Physiol. 2007;99(1):19–26.

    Article  PubMed  Google Scholar 

  5. Dencker M, Bugge A, Hermansen B, Andersen LB. Objectively measured daily physical activity related to aerobic fitness in young children. J Sports Sci. 2010;28(2):139–45.

    Article  PubMed  Google Scholar 

  6. Armstrong N, Balding J, Gentle P, Williams J, Kirby B. Peak oxygen uptake and physical activity in 11-to 16-year-olds. Pediatr Exerc Sci. 1990;2(4):349–58.

    Article  Google Scholar 

  7. Banks L, Mccrindle BW, Russell JL, Longmuir PE. Enhanced physiology for submaximal exercise in children after the fontan procedure. Med Sci Sports Exerc. 2013;45(4):615–21.

    Article  PubMed  Google Scholar 

  8. Dulfer K, Helbing WA, Duppen N, Utens EM. Associations between exercise capacity, physical activity, and psychosocial functioning in children with congenital heart disease: a systematic review. Eur J Prev Cardiol. 2014;21(10):1200–15.

    Article  PubMed  Google Scholar 

  9. Marshall SJ, Welk GJ. Definitions and measurement. In: Smith AL, Biddle SJ, editors. Youth physical activity and sedentary behavior: challenges and solutions. Champaign: Human Kinetics; 2008. p. 3–25.

    Chapter  Google Scholar 

  10. Katzmarzyk PT, Denstel KD, Beals K, Bolling C, Wright C, Crouter SE, et al. Results from The United States of America’s 2016 report card on physical activity for children and youth. J Phys Act Health. 2016;13(s2):S307–S13.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Telama R, Yang X, Leskinen E, Kankaanpää A, Hirvensalo M, Tammelin T, et al. Tracking of physical activity from early childhood through youth into adulthood. Med Sci Sports Exerc. 2014;46(5):955–62.

    Article  PubMed  Google Scholar 

  12. Ekelund U, Ja L, Sherar LB, Esliger DW, Griew P, Cooper A, et al. Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. JAMA. 2012;307(7):704–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kuzik N, Carson V, Andersen LB, Sardinha LB, Grøntved A, Hansen BH, et al. Physical activity and sedentary time associations with metabolic health across weight statuses in children and adolescents. Obesity. 2017;25:1762.

    Article  CAS  PubMed  Google Scholar 

  14. Janssen I, Wong SL, Colley R, Tremblay MS. The fractionalization of physical activity throughout the week is associated with the cardiometabolic health of children and youth. BMC Public Health. 2013;13(1):554.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Andersen LB, Harro M, Sardinha LB, Froberg K, Ekelund U, Brage S, et al. Physical activity and clustered cardiovascular risk in children: a cross-sectional study (The European Youth Heart Study). Lancet. 2006;368(9532):299–304.

    Article  PubMed  Google Scholar 

  16. Proudfoot NA, King-Dowling S, Cairney J, Bray SR, MacDonald MJ, Timmons BW. Physical activity and trajectories of cardiovascular health indicators during early childhood. Pediatrics. 2019;144(1):e20182242.

    Article  PubMed  Google Scholar 

  17. Lopez J, Voss C, Kuan M, Hemphill N, Sandor G, Harris KC. Physical activity is associated with better vascular function in children and adolescents with congenital heart disease. Can J Cardiol. 2019;36:1474.

    Article  PubMed  Google Scholar 

  18. McKay H, MacLean L, Petit M, MacKelvie-O’Brien K, Janssen P, Beck T, et al. “Bounce at the Bell”: a novel program of short bouts of exercise improves proximal femur bone mass in early pubertal children. Br J Sports Med. 2005;39(8):521–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dordel S, Bjarnason-Wehrens B, Lawrenz W, Leurs S, Rost R, Schickendantz S, et al. Zur Wirksamkeit motorischer Förderung von Kindern mit (teil-) korrigierten angeborenen Herzfehlern. Deutsche Zeitschrift für Sportmedizin. 1999;50(2):41–6.

    Google Scholar 

  20. Wiles NJ, Jones GT, Haase AM, Lawlor DA, Macfarlane GJ, Lewis G. Physical activity and emotional problems amongst adolescents. Soc Psychiatry Psychiatr Epidemiol. 2008;43(10):765.

    Article  PubMed  Google Scholar 

  21. Steptoe A, Butler N. Sports participation and emotional wellbeing in adolescents. Lancet. 1996;347(9018):1789–92.

    Article  CAS  PubMed  Google Scholar 

  22. Bai Y, Chen S, Laurson KR, Kim Y, Saint-Maurice PF, Welk GJ. The associations of youth physical activity and screen time with fatness and fitness: The 2012 NHANES National Youth Fitness Survey. PLoS One. 2016, 11(1):e0148038.

    Google Scholar 

  23. Wong ND, Hei TK, Qaqundah PY, Davidson DM, Bassin SL, Gold KV. Television viewing and pediatric hypercholesterolemia. Pediatrics. 1992;90(1):75–9.

    Article  CAS  PubMed  Google Scholar 

  24. Carson V, Hunter S, Kuzik N, Gray CE, Poitras VJ, Chaput J-P, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: an update. Appl Physiol Nutr Metab. 2016;41(6):S240–S65.

    Article  PubMed  Google Scholar 

  25. Takken T, Giardini A, Reybrouck T, Gewillig M, Hövels-Gürich H, Longmuir P, et al. Recommendations for physical activity, recreation sport, and exercise training in paediatric patients with congenital heart disease: a report from the Exercise, Basic & Translational Research Section of the European Association of Cardiovascular Prevention and Rehabilitation, the European Congenital Heart and Lung Exercise Group, and the Association for European Paediatric Cardiology. Eur J Prev Cardiol. 2012;19(5):1034–65.

    Article  CAS  PubMed  Google Scholar 

  26. Butte NF, Watson KB, Ridley K, Zakeri IF, McMurray RG, Pfeiffer KA, et al. A youth compendium of physical activities: activity codes and metabolic intensities. Med Sci Sports Exerc. 2018;50(2):246–56.

    Article  PubMed  Google Scholar 

  27. Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, et al. The physical activity guidelines for Americans. JAMA. 2018;320(19):2020–8.

    Article  PubMed  PubMed Central  Google Scholar 

  28. White DA, Oh Y, Willis EA. The effect of physical activity bout patterns on metabolic syndrome risk factors in youth: National Health and Nutrition Examination Survey 2003-2006. J Phys Act Health. 2018:1–10.

    Google Scholar 

  29. COUNCIL OC. Media use in school-aged children and adolescents. Pediatrics. 2016;138(5)

    Google Scholar 

  30. Tremblay MS, Carson V, Chaput J-P, Connor Gorber S, Dinh T, Duggan M, et al. Canadian 24-hour movement guidelines for children and youth: an integration of physical activity, sedentary behaviour, and sleep. Appl Physiol Nutr Metab. 2016;41(6):S311–S27.

    Article  PubMed  Google Scholar 

  31. Health AGDo. Australian 24-hour movement guidelines for children and young people (5–17 years): an integration of physical activity, sedentary behaviour, and sleep. 2019.

    Google Scholar 

  32. Adamo KB, Prince SA, Tricco AC, Connor-Gorber S, Tremblay M. A comparison of indirect versus direct measures for assessing physical activity in the pediatric population: a systematic review. Int J Pediatr Obes. 2009;4(1):2–27.

    Article  PubMed  Google Scholar 

  33. Kowalski KC, Crocker P, Donen R. The physical activity questionnaire for older children (PAQ-C) and adolescents (PAQ-A) Manual. 2004.

    Google Scholar 

  34. Voss C, Dean PH, Gardner RF, Duncombe SL, Harris KC. Validity and reliability of the physical activity questionnaire for Children (PAQ-C) and adolescents (PAQ-A) in individuals with congenital heart disease. PLoS One. 2017;12(4):e0175806.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Colley RC, Janssen I, Tremblay MS. Daily step target to measure adherence to physical activity guidelines in children. Med Sci Sports Exerc. 2012;44(5):977–82.

    Article  PubMed  Google Scholar 

  36. Voss C, Harris KC. Physical activity evaluation in children with congenital heart disease. Heart. 2017;103(18):1408–12.

    Article  PubMed  Google Scholar 

  37. Fredriksen P, Ingjer E, Thaulow E. Physical activity in children and adolescents with congenital heart disease. Aspects of measurements with an activity monitor. Cardiol Young. 2000;10(2):98–106.

    Article  CAS  PubMed  Google Scholar 

  38. Voss C, Gardner RF, Dean PH, Harris KC. Validity of commercial activity trackers in children with congenital heart disease. Can J Cardiol. 2017;33(6):799–805.

    Article  PubMed  Google Scholar 

  39. Koyak Z, Harris L, de Groot JR, Silversides CK, Oechslin EN, Bouma BJ, et al. Sudden cardiac death in adult congenital heart disease. Circulation. 2012;126(16):1944–54.

    Article  PubMed  Google Scholar 

  40. Longmuir PE, Brothers JA, de Ferranti SD, Hayman LL, Van Hare GF, Matherne GP, et al. Promotion of physical activity for children and adults with congenital heart disease: a scientific statement from the American Heart Association. Circulation. 2013;127(21):2147–59.

    Article  PubMed  Google Scholar 

  41. Massin MM, Hövels-Gürich HH, Gérard P, Seghaye M-C. Physical activity patterns of children after neonatal arterial switch operation. Ann Thorac Surg. 2006;81(2):665–70.

    Article  PubMed  Google Scholar 

  42. Müller J, Christov F, Schreiber C, Hess J, Hager A. Exercise capacity, quality of life, and daily activity in the long-term follow-up of patients with univentricular heart and total cavopulmonary connection. Eur Heart J. 2009;30(23):2915–20.

    Article  PubMed  Google Scholar 

  43. Arvidsson D, Slinde F, Hulthen L, Sunnegårdh J. Physical activity, sports participation and aerobic fitness in children who have undergone surgery for congenital heart defects. Acta Paediatr. 2009;98(9):1475–82.

    Article  CAS  PubMed  Google Scholar 

  44. Lunt D, Briffa T, Briffa NK, Ramsay J. Physical activity levels of adolescents with congenital heart disease. Aust J Physiother. 2003;49(1):43–50.

    Article  PubMed  Google Scholar 

  45. Ray TD, Henry K. Self-efficacy and physical activity in children with congenital heart disease: is there a relationship? J Spec Pediatr Nurs. 2011;16(2):105–12.

    Article  PubMed  Google Scholar 

  46. Ewalt LA, Danduran MJ, Strath SJ, Moerchen V, Swartz AM. Objectively assessed physical activity and sedentary behaviour does not differ between children and adolescents with and without a congenital heart defect: a pilot examination. Cardiol Young. 2012;22(1):34–41.

    Article  PubMed  Google Scholar 

  47. McCrindle BW, Williams RV, Mital S, Clark BJ, Russell JL, Klein G, et al. Physical activity levels in children and adolescents are reduced after the Fontan procedure, independent of exercise capacity, and are associated with lower perceived general health. Arch Dis Child. 2007;92(6):509–14.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Stone N, Obeid J, Dillenburg R, Milenkovic J, MacDonald MJ, Timmons BW. Objectively measured physical activity levels of young children with congenital heart disease. Cardiol Young. 2015;25(3):520–5.

    Article  PubMed  Google Scholar 

  49. Longmuir PE, Russell JL, Corey M, Faulkner G, McCrindle BW. Factors associated with the physical activity level of children who have the Fontan procedure. Am Heart J. 2011;161(2):411–7.

    Article  PubMed  Google Scholar 

  50. Voss C, Duncombe SL, Dean PH, de Souza AM, Harris KC. Physical activity and sedentary behavior in children with congenital heart disease. J Am Heart Assoc. 2017;6(3):e004665.

    Article  PubMed  PubMed Central  Google Scholar 

  51. White DA, Willis EA, Panchangam C, Teson KM, Watson JS, Birnbaum BF, et al. Physical Activity Patterns in Children and Adolescents With Heart Disease. Pediatr Exerc Sci. 2020;32:233–40.

    Article  PubMed  Google Scholar 

  52. Moola F, McCrindle BW, Longmuir PE. Physical activity participation in youth with surgically corrected congenital heart disease: devising guidelines so Johnny can participate. Paediatr Child Health. 2009;14(3):167–70.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bjarnason-Wehrens B, Dordel S, Schickendantz S, Krumm C, Bott D, Sreeram N, et al. Motor development in children with congenital cardiac diseases compared to their healthy peers. Cardiol Young. 2007;17(5):487–98.

    Article  PubMed  Google Scholar 

  54. Longmuir PE, Banks L, McCrindle BW. Cross-sectional study of motor development among children after the Fontan procedure. Cardiol Young. 2012;22(4):443–50.

    Article  PubMed  Google Scholar 

  55. Bergman AB, Stamm SJ. The morbidity of cardiac nondisease in schoolchildren. N Engl J Med. 1967;276(18):1008–13.

    Article  CAS  PubMed  Google Scholar 

  56. Moola F, Fusco C, Kirsh JA. “What I wish you knew”: social barriers toward physical activity in youth with congenital heart disease (CHD). Adapt Phys Act Q. 2011;28(1):56–77.

    Google Scholar 

  57. Ong L, Nolan RP, Irvine J, Kovacs AH. Parental overprotection and heart-focused anxiety in adults with congenital heart disease. Int J Behav Med. 2011;18(3):260–7.

    Article  PubMed  Google Scholar 

  58. Longmuir PE, McCrindle BW. Physical activity restrictions for children after the Fontan operation: disagreement between parent, cardiologist, and medical record reports. Am Heart J. 2009;157(5):853–9.

    Article  PubMed  Google Scholar 

  59. Mitchell JH, Haskell WL, Raven PB. Classification of sports. J Am Coll Cardiol. 1994;24(4):864–6.

    Article  CAS  PubMed  Google Scholar 

  60. Van Hare GF, Ackerman MJ, Juli-anne KE, Kovacs RJ, Myerburg RJ, Shafer KM, et al. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 4: congenital heart disease: a scientific statement from the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2015;66(21):2372–84.

    Article  PubMed  Google Scholar 

  61. Maron BJ, Zipes DP. 36th Bethesda conference: eligibility recommendations for competitive athletes with cardiovascular abnormalities. J Am Coll Cardiol. 2005;45(8):1318–21.

    Article  PubMed  Google Scholar 

  62. Mitchell JH, Haskell W, Snell P, Van Camp SP. Task force 8: classification of sports. J Am Coll Cardiol. 2005;45(8):1364–7.

    Article  PubMed  Google Scholar 

  63. Marcus BH, Simkin LR. The transtheoretical model: applications to exercise behavior. Med Sci Sports Exerc. 1994;26(11):1400–4.

    Article  CAS  PubMed  Google Scholar 

  64. McKillop A, Grace SL, Ghisi GLM, Allison KR, Banks L, Kovacs AH, et al. Adapted motivational interviewing to promote exercise in adolescents with congenital heart disease: a pilot trial. Pediatr Phys Ther. 2018;30(4):326–34.

    Article  PubMed  Google Scholar 

  65. Gauthier N, Curran T, O’Neill JA, Alexander ME, Rhodes J. Establishing a comprehensive pediatric cardiac fitness and rehabilitation program for congenital heart disease. Pediatr Cardiol. 2020;

    Google Scholar 

  66. American Association of Cardiovascular & Pulmonary Rehabilitation. Guidelines for cardiac rehabilitation and secondary prevention programs. 5th ed. Champaign: Human Kinetics; 2013. xii, 323 p.

    Google Scholar 

  67. Schoeppe S, Alley S, Rebar AL, Hayman M, Bray NA, Van Lippevelde W, et al. Apps to improve diet, physical activity and sedentary behaviour in children and adolescents: a review of quality, features and behaviour change techniques. Int J Behav Nutr Phys Act. 2017;14(1):83.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Budts W, Börjesson M, Chessa M, van Buuren F, Trigo Trindade P, Corrado D, et al. Physical activity in adolescents and adults with congenital heart defects: individualized exercise prescription. Eur Heart J. 2013;34(47):3669–74.

    Article  PubMed  Google Scholar 

  69. Ackerman MJ, Zipes DP, Kovacs RJ, Maron BJ. Eligibility and Disqualification Recommendations for Competitive Athletes With Cardiovascular Abnormalities: Task Force 10: The Cardiac Channelopathies: A Scientific Statement From the American Heart Association and American College of Cardiology. Circulation. 2015;132(22):e326–9.

    Article  PubMed  Google Scholar 

  70. Zipes DP, Link MS, Ackerman MJ, Kovacs RJ, Myerburg RJ, Estes NA 3rd. Eligibility and Disqualification Recommendations for Competitive Athletes With Cardiovascular Abnormalities: Task Force 9: Arrhythmias and Conduction Defects: A Scientific Statement From the American Heart Association and American College of Cardiology. Circulation. 2015;132(22):e315–25.

    Article  PubMed  Google Scholar 

  71. Maron BJ, Chaitman BR, Ackerman MJ, Bayés de Luna A, Corrado D, Crosson JE, et al. Recommendations for physical activity and recreational sports participation for young patients with genetic cardiovascular diseases. Circulation. 2004;109(22):2807–16.

    Article  PubMed  Google Scholar 

  72. Diller GP, Dimopoulos K, Okonko D, Uebing A, Broberg CS, Babu-Narayan S, et al. Heart rate response during exercise predicts survival in adults with congenital heart disease. J Am Coll Cardiol. 2006;48(6):1250–6.

    Article  PubMed  Google Scholar 

  73. Dimopoulos K, Okonko DO, Diller GP, Broberg CS, Salukhe TV, Babu-Narayan SV, et al. Abnormal ventilatory response to exercise in adults with congenital heart disease relates to cyanosis and predicts survival. Circulation. 2006;113(24):2796–802.

    Article  PubMed  Google Scholar 

  74. American College of Sports M. ACSM’s guidelines for exercise testing and prescription. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2010.

    Google Scholar 

  75. Smith SC Jr, Benjamin EJ, Bonow RO, Braun LT, Creager MA, Franklin BA, et al. AHA/ACCF Secondary Prevention and Risk Reduction Therapy for Patients with Coronary and other Atherosclerotic Vascular Disease: 2011 update: a guideline from the American Heart Association and American College of Cardiology Foundation. Circulation. 2011;124(22):2458–73.

    Article  PubMed  Google Scholar 

  76. Ades PA, Pashkow FJ, Nestor JR. Cost-effectiveness of cardiac rehabilitation after myocardial infarction. J Cardpulm Rehabil. 1997;17(4):222–31.

    Article  CAS  Google Scholar 

  77. Suaya JA, Shepard DS, Normand SL, Ades PA, Prottas J, Stason WB. Use of cardiac rehabilitation by Medicare beneficiaries after myocardial infarction or coronary bypass surgery. Circulation. 2007;116(15):1653–62.

    Article  PubMed  Google Scholar 

  78. Ades PA, Keteyian SJ, Wright JS, Hamm LF, Lui K, Newlin K, et al. Increasing cardiac rehabilitation participation from 20% to 70%: a road map from the million hearts cardiac rehabilitation collaborative. Mayo Clin Proc. 2017;92(2):234–42.

    Article  PubMed  Google Scholar 

  79. Bradley LM, Galioto FM, Vaccaro P, Hansen DA, Vaccaro J. Effect of intense aerobic training on exercise performance in children after surgical repair of tetralogy of Fallot or complete transposition of the great arteries. Am J Cardiol. 1985;56(12):816–8.

    Article  CAS  PubMed  Google Scholar 

  80. Balfour IC, Drimmer AM, Nouri S, Pennington DG, Hemkens CL, Harvey LL. Pediatric cardiac rehabilitation. Am J Dis Child. 1991;145(6):627–30.

    CAS  PubMed  Google Scholar 

  81. Fredriksen PM, Kahrs N, Blaasvaer S, Sigurdsen E, Gundersen O, Roeksund O, et al. Effect of physical training in children and adolescents with congenital heart disease. Cardiol Young. 2000;10(2):107–14.

    Article  CAS  PubMed  Google Scholar 

  82. Minamisawa S, Nakazawa M, Momma K, Imai Y, Satomi G. Effect of aerobic training on exercise performance in patients after the Fontan operation. Am J Cardiol. 2001;88(6):695–8.

    Article  CAS  PubMed  Google Scholar 

  83. Opocher F, Varnier M, Sanders SP, Tosoni A, Zaccaria M, Stellin G, et al. Effects of aerobic exercise training in children after the Fontan operation. Am J Cardiol. 2005;95(1):150–2.

    Article  PubMed  Google Scholar 

  84. Rhodes J, Curran TJ, Camil L, Rabideau N, Fulton DR, Gauthier NS, et al. Impact of cardiac rehabilitation on the exercise function of children with serious congenital heart disease. Pediatrics. 2005;116(6):1339–45.

    Article  PubMed  Google Scholar 

  85. Rhodes J, Curran TJ, Camil L, Rabideau N, Fulton DR, Gauthier NS, et al. Sustained effects of cardiac rehabilitation in children with serious congenital heart disease. Pediatrics. 2006;118(3):e586–e93.

    Article  PubMed  Google Scholar 

  86. Tikkanen AU, Oyaga AR, Riaño OA, Álvaro EM, Rhodes J. Paediatric cardiac rehabilitation in congenital heart disease: a systematic review. Cardiol Young. 2012;22(3):241–50.

    Article  PubMed  Google Scholar 

  87. Duppen N, Takken T, Hopman MT, ten Harkel AD, Dulfer K, Utens EM, et al. Systematic review of the effects of physical exercise training programmes in children and young adults with congenital heart disease. Int J Cardiol. 2013;168(3):1779–87.

    Article  CAS  PubMed  Google Scholar 

  88. Duppen N, Kapusta L, de Rijke YB, Snoeren M, Kuipers IM, Koopman LP, et al. The effect of exercise training on cardiac remodelling in children and young adults with corrected tetralogy of Fallot or Fontan circulation: a randomized controlled trial. Int J Cardiol. 2015;179:97–104.

    Article  CAS  PubMed  Google Scholar 

  89. Jacobsen RM, Ginde S, Mussatto K, Neubauer J, Earing M, Danduran M. Can a home-based cardiac physical activity program improve the physical function quality of life in children with Fontan circulation? Congenit Heart Dis. 2016;11(2):175–82.

    Article  PubMed  Google Scholar 

  90. Zecchin R, Baihn J, Chai Y, Haeusler K, Hungerford J, Lindsay G, et al. Congenital heart disease (CHD) patients attending cardiac rehabilitation–a comparative study between simple and> moderate CHD complexity. Heart Lung Circ. 2016;25:S306.

    Article  Google Scholar 

  91. Bhasipol A, Sanjaroensuttikul N, Pornsuriyasak P, Yamwong S, Tangcharoen T. Efficiency of the home cardiac rehabilitation program for adults with complex congenital heart disease. Congenit Heart Dis. 2018;13(6):952–8.

    Article  PubMed  Google Scholar 

  92. Opotowsky AR, Rhodes J, Landzberg MJ, Bhatt AB, Shafer KM, Yeh DD, et al. A randomized trial comparing cardiac rehabilitation to standard of care for adults with congenital heart disease. World J Pediatr Congenital Heart Surg. 2018;9(2):185–93.

    Article  Google Scholar 

  93. Wittekind SG, Gerdes Y, Mays W, Chin C, Jefferies JL. Cardiac rehabilitation improves cardiometabolic health in young patients with nonischemic dilated cardiomyopathy. Tex Heart Inst J. 2018;45(1):27–30.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hollander SA, Hollander AJ, Rizzuto S, Reinhartz O, Maeda K, Rosenthal DN. An inpatient rehabilitation program utilizing standardized care pathways after paracorporeal ventricular assist device placement in children. J Heart Lung Transplant. 2014;33(6):587–92.

    Article  PubMed  Google Scholar 

  95. Patel JN, Kavey RE, Pophal SG, Trapp EE, Jellen G, Pahl E. Improved exercise performance in pediatric heart transplant recipients after home exercise training. Pediatr Transplant. 2008;12(3):336–40.

    Article  PubMed  Google Scholar 

  96. Balady GJ, Williams MA, Ades PA, Bittner V, Comoss P, Foody JM, et al. Core components of cardiac rehabilitation/secondary prevention programs: 2007 update: a scientific statement from the American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee, the Council on Clinical Cardiology; the Councils on Cardiovascular Nursing, Epidemiology and Prevention, and Nutrition, Physical Activity, and Metabolism; and the American Association of Cardiovascular and Pulmonary Rehabilitation. Circulation. 2007;115(20):2675–82.

    Article  PubMed  Google Scholar 

  97. Thomas RJ, Beatty AL, Beckie TM, Brewer LC, Brown TM, Forman DE, et al. Home-based cardiac rehabilitation. A Scientific Statement From the American Association of Cardiovascular and Pulmonary Rehabilitation, the American Heart Association, and the American College of Cardiology. J Am Coll Cardiol. 2019;74:133–53.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Curran T, Gauthier N, Duty SM, Pojednic R. Identifying elements for a comprehensive paediatric cardiac rehabilitation programme. Cardiol Young. 2020;30:1473–81.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kendra M. Ward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ward, K.M., Wittekind, S.G., White, D.A. (2023). Pediatric Physical Activity Promotion, Exercise Therapy and Cardiac Rehabilitation. In: Abdulla, Ri., et al. Pediatric Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-42937-9_44-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42937-9_44-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42937-9

  • Online ISBN: 978-3-030-42937-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics