Skip to main content

Fetal cardiovascular MRI

  • Living reference work entry
  • First Online:
Pediatric Cardiology

Abstract

Over recent years many of the technical hurdles that have previously hampered high-resolution fetal cardiovascular magnetic resonance have been overcome. For example, cardiac gating can now be achieved using a commercial MRI-compatible cardiotocography unit. Additional artifacts arising from fetal body motion and maternal respiratory variation can be limited through the use of accelerated acquisition techniques and motion correction. As a result, we have found that MRI can be a useful adjunct to ultrasound for visualizing cardiac anatomy, particularly in late gestation, when the sonographic windows may be suboptimal. In addition, cardiac MRI offers a versatile set of tools for examining cardiovascular physiology, providing new insights about the distribution of blood flow oxygen transport in fetuses with congenital cardiac malformations. With increasing awareness of the importance of prenatal cardiovascular physiology for fetal development and perinatal outcome, the stage is set for fetal cardiac MRI to play an increasing role in the assessment of diseases affecting the fetal cardiovascular system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. van Velzen CL, Clur SA, Rijlaarsdam ME, Bax CJ, Pajkrt E, Heymans MW, et al. Prenatal detection of congenital heart disease – results of a national screening programme. BJOG. 2016;123(3):400–7.

    Article  PubMed  Google Scholar 

  2. Bensemlali M, Stirnemann J, Le Bidois J, Levy M, Raimondi F, Hery E, et al. Discordances between pre-Natal and post-Natal diagnoses of congenital heart diseases and impact on care strategies. J Am Coll Cardiol. 2016;68(9):921–30.

    Article  PubMed  Google Scholar 

  3. Gomez Montes E, Herraiz I, Mendoza A, Galindo A. Fetal intervention in right outflow tract obstructive disease: selection of candidates and results. Cardiol Res Pract. 2012;2012:592403.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jantzen DW, Moon-Grady AJ, Morris SA, Armstrong AK, Berg C, Dangel J, et al. Hypoplastic left heart syndrome with intact or restrictive atrial septum: a report from the international Fetal cardiac intervention registry. Circulation. 2017;136(14):1346–9.

    Article  PubMed  Google Scholar 

  5. Limperopoulos C, Tworetzky W, McElhinney DB, Newburger JW, Brown DW, Robertson RL Jr, et al. Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy. Circulation. 2010;121(1):26–33.

    Article  PubMed  Google Scholar 

  6. Lester BM, Marsit CJ. Epigenetic mechanisms in the placenta related to infant neurodevelopment. Epigenomics. 2018;10(3):321–33.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shallie PD, Naicker T. The placenta as a window to the brain: a review on the role of placental markers in prenatal programming of neurodevelopment. Int J Dev Neurosci. 2019;73:41–9.

    Article  PubMed  Google Scholar 

  8. Safety ACRCoM, Greenberg TD, Hoff MN, Gilk TB, Jackson EF, Kanal E, et al. ACR guidance document on MR safe practices: updates and critical information 2019. J Magn Reson Imaging. 2020;51(2):331–8.

    Article  Google Scholar 

  9. International Commission on Non-Ionizing Radiation Protection. Amendment to the ICNIRP “Statement on medical magnetic resonance (MR) procedures: protection of patients”. Health Phys. 2009;97(3):259–61.

    Article  Google Scholar 

  10. Ray JG, Vermeulen MJ, Bharatha A, Montanera WJ, Park AL. Association between MRI exposure during pregnancy and Fetal and childhood outcomes. JAMA. 2016;316(9):952–61.

    Article  PubMed  Google Scholar 

  11. Goolaub DS, Roy CW, Schrauben E, Sussman D, Marini D, Seed M, et al. Multidimensional fetal flow imaging with cardiovascular magnetic resonance: a feasibility study. J Cardiovasc Magn Reson. 2018;20(1):77.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jansz MS, Seed M, van Amerom JF, Wong D, Grosse-Wortmann L, Yoo SJ, et al. Metric optimized gating for fetal cardiac MRI. Magn Reson Med. 2010;64(5):1304–14.

    Article  PubMed  Google Scholar 

  13. Roy CW, Macgowan CK. Dynamic MRI of a large fetal cardiac mass. Radiology. 2019;290(2):288.

    Article  PubMed  Google Scholar 

  14. Roy CW, Seed M, Macgowan CK. Accelerated MRI of the fetal heart using compressed sensing and metric optimized gating. Magn Reson Med. 2017;77(6):2125–35.

    Article  PubMed  Google Scholar 

  15. Seed M, Macgowan CK. Fetal cardiovascular MRI. MAGNETOM Flash. www.siemenscom/magnetom-world. 2014;57:66–72.

  16. Haris K, Hedstrom E, Kording F, Bidhult S, Steding-Ehrenborg K, Ruprecht C, et al. Free-breathing fetal cardiac MRI with Doppler ultrasound gating, compressed sensing, and motion compensation. J Magn Reson Imaging. 2020;51(1):260–72.

    Article  PubMed  Google Scholar 

  17. Macgowan CK, Liu GK, van Amerom JF, Sussman MS, Wright GA. Self-gated Fourier velocity encoding. Magn Reson Imaging. 2010;28(1):95–102.

    Article  PubMed  Google Scholar 

  18. Chaptinel J, Yerly J, Mivelaz Y, Prsa M, Alamo L, Vial Y, et al. Fetal cardiac cine magnetic resonance imaging in utero. Sci Rep. 2017;7(1):15540.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Haris K, Hedstrom E, Bidhult S, Testud F, Maglaveras N, Heiberg E, et al. Self-gated fetal cardiac MRI with tiny golden angle iGRASP: a feasibility study. J Magn Reson Imaging. 2017;46(1):207–17.

    Article  PubMed  Google Scholar 

  20. Kording F, Yamamura J, de Sousa MT, Ruprecht C, Hedstrom E, Aletras AH, et al. Dynamic fetal cardiovascular magnetic resonance imaging using Doppler ultrasound gating. J Cardiovasc Magn Reson. 2018;20(1):17.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kording F, Schoennagel BP, de Sousa MT, Fehrs K, Adam G, Yamamura J, et al. Evaluation of a portable Doppler ultrasound gating device for Fetal cardiac MR imaging: initial results at 1.5T and 3T. Magn Reson Med Sci. 2018;17(4):308–17.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Salehi D, Sun L, Steding-Ehrenborg K, Bidhult S, Kording F, Ruprecht C, et al. Quantification of blood flow in the fetus with cardiovascular magnetic resonance imaging using Doppler ultrasound gating: validation against metric optimized gating. J Cardiovasc Magn Reson. 2019;21(1):74.

    Article  Google Scholar 

  23. Seed M, van Amerom JF, Yoo SJ, Al Nafisi B, Grosse-Wortmann L, Jaeggi E, et al. Feasibility of quantification of the distribution of blood flow in the normal human fetal circulation using CMR: a cross-sectional study. J Cardiovasc Magn Reson. 2012;14:79.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Roy CW, Seed M, Kingdom JC, Macgowan CK. Motion compensated cine CMR of the fetal heart using radial undersampling and compressed sensing. J Cardiovasc Magn Reson. 2017;19(1):29.

    Article  PubMed  PubMed Central  Google Scholar 

  25. van Amerom JFP, Lloyd DFA, Price AN, Kuklisova Murgasova M, Aljabar P, Malik SJ, et al. Fetal cardiac cine imaging using highly accelerated dynamic MRI with retrospective motion correction and outlier rejection. Magn Reson Med. 2018;79(1):327–38.

    Article  PubMed  Google Scholar 

  26. Goolaub DS, Xu J, Schrauben E, Sun L, Roy CW, Marini D, et al. Fetal flow quantification in great vessels using motion-corrected radial phase contrast MRI: comparison with Cartesian. J Magn Reson Imaging. 2020;53:540. https://doi.org/10.1002/jmri.27334.

    Article  PubMed  Google Scholar 

  27. Roy CW, Marini D, Lloyd DFA, Mawad W, Yoo SJ, Schrauben EM, et al. Preliminary experience using motion compensated CINE magnetic resonance imaging to visualise fetal congenital heart disease. Circ Cardiovasc Imaging. 2018;11(12):e007745.

    Article  PubMed  Google Scholar 

  28. Prayer D. Fetal MRI. Top Magn Reson Imaging. 2011;22(3):89.

    Article  PubMed  Google Scholar 

  29. Yagel S, Silverman N, Gembruch U. Fetal cardiology: embryology, genetics, physiology, echocardiographic evaluation, diagnosis and perinatal management of cardiac disease. 3rd ed. Boca Raton: CRC Press/Taylor & Francis Group; 2018.

    Book  Google Scholar 

  30. Manganaro L, Savelli S, Di Maurizio M, Francioso A, Fierro F, Tomei A, et al. Fetal MRI of the cardiovascular system: role of steady-state free precession sequences for the evaluation of normal and pathological appearances. Radiol Med. 2009;114(6):852–70.

    Article  PubMed  Google Scholar 

  31. Anquez J, Angelini E, Bloch I, Merzoug V, Bellaiche-Millischer AE, Adamsbaum C. Interest of the steady state free precession (SSFP) sequence for 3D modeling of the whole fetus. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:771–4.

    Google Scholar 

  32. Baker PN, Johnson IR, Gowland PA, Hykin J, Harvey PR, Freeman A, et al. Fetal weight estimation by echo-planar magnetic resonance imaging. Lancet. 1994;343(8898):644–5.

    Article  PubMed  Google Scholar 

  33. Zaretsky MV, Reichel TF, McIntire DD, Twickler DM. Comparison of magnetic resonance imaging to ultrasound in the estimation of birth weight at term. Am J Obstet Gynecol. 2003;189(4):1017–20.

    Article  PubMed  Google Scholar 

  34. Marini D, van Amerom J, Saini BS, Sun L, Seed M. MR imaging of the fetal heart. J Magn Reson Imaging. 2020;51(4):1030–44.

    Article  PubMed  Google Scholar 

  35. Portnoy S, Osmond M, Zhu MY, Seed M, Sled JG, Macgowan CK. Relaxation properties of human umbilical cord blood at 1.5 Tesla. Magn Reson Med. 2017;77(4):1678–90.

    Article  PubMed  Google Scholar 

  36. Portnoy S, Milligan N, Seed M, Sled JG, Macgowan CK. Human umbilical cord blood relaxation times and susceptibility at 3 T. Magn Reson Med. 2018;79(6):3194–206.

    Article  PubMed  Google Scholar 

  37. Portnoy S, Seed M, Sled JG, Macgowan CK. Non-invasive evaluation of blood oxygen saturation and hematocrit from T1 and T2 relaxation times: in-vitro validation in fetal blood. Magn Reson Med. 2017;78(6):2352–9.

    Article  PubMed  Google Scholar 

  38. Dacie J. Basic haematological techniques. In: Bain BJ, Lewis SM, Bates I, editors. Practical Haematology. 9th ed. Edinburgh: Churchill Livingstone; 2001. p. 19–46.

    Google Scholar 

  39. Wilkinson JL. Haemodynamic calculations in the catheter laboratory. Heart. 2001;85(1):113–20.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rudolph A. Congenital Diseases of the Heart: Clinical-Physiological Considerations. Chichester: Wiley Blackwell; 2001.

    Google Scholar 

  41. Giombi A, Burnard ED. Rheology of human foetal blood with reference to haematocrit, plasma viscosity, osmolality and pH. Biorheology. 1970;6(4):315–28.

    Article  PubMed  Google Scholar 

  42. Bonnet D, Coltri A, Butera G, Fermont L, Le Bidois J, Kachaner J, et al. Detection of transposition of the great arteries in fetuses reduces neonatal morbidity and mortality. Circulation. 1999;99(7):916–8.

    Article  PubMed  Google Scholar 

  43. Heymann MA, Clyman RI. Evaluation of alprostadil (prostaglandin E1) in the management of congenital heart disease in infancy. Pharmacotherapy. 1982;2(3):148–55.

    Article  PubMed  Google Scholar 

  44. Gholipour A, Estroff JA, Barnewolt CE, Robertson RL, Grant PE, Gagoski B, et al. Fetal MRI: a technical update with educational aspirations. Concepts Magn Reson Part A Bridg Educ Res. 2014;43(6):237–66.

    Article  PubMed  Google Scholar 

  45. Lloyd DFA, Pushparajah K, Simpson JM, van Amerom JFP, van Poppel MPM, Schulz A, et al. Three-dimensional visualisation of the fetal heart using prenatal MRI with motion-corrected slice-volume registration: a prospective, single-centre cohort study. Lancet. 2019;393(10181):1619–27.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li X, Li X, Hu K, Yin C. The value of cardiovascular magnetic resonance in the diagnosis of fetal aortic arch anomalies. J Matern Fetal Neonatal Med. 2017;30(11):1366–71.

    Article  PubMed  Google Scholar 

  47. Dong SZ, Zhu M, Li F. Preliminary experience with cardiovascular magnetic resonance in evaluation of fetal cardiovascular anomalies. J Cardiovasc Magn Reson. 2013;15:40.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Courtier J, Poder L, Wang ZJ, Westphalen AC, Yeh BM, Coakley FV. Fetal tracheolaryngeal airway obstruction: prenatal evaluation by sonography and MRI. Pediatr Radiol. 2010;40(11):1800–5.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mon RA, Johnson KN, Ladino-Torres M, Heider A, Mychaliska GB, Treadwell MC, et al. Diagnostic accuracy of imaging studies in congenital lung malformations. Arch Dis Child Fetal Neonatal Ed. 2019;104(4):F372–7.

    PubMed  Google Scholar 

  50. Salomon LJ, Sonigo P, Ou P, Ville Y, Brunelle F. Real-time fetal magnetic resonance imaging for the dynamic visualization of the pouch in esophageal atresia. Ultrasound Obstet Gynecol. 2009;34(4):471–4.

    Article  PubMed  Google Scholar 

  51. Griffiths PD, Mousa HA, Finney C, Mooney C, Mandefield L, Chico TJA, et al. An integrated in utero MR method for assessing structural brain abnormalities and measuring intracranial volumes in fetuses with congenital heart disease: results of a prospective case-control feasibility study. Neuroradiology. 2019;61(5):603–11.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sun HY, Boe J, Rubesova E, Barth RA, Tacy TA. Fetal MRI correlates with postnatal CT angiogram assessment of pulmonary anatomy in tetralogy of Fallot with absent pulmonary valve. Congenit Heart Dis. 2014;9(4):E105–9.

    Article  PubMed  Google Scholar 

  53. Nathan AT, Marino BS, Dominguez T, Tabbutt S, Nicolson S, Donaghue DD, et al. Tricuspid valve dysplasia with severe tricuspid regurgitation: fetal pulmonary artery size predicts lung viability in the presence of small lung volumes. Fetal Diagn Ther. 2010;27(2):101–5.

    Article  PubMed  Google Scholar 

  54. Lee TC, Lim FY, Keswani SG, Frischer JS, Haberman B, Kingma PS, et al. Late gestation fetal magnetic resonance imaging-derived total lung volume predicts postnatal survival and need for extracorporeal membrane oxygenation support in isolated congenital diaphragmatic hernia. J Pediatr Surg. 2011;46(6):1165–71.

    Article  PubMed  Google Scholar 

  55. Seed M, Bradley T, Bourgeois J, Jaeggi E, Yoo SJ. Antenatal MR imaging of pulmonary lymphangiectasia secondary to hypoplastic left heart syndrome. Pediatr Radiol. 2009;39(7):747–9.

    Article  PubMed  Google Scholar 

  56. Saul D, Degenhardt K, Iyoob SD, Surrey LF, Johnson AM, Johnson MP, et al. Hypoplastic left heart syndrome and the nutmeg lung pattern in utero: a cause and effect relationship or prognostic indicator? Pediatr Radiol. 2016;46(4):483–9.

    Article  PubMed  Google Scholar 

  57. Chaturvedi RR, Ryan G, Seed M, van Arsdell G, Jaeggi ET. Fetal stenting of the atrial septum: technique and initial results in cardiac lesions with left atrial hypertension. Int J Cardiol. 2013;168(3):2029–36.

    Article  PubMed  Google Scholar 

  58. Prsa M, Sun L, van Amerom J, Yoo SJ, Grosse-Wortmann L, Jaeggi E, et al. Reference ranges of blood flow in the major vessels of the normal human fetal circulation at term by phase-contrast magnetic resonance imaging. Circ Cardiovasc Imaging. 2014;7(4):663–70.

    Article  PubMed  Google Scholar 

  59. Schmidt KG, Silverman NH, Rudolph AM. Assessment of flow events at the ductus venosus-inferior vena cava junction and at the foramen ovale in fetal sheep by use of multimodal ultrasound. Circulation. 1996;93(4):826–33.

    Article  PubMed  Google Scholar 

  60. Saini BS, Darby JRT, Portnoy S, Sun L, van Amerom J, Lock MC, et al. Normal human and sheep fetal vessel oxygen saturations by T2 magnetic resonance imaging. Under submission.

    Google Scholar 

  61. Sun L, Macgowan CK, Portnoy S, Sled JG, Yoo SJ, Grosse-Wortmann L, et al. New advances in fetal cardiovascular magnetic resonance imaging for quantifying the distribution of blood flow and oxygen transport: potential applications in fetal cardiovascular disease diagnosis and therapy. Echocardiography. 2017;34(12):1799–803.

    Article  PubMed  Google Scholar 

  62. Zhu MY, Milligan N, Keating S, Windrim R, Keunen J, Thakur V, et al. The hemodynamics of late-onset intrauterine growth restriction by MRI. Am J Obstet Gynecol. 2016;214(3):367 e1–e17.

    Article  PubMed  Google Scholar 

  63. Baschat AA. Neurodevelopment following fetal growth restriction and its relationship with antepartum parameters of placental dysfunction. Ultrasound Obstet Gynecol. 2011;37(5):501–14.

    Article  PubMed  Google Scholar 

  64. Pearce WJ. Fetal cerebrovascular maturation: effects of hypoxia. Semin Pediatr Neurol. 2018;28:17–28.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Cohn HE, Sacks EJ, Heymann MA, Rudolph AM. Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am J Obstet Gynecol. 1974;120(6):817–24.

    Article  PubMed  Google Scholar 

  66. Porayette P, Madathil S, Sun L, Jaeggi E, Grosse-Wortmann L, Yoo SJ, et al. MRI reveals hemodynamic changes with acute maternal hyperoxygenation in human fetuses with and without congenital heart disease. Prenat Diagn. 2016;36(3):274–81.

    Article  PubMed  Google Scholar 

  67. Sun L, Macgowan CK, Sled JG, Yoo SJ, Manlhiot C, Porayette P, et al. Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation. 2015;131(15):1313–23.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mawad W, Chaturvedi RR, Ryan G, Jaeggi E. Percutaneous fetal atrial balloon septoplasty for simple transposition of the great arteries with an intact atrial septum. Can J Cardiol. 2018;34(3):342 e9–e11.

    Article  PubMed  Google Scholar 

  69. Lowenthal A, Kipps AK, Brook MM, Meadows J, Azakie A, Moon-Grady AJ. Prenatal diagnosis of atrial restriction in hypoplastic left heart syndrome is associated with decreased 2-year survival. Prenat Diagn. 2012;32(5):485–90.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Luciani GB, Pessotto R, Mombello A, Mazzucco A. Hypoplastic left heart syndrome with restrictive atrial septal defect and congenital pulmonary lymphangiectasis. Cardiovasc Pathol. 1999;8(1):49–51.

    Article  PubMed  Google Scholar 

  71. Maeda K, Yamaki S, Kado H, Asou T, Murakami A, Takamoto S. Hypoplasia of the small pulmonary arteries in hypoplastic left heart syndrome with restrictive atrial septal defect. Circulation. 2004;110(11 Suppl 1):II139–46.

    PubMed  Google Scholar 

  72. Rychik J, Rome JJ, Collins MH, DeCampli WM, Spray TL. The hypoplastic left heart syndrome with intact atrial septum: atrial morphology, pulmonary vascular histopathology and outcome. J Am Coll Cardiol. 1999;34(2):554–60.

    Article  PubMed  Google Scholar 

  73. Marshall AC, van der Velde ME, Tworetzky W, Gomez CA, Wilkins-Haug L, Benson CB, et al. Creation of an atrial septal defect in utero for fetuses with hypoplastic left heart syndrome and intact or highly restrictive atrial septum. Circulation. 2004;110(3):253–8.

    Article  PubMed  Google Scholar 

  74. Al Nafisi B, van Amerom JF, Forsey J, Jaeggi E, Grosse-Wortmann L, Yoo SJ, et al. Fetal circulation in left-sided congenital heart disease measured by cardiovascular magnetic resonance: a case-control study. J Cardiovasc Magn Reson. 2013;15:65.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Marini D, Xu J, Sun L, Jaeggi E, Seed M. Current and future role of fetal cardiovascular MRI in the setting of fetal cardiac interventions. Prenat Diagn. 2020;40(1):71–83.

    Article  PubMed  Google Scholar 

  76. Papantoniou N, Sifakis S, Antsaklis A. Therapeutic management of fetal anemia: review of standard practice and alternative treatment options. J Perinat Med. 2013;41(1):71–82.

    Article  PubMed  Google Scholar 

  77. Mesogitis S, Daskalakis G, Pilalis A, Papantoniou N, Antsaklis A. Fetal intravascular transfusion for hydropic disease due to rhesus isoimmunization. Fetal Diagn Ther. 2005;20(5):431–6.

    Article  PubMed  Google Scholar 

  78. Zwiers C, van Kamp I, Oepkes D, Lopriore E. Intrauterine transfusion and non-invasive treatment options for hemolytic disease of the fetus and newborn - review on current management and outcome. Expert Rev Hematol. 2017;10(4):337–44.

    Article  PubMed  Google Scholar 

  79. Lyu CJ, Xu C, Yu J, Xia LP. Diagnostic performance of Doppler ultrasonography for the detection of Fetal anemia: a meta-analysis. Ultrasound Q. 2019;35(4):339–45.

    Article  PubMed  Google Scholar 

  80. Xu J, Duan AQ, Marini D, Lim JM, Keunen J, Portnoy S, et al. The utility of MRI for measuring hematocrit in fetal anemia. Am J Obstet Gynecol. 2020;222(1):81 e1–e13.

    Article  PubMed  Google Scholar 

  81. Torigoe T, Mawad W, Seed M, Ryan G, Marini D, Golding F, et al. Treatment of fetal circular shunt with non-steroidal anti-inflammatory drugs. Ultrasound Obstet Gynecol. 2019;53(6):841–6.

    Article  PubMed  Google Scholar 

  82. Vachon-Marceau C, Guerra V, Jaeggi E, Chau V, Ryan G, Van Mieghem T. In-utero treatment of large symptomatic rhabdomyoma with sirolimus. Ultrasound Obstet Gynecol. 2019;53(3):420–1.

    Article  PubMed  Google Scholar 

  83. Kohl T. Chronic intermittent materno-fetal hyperoxygenation in late gestation may improve on hypoplastic cardiovascular structures associated with cardiac malformations in human fetuses. Pediatr Cardiol. 2010;31(2):250–63.

    Article  PubMed  Google Scholar 

  84. Channing A, Szwast A, Natarajan S, Degenhardt K, Tian Z, Rychik J. Maternal hyperoxygenation improves left heart filling in fetuses with atrial septal aneurysm causing impediment to left ventricular inflow. Ultrasound Obstet Gynecol. 2015;45(6):664–9.

    Article  PubMed  Google Scholar 

  85. Lara DA, Morris SA, Maskatia SA, Challman M, Nguyen M, Feagin DK, et al. Pilot study of chronic maternal hyperoxygenation and effect on aortic and mitral valve annular dimensions in fetuses with left heart hypoplasia. Ultrasound Obstet Gynecol. 2016;48(3):365–72.

    Article  PubMed  Google Scholar 

  86. Zeng S, Zhou J, Peng Q, Deng W, Zhang M, Zhao Y, et al. Sustained maternal hyperoxygenation improves aortic arch dimensions in fetuses with coarctation. Sci Rep. 2016;6:39304.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Borik S, Macgowan CK, Seed M. Maternal hyperoxygenation and foetal cardiac MRI in the assessment of the borderline left ventricle. Cardiol Young. 2015;25(6):1214–7.

    Article  PubMed  Google Scholar 

  88. Donofrio MT, Bremer YA, Schieken RM, Gennings C, Morton LD, Eidem BW, et al. Autoregulation of cerebral blood flow in fetuses with congenital heart disease: the brain sparing effect. Pediatr Cardiol. 2003;24(5):436–43.

    Article  PubMed  Google Scholar 

  89. Kaltman JR, Di H, Tian Z, Rychik J. Impact of congenital heart disease on cerebrovascular blood flow dynamics in the fetus. Ultrasound Obstet Gynecol. 2005;25(1):32–6.

    Article  PubMed  Google Scholar 

  90. Masoller N, Sanz-Cortes M, Crispi F, Gomez O, Bennasar M, Egana-Ugrinovic G, et al. Severity of Fetal brain abnormalities in congenital heart disease in relation to the Main expected pattern of in utero brain blood supply. Fetal Diagn Ther. 2016;39(4):269–78.

    Article  PubMed  Google Scholar 

  91. Barbu D, Mert I, Kruger M, Bahado-Singh RO. Evidence of fetal central nervous system injury in isolated congenital heart defects: microcephaly at birth. Am J Obstet Gynecol. 2009;201(1):43 e1–7.

    Article  PubMed  Google Scholar 

  92. Lauridsen MH, Uldbjerg N, Henriksen TB, Petersen OB, Stausbol-Gron B, Matthiesen NB, et al. Cerebral oxygenation measurements by magnetic resonance imaging in fetuses with and without heart defects. Circ Cardiovasc Imaging. 2017;10(11):e006459.

    Article  PubMed  Google Scholar 

  93. Sorensen A, Sinding M. Placental magnetic resonance imaging: a method to evaluate placental function in vivo. Obstet Gynecol Clin N Am. 2020;47(1):197–213.

    Article  Google Scholar 

  94. Lindqvist PG, Molin J. Does antenatal identification of small-for-gestational age fetuses significantly improve their outcome? Ultrasound Obstet Gynecol. 2005;25(3):258–64.

    Article  PubMed  Google Scholar 

  95. Sorensen A, Hutter J, Seed M, Grant PE, Gowland P. T2* weighted placental MRI: basic research tool or an emerging clinical test of placental dysfunction? Ultrasound Obstet Gynecol. 2020;55(3):293–302.

    Article  PubMed  Google Scholar 

  96. Saini BS, Portnoy S, Porayette P, Lim JM, Duan A, Sled JG, et al. OP29.07: Non-invasive in utero measurement of placental oxygen transport using MRI. Ultrasound Obstet Gynecol. Special Issue: Abstracts of the 26th World Congress on Ultrasound in Obstetrics and Gynecology, Rome, 24–28 Sept 2016. 2016;48:148.

    Article  Google Scholar 

  97. Roelfsema NM, Hop WC, Boito SM, Wladimiroff JW. Three-dimensional sonographic measurement of normal fetal brain volume during the second half of pregnancy. Am J Obstet Gynecol. 2004;190(1):275–80.

    Article  PubMed  Google Scholar 

  98. Duan AQ, Darby JRT, Soo JY, Lock MC, Zhu MY, Flynn LV, et al. Feasibility of phase-contrast cine magnetic resonance imaging for measuring blood flow in the sheep fetus. Am J Physiol Regul Integr Comp Physiol. 2019;317(6):R780–R92.

    Article  PubMed  Google Scholar 

  99. Schrauben EM, Saini BS, Darby JRT, Soo JY, Lock MC, Stirrat E, et al. Fetal hemodynamics and cardiac streaming assessed by 4D flow cardiovascular magnetic resonance in fetal sheep. J Cardiovasc Magn Reson. 2019;21(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  100. van Amerom JFP, Lloyd DFA, Deprez M, Price AN, Malik SJ, Pushparajah K, et al. Fetal whole-heart 4D imaging using motion-corrected multi-planar real-time MRI. Magn Reson Med. 2019;82(3):1055–72.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Taniguchi L, Haller C, Chaturvedi R, Mroczek D, Crawford L, Foreman C, et al. Feasibility of the short-term physiologic support of the late-gestation miniature pig fetus using umbilical cannulation, a pumpless extracorporeal membrane oxygenator and fluid incubation. Ultrasound Obstet Gynecol. 2019;54(S1) Supplement: Abstracts of the 29th World Congress on Ultrasound in Obstetrics and Gynecology, Berlin, 12–16 Oct 2019:3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Marini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Marini, D., Aguet, J., Seed, M. (2023). Fetal cardiovascular MRI. In: Abdulla, Ri., et al. Pediatric Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-42937-9_16-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42937-9_16-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42937-9

  • Online ISBN: 978-3-030-42937-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics