
465

CHAPTER 26

Deep Learning for the Russian Language

Ekaterina Artemova

26.1 IntroductIon

Deep learning has conquered the natural language processing (NLP) research
area in the mid-2010s. Most research publications were focused on English
and showed a significant improvement of results on major datasets. However,
languages other than English were out of the scope of early deep learning
research. Russian-oriented research first appeared on Russian local venues, such
as Dialogue, Artificial Intelligence and Natural Language (AINL) and Analysis
of Images, Social networks, and Texts (AIST). Early papers addressed such
tasks as text classification and part of speech tagging. As of the late 2010s, a
new trend for multilingual model development was established, which resulted
in quite a few models for Russian, released by non-Russian universities and
technology companies, such as Google or Facebook.

The deep learning breakthrough is grounded on the efficient use of large
amounts of data, without any handcrafted features. While traditional statistical-
based machine learning algorithms require a lot of manual annotation of textual
data, the deep learning methods discover hidden patterns in the data without
human help. Before the deep learning era, an NLP practitioner had to manually
set hundreds of features: starting from such surface features as “is a word capi-
talized,” or “is there a comma before the word,” up to complex features that
try to encode semantics. This resulted, among other things, in creating linguis-
tic corpora, such as Russian National Corpus (http://www.ruscorpora.ru/)
and OpenCorpora (http://opencorpora.org) (for more, see Chap. 17).

The original version of this chapter was revised. A correction to this chapter can be
found at https://doi.org/10.1007/978-3-030-42855-6_33

E. Artemova (*)
Higher School of Economics (HSE University), Moscow, Russia
e-mail: echernyak@hse.ru

© The Author(s) 2021, corrected publication 2021
D. Gritsenko et al. (eds.), The Palgrave Handbook of Digital Russia
Studies, https://doi.org/10.1007/978-3-030-42855-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42855-6_26&domain=pdf
http://www.ruscorpora.ru/
http://opencorpora.org
https://doi.org/10.1007/978-3-030-42855-6_17
mailto:echernyak@hse.ru
https://doi.org/10.1007/978-3-030-42855-6_33
https://doi.org/10.1007/978-3-030-42855-6_26#DOI

466

The advantages of the deep learning approach to text processing are two-
fold: first, it produces efficient word and sentence representations, sometimes
addressed as word and sentence embeddings, which are capable of modeling
lexical and grammatical meaning; second, due to multiple nonlinear transfor-
mations applied to word and sentence representations inside the deep model,
language patterns are learned from actual observations, rather than from
human annotations.

Although deep learning treats data differently from traditional machine
learning, training a model is core to both approaches. The “black box” is a
common metaphor to describe what a model is. We can treat any traditional
machine learning or deep learning as a black box, which inputs some observa-
tions and outputs target labels. For example, for the task of sentiment analysis,
the inputs are the users review and the outputs are either “positive” or “nega-
tive” labels (for more on sentiment analysis, see Chap. 28). Inside the black
box are mathematical functions and objects that have many settings. The model
is developed in two stages. During the first stage, which is addressed as the
training stage, the model is trained to make correct predictions. The model is
presented both with the inputs and correct labels and the settings of the model
are adjusted so that the model is capable to produce correct answers. The cor-
rect labels help to rule the behavior of the model: if the predictions of the
model are correct, it is encouraged to behave the same way, otherwise it is
punished for incorrect predictions. It is common to say that the model is
supervised while receiving feedback from correct labels. During the second
stage, prediction or inference stage, the model is only used for prediction and
the settings of the model are unchanged.

The procedure of training a model can be compared to the learning-by-
doing, educational approach. The model is not presented with any theoretical
statements, but rather is trained to perform in an expected way. While tradi-
tional machine learning exploits a variety of different models, deep learning
apparatus is based on a single notion of artificial neural network, which is
loosely inspired by the human brain. The usage of neural networks allows to
develop more versatile models, as different types of neural networks are used as
building blocks for specific tasks. This makes the models more reusable and
easier to adjust to new tasks. Together, the ability to generalize well along with
versatility turns deep learning into a powerful framework that is appealing for
use in NLP, as it allows to attain a very high performance across many different
NLP tasks.

This chapter provides an overview of deep learning applied to Russian
NLP. The remainder is organized as follows: Sect. 26.2 introduces the main
deep learning architectures, that is, neural network building blocks. Section
26.3 presents a few NLP tasks and Russian-language examples along with the
lists of available datasets and models. Section 26.4 concludes.

 E. ARTEMOVA

https://doi.org/10.1007/978-3-030-42855-6_28

467

26.2 deep LearnIng archItecture overvIew

The process of designing a neural network is similar to cooking a layered cake.
An NLP practitioner first thinks of a preliminary sketch of the model and
understands what the input to the model is, and what the model should out-
put. Next, the layers are added one by one to the model. The lowest layer is
responsible for reading the textual input and creating an efficient representa-
tion of the input. The upper layers are aimed at solving the task under consid-
eration and preparing the desired output. The middle, or the hidden, layers do
most of the work: hidden language patterns are discovered here by applying
numerous nonlinear transformations.

Neural network architectures are constructed from various types of building
blocks or layers. A crucial component of neural networks is the embedding
layer. It maps words to vectors in a low dimensional space. These vectors,
referred to as word embeddings, can be manipulated as any mathematical
object: not only is it possible to calculate a similarity between them, but also to
sum them up or to subtract them. The closer the words are by lexical meaning,
the closer the corresponding word embeddings should be. The construction of
word vectors can be treated either as a standalone task (see Sect. 26.3.1 of this
chapter) or as a part of the whole neural network training. Word embeddings
can be seen as a broad understanding of the grammar and semantics. When
pretrained on a large general corpus, such as Wikipedia, word embeddings
reveal the understanding of general language that can be adopted for a more
specific domain. Word embeddings are shallow representations that only incor-
porate previous training in the input layer of the network. The upper layer of
the network still needs to be trained from scratch.

Two major neural network architectures are Feed Forward Networks (FFNs)
and recurrent neural networks (RNNs). The main difference between these
architectures is in the way these architectures input the textual data.

FFNs treat the input text as a so-called “bag of words,” disregarding gram-
mar and word order and taking only word frequency into account. For exam-
ple, the sentence “the cat sat on the mat” would be turned into the following
tuple: ([the, cat, sat, mat, on], [2, 1, 1, 1, 1]). Although FFNs are capable of
combining the words in a meaningful way, it is still a significant disadvantage
for languages with free word order, where the word order heavily affects the
meaning of the sentence.

The design of RNNs overcomes the disadvantages of FFNs by introducing
a built-in memory mechanism that summarizes the input text. RNNs can be
seen as a tool which reads the input text sequentially in a word-by-word fash-
ion. As the memory is updated after reading a new word, RNNs are endowed
with memorizing the word order and the understanding of the current word
context. RNNs are usually treated as the analytical module of the whole net-
work and are rarely used as a standalone component. The power of RNNs is in
their ability to produce context-aware word representations, which help, for
example, to disambiguate word senses. RNNs often work in tandem with

26 DEEP LEARNING FOR THE RUSSIAN LANGUAGE

468

FFNs, so that the output of the RNN is fed into a FFN, intended for final
prediction.

The duality of feedforward and recurrent neural networks is caused by the
difference of two widely used models for text representation. In contrast to the
bag-of-words model exploited by FFNs, the recurrency targets at language
modeling, which is central to the majority of NLP tasks. A language model has
a double purpose: first, it assigns a probability to a sequence of words. Second,
it predicts the next word based on a number of previously used words. The
probability of a sentence, estimated by a language model, is closely related to
the quality and correctness of the sentence. Language models help to evaluate
the quality of machine translation or any other natural language generation
task. By predicting the next word, the language model creates context-
dependent word and sentence representations.

Although one of the early works by Bengio et al. (2003) shows that FFN
can be treated as a language model, RNN outperforms by far FFNs for the task
of language modeling. Finally, technical limitations of vanilla RNNs are resolved
by gated architectures, such as long short-term memory (LSTM) and gated
recurrent unit (GRU) networks. Both LSTM and GRU are very efficient as
language models and are de-facto baseline NLP architectures.

The building blocks of neural network architectures are not limited to feed-
forward and recurrent layers. Convolutional neural networks (CNNs) are an
extension of the FFN architecture. CNNs excel in discovering local patterns.
They can be seen as a magnifier, which moves over a word sequence and identi-
fies important features. CNNs are often utilized on the lowest network layers
to process not words, but rather characters, to discover long orthographic and
derivational patterns. Many applications in Russian, a morphologically rich lan-
guage, benefit from the ability of CNNs to capture derivational word suffixes
and endings. It helps to handle rare words, such as family names, terminology,
toponyms, and slang, as well as to take surface features into account (Fig. 26.1).

When compared to feedforward and convolutional neural networks, recur-
rent neural networks are much slower to train, since they pose long-term
dependencies and it is hard to parallelize recurrent computations. The recently
introduced transformer layer combines the best of two approaches. It consists
of multiple feedforward layers and a powerful attention mechanism that is anal-
ogous to human attention in the same way the artificial neural networks model
biological neural networks. The attention mechanism directs focus to a certain
part of the task while maintaining a background understanding of the whole
task. It models word-by-word interactions on each feedforward layer, so that
different types of dependencies are considered. The self-attention mechanism
is used both to produce context-aware word embeddings, and also measures
how strong the dependencies are between the words.

At the core of the recent paradigm shift in NLP, are pretrained language
models that are built with rare exceptions with transformer blocks. Not only
word embeddings, but the whole neural network is now pretrained as a lan-
guage model. It becomes possible, since the language modeling objective, next

 E. ARTEMOVA

469

Fig. 26.1 Neural network layers. (a) feed forward layer, (b) convolutional building
layer, (c) recurrent layer, (d) transformer layer

word prediction, does not require any human annotation. The training data
comes for free and the amount of training data available in almost every lan-
guage are potentially unlimited. Transformer-derived language models seem to
capture many facets of language relevant for other NLP tasks. When pretrained
on large and diverse corpora, they can be fine-tuned for downstream tasks and
surpass previous results in almost every application (for more on corpus lin-
guistics, see Chap. 17).

Despite having excellent results for NLP tasks, neural networks have some
disadvantages. First of all, they are frequently treated as black boxes as they
lack interpretability. There have been several attempts to find a plausible expla-
nation of how exactly neural networks operate. One of the hypotheses states
that the neural network follows the common linguistic pipeline of staged pro-
cessing of the language. It has been shown that if the neural network is deep
enough, lower layers may become morphology aware, middle layers model
syntactic dependencies, while the upper layers discover complex semantic pat-
terns. Secondly, deep learning technologies require a lot of data and computa-
tional sources. Modern computations, which may take about a month of
training, are worth thousands of dollars. Thirdly, ethical concerns arise when
training a model on textual data collected from the Web. A model can become
unfair when trained on all misconceptions, offensive and biased judgments,
fake news and false facts, published on the Web (for more on Runet, see
Chap. 16). Finally, the fluency of text generation models may lead to poten-
tially harmful usage. New breed of text generation models impresses with their
ability to generate coherent text from minimal prompts. When provided with
a headline, such a model will compose a news story; when provided with a
movie title, it will compose a movie plot. Text generation models can often

26 DEEP LEARNING FOR THE RUSSIAN LANGUAGE

https://doi.org/10.1007/978-3-030-42855-6_17
https://doi.org/10.1007/978-3-030-42855-6_16

470

give the appearance of common sense and intelligence, so that it may become
quite challenging to recognize, whether a text was composed by a human or
by a machine. This frustrates research progress in language generation devel-
opment, as, it sees, text generators may be misused to generate fake news or
propaganda or to increase the amount of spam on the Web. It is of crucial
importance, the release of a powerful text generator is accompanied with a
tool, which is capable of recognizing machine generated text and can be used
to tackle online disinformation.

26.3 nLp tasks

26.3.1 Word Embeddings: How Do Computers Understand
Lexical Meaning

Word embedding stands for a group of methods which are used to map words
from a large vocabulary, to vectors. These vectors should consist of real num-
bers, have few zeros and be of relatively small dimensionality: it is common to
construct 300-dimensional word embeddings. These vectors are treated as
mathematical objects: not only similarity (or distance) between them can be
computed, but also they can be added together or subtracted. At the core of
numerous methods for word embedding construction is the distributional
hypothesis: words that occur in the same contexts tend to have similar mean-
ings (Harris 1954). Word embedding models are trained on large text corpora.
They aim at finding words that share contexts and represent them with such
vectors that would be close, according to a mathematical similarity measure.
For example, the embeddings of such words as kofe (“coffee”) and čaj (“tee”)
should have a high similarity degree, since they are used in a similar way, along
with the words pit′ (“to drink”), čaška (“cup”), nalit′ (“to pour”), et cetera.
What is more, advanced word embedding models allow to conduct arithmeti-
cal operations: kofe (“coffee”) to utro (“morning”) = “čaj (“tee”) to večer
(“evening”); Moskva (“Moscow”) to Rossiâ (“Russia”) = Berlin (“Berlin”) to
Germaniâ (“Germany”). Of course, these associations are corpus-specific and
may not be present in other models. The examples are provided by RusVectores
(https://rusvectores.org), a free online service which provides, and which
computes semantic relations between words in Russian and provides pretrained
distributional semantic models (word embeddings), including contextual-
ized ones.

Word embeddings may serve as input to a neural network model, which
further will be trained for any downstream task, and may be used as a stand-
alone model for studies of language usage. Word embeddings help to detect
semantic shift, caused by either diachronic (Kutuzov et al. 2018) or social
changes (Solovyev et al. 2015). Bilingual word embeddings help to develop
dictionaries and find similar concepts in different languages (Gordeev
et al. 2018).

 E. ARTEMOVA

https://rusvectores.org

471

Fig. 26.2 Word2vec configurations. (a) continuous bag of words, (b) skip-gram

The most popular word embedding model is word2vec (Mikolov et al.
2013) and its extension fasttext (Joulin et al. 2017). Word2vec exploits neural
networks to compute word embeddings. It has two configurations: in a con-
tinuous bag of words, CBOW, it predicts a word based on surrounding words
(two to the left and two to the right). In skip-gram, SGNS, it predicts sur-
rounding words based on the given central word (Fig. 26.2).

SGNS is a de-facto state of the art model for word embeddings and is almost
a default choice for many NLP applications for the English language. However,
for the Russian language SGNS might not be the best choice. When trained on
raw texts, SGNS does not take into account the derivational forms of the
words. As a result, for the word kot (a cat) there might be up to ten possible
vectors for each possible derivational form. This would make a similarity mea-
sure almost invalid, since the closest words to the vector kot (a cat) would be
the vectors of the derivational forms kotu (to the cat), kote (about the cat), et
cetera. To overcome this issue, a preliminary normalization is required to
replace each word with its base form. Normalization methods, however, may
either have limited vocabulary and introduce some mistakes while processing
out of vocabulary words or require word embeddings. This vicious circle is
broken by the fasttext model that does not modify word2vec mathematics but
treats the words differently. Instead of computing a single vector for a given
word, it computes multiple vectors for all character n-grams (sequences of two
to five characters) and then combines them to get the final vector.

Fasttext allows to capture such properties of rich morphology in Russian as
derivational patterns in suffixes and endings. It is strongly recommended to use
fasttext for the Russian language as the word embedding model. See Table 26.1
for available pretrained word embedding models and Table 26.2 for word
embedding training tools.

Word embedding models often fail when faced with such complex language
phenomena as antonyms or homonyms. Although word embeddings are
exceptionally powerful for finding words that share a similar meaning, they
often mistake for words that have opposite meanings, such as proigrat′ (“to
lose”) or vyigrat′ (“to win”), as they occur in similar contexts. Word embed-
ding models suffer from polysemy and homonymy. Such words as luk (“onion”
or “bow” or “a look”) and zamok (“castle” or “lock”) get a single vector,
despite having multiple sense. A few models, such as AdaGram (Bartunov et al.
2016) and SenseGram (Pelevina et al. 2016), try to overcome this issue by

26 DEEP LEARNING FOR THE RUSSIAN LANGUAGE

472

Table 26.1 Word embeddings for Russian

http://rusvectores.org Multiple Russian-only word and sentence embeddings
(Kutuzov and Kuzmenko, 2017)

http://docs.deeppavlov.ai/en/
master/features/pretrained_
vectors.html

Multiple Russian-only word and sentence embeddings

https://fasttext.cc/docs/en/
crawl-vectors.html

Google fasttext embeddings trained with limited
preprocessing for 157 languages

http://vectors.nlpl.eu/
repository/

Thirteen Russian word embedding models trained with
clearly stated hyperparameters, on clearly described and
linguistically preprocessed corpora

https://github.com/
bheinzerling/bpemb

BPE embeddings for 275 languages

Table 26.2 Tools to train word embeddings

Library Language URL

Gensim Python https://radimrehurek.com/gensim/
AllenNLP Python https://github.com/allenai/allennlp
flair Python https://github.com/zalandoresearch/

flair
fasttext C++/terminal interface https://fasttext.cc
Deeplearning4j Java/Scala http://deeplearning4j.org

simultaneous word sense disambiguation, and word embedding training.
However, current pretrained language models are a much more efficient solu-
tion to this issue, as they search for context-dependent word embeddings.

As of the mid 2010s, using pretrained word embeddings as an input to any
machine learning or deep learning has become a must. The word embeddings
can be fine-tuned while training the model for a downstream task or remain
constant. Fine-tuning of word embeddings may help to resolve some issues
related to antonyms or homonyms. When fine-tuned for sentiment classifica-
tion (for more on Sentiment analysis, see Chap. 28), embeddings for words
horošij (“good”) and plohoj (“bad”), which may be initially close, will be pushed
apart from each other.

Last but not least, an alternative approach to word tokenization, called byte
pair encoding (BPE; Heinzerling and Strube 2018), suggests not to use whole
words as text units, but rather split the words into subwords, based on frequent
n-grams. BPE tokens resemble to a certain degree, morphemes, and seem quite
promising for Russian.

To conclude this section, we will list a few pretrained word embedding
models for Russian in Table 26.1.

All these models are available for downloads as single files. The models are
trained on large freely available corpora, such as Wikipedia, Taiga,1 and

 E. ARTEMOVA

http://rusvectores.org
http://docs.deeppavlov.ai/en/master/features/pretrained_vectors.html
http://docs.deeppavlov.ai/en/master/features/pretrained_vectors.html
http://docs.deeppavlov.ai/en/master/features/pretrained_vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html
http://vectors.nlpl.eu/repository/
http://vectors.nlpl.eu/repository/
https://github.com/bheinzerling/bpemb
https://github.com/bheinzerling/bpemb
https://radimrehurek.com/gensim/
https://github.com/allenai/allennlp
https://github.com/zalandoresearch/flair
https://github.com/zalandoresearch/flair
https://fasttext.cc
http://deeplearning4j.org
https://doi.org/10.1007/978-3-030-42855-6_28

473

Araneum.2 The vocabulary of the models ranges from 100K to 700K unique
tokens and the model size ranges from 200MB to 3GB.

RusVectores additionally provides web interface for exploration of word
embedding models, along with visualization and semantic calculator.

Table 26.2 lists tools freely available to train embedding models from
scratch. Gensim is one of the most popular Python libraries for building word
embedding models and topic models, though Gensim does not provide deep
learning functionality. In contrast to Gensim, AllenNLP and flair provide refer-
ence implementations for deep learning models for NLP, including word2vec
and fasttext. These libraries provide tools for processing textual data and share
similar functionality, though target different audience. AllenNLP is more
advanced and flair is designed as a very simple framework. Both AllenNLP and
flair have Python interfaces. Fasttext is available as a console application of the
same name. Deeplearning4j is a general deep learning framework that provides
scripts for training deep learning models.

26.3.2 Text Classification

The task of text classification is to assign categories to texts. This is a common
supervised task: given labeled data (i.e. texts, annotated with class labels), a
model should be first trained, and then applied to unlabeled test data.

Text classification is one of the most demanded industrial NLP tasks.
Sentiment analysis and information filtering are the most common applications
of text classification algorithms. Sentiment analysis is widely used for marketing
research. Companies use sentiment classification for product analytics, brand
monitoring, customer support, and market research. One of the main informa-
tion filtering techniques is spam filtering, which exploit classification algorithms
to distinguish between spam and ham incoming emails. In general, email cat-
egorization is a powerful idea which facilitates the work of an office employee.
Other information filtering applications may include identification of trolls,
obscene content detection, ad blocking and privacy protection. What is more,
hotlines use text classification for language identification.

Virtual personal assistants, such as Apple Siri or Amazon Alexa, are becom-
ing an internal part of our daily lives. They use the whole range of NLP meth-
ods, including text classification. Each user utterance is classified according to
its intent, according to the desired action of the user (i.e. whether the user
meant to launch an application, make a call, write a note, etc.).

The classification of Russian texts is almost no different from English text
classification and follows a standard pipeline:

 1. Word embeddings are used as an input to the model
 2. Multiple hidden CNN- or RNN-derived layers are used for input

processing
 3. A feed forward layer is used for final prediction.

26 DEEP LEARNING FOR THE RUSSIAN LANGUAGE

474

The labels in the training set, that is, the correct answers, are used for super-
vision. When presented with correct answers, the model is able to adjust its
own parameters so that its predictions become correct.

The quality of the classification task is evaluated according to the ratio of
correct predictions and the ratio of erroneous predictions.

There are a few recent Russian-language datasets for text classification:

• A large-scale dataset for sentiment analysis, which consists of texts from
social media (Rogers et al. 2018).

• A dataset for sentiment analysis of product reviews on e-commerce sites
(Smetanin and Komarov 2019).

• A collected dataset for humor recognition in short stories (Baranova-
Bolotova et al. 2019).

• RusIdiolect3 is a dataset for experimental studies of the idiolect of a native
Russian speaker, such as deception detection (Litvinova et al. 2017).

• RusProfiling is a popular dataset for author profiling, including gender
identification. Current state of the art results are achieved by Sboev
et al. (2018).

These datasets are available to download from the Web. In contrast to major
English datasets gathered in Natural Language Toolkit4 (NLTK), there is no
unified application programming interface (API) to access Russian datasets.

Finally, the major component of fasttext (Joulin et al. 2017) functionality is
a simple yet strong classification algorithm. It is very fast and easy to use and is
strongly recommended as a strong baseline.

Finally, there are a few applications of word embeddings outside linguistic
field. For example, (Panicheva and Litvinova 2019) report on using word
embeddings to measure speech coherence of patients, affected by schizophre-
nia. “Semantic coherence” is defined as mean pairwise similarity between words
in a sample text, written by a patient. Word embeddings allow to measure
semantic coherence, as they provide a simple approach to measure word simi-
larity. The schizophrenia status of a patient along with text samples is provided
in RusIdiolect corpus. The findings of Panicheva and Litvinova show that
semantic coherence features allow to distinguish between healthy patients and
patients, who suffer from schizophrenia. This is comparable to results reported
for similar task in English. This research project aims at studying various phe-
nomena present in the schizophrenia and by no means calls to replace tradi-
tional medical diagnostics.

26.3.3 Sequence Labeling

The task of sequence labeling is to assign categories to single words. Common
examples of a sequence labeling tasks are part-of-speech (POS) tagging or
named entity recognition (NER). POS tagging is the task of labeling a word
with a corresponding POS tag. NER seeks to identify such named entities as

 E. ARTEMOVA

475

Table 26.3 Two examples of sequence labeling tasks

Boris (Boris) Pasternak (Pasternak) rodilsâ (was born) v (in) Moskve (Moscow)

POS tags PROPN PROP VERB PREP PROPN
NE tags Person Person O O Location

POS tagging (first line), named entity recognition (second line). Each word is assigned with two tags: a POS tag
and a named entity tag. If the word is not a named entity, the tag “O” is used

persons, locations, organizations, et cetera, and assign them with a correspond-
ing tag. See Table 26.3 for examples of POS tagging and NER.

Sequence labeling applications range from linguistics tasks, such as POS tag-
ging, which can be treated is a preliminary step for further analysis, up to more
complex tasks, such as coreference and gapping resolution. NER, as a sequence
labeling task, can be treated as a preliminary step for machine translation.
Named entities should be identified and treated differently from regular words
for proper translation. When used in Legal Tech or medical applications, NER
helps to discover important features, such as legal condition or diseases, used
further for decision-making. In Russian realities, Legal Tech applications are
very much in demand. This motivates several research groups to develop NER
methods for specific domains.

Sequence labeling helps virtual assistants to understand user needs better.
While text classification helps to detect user intent, sequence labeling methods
are able to fill in slots, that is, to discover specific details, such as what exactly
application should be launched or which contact should be addressed. Gapping
and coreference are crucial for handling messaging history. Gapping resolu-
tions helps to find omitted predicates in consequent turns, while coreference
resolutions helps to connect nouns and names with corresponding pronouns.

RNN and its variations are widely used for sequence labeling tasks due to its
ability to process a sequence word by word. We can think of RNN as an atten-
tive reader that reads each word carefully, thinks over the context of the word,
and then makes a decision as to what tag to assign. It is worth noting that
bidirectional variations of RNN, capable of both left-to-right and right-to-left
reading, are suited to model languages with free word order as they maintain
both left and right contexts.

The pipeline of the sequence labeling task does not differ significantly from
the text classification pipeline:

 1. Word embeddings are used as an input to the model. Word embeddings
may be extended with convolved character representations, which would
take care of derivational patterns.

 2. Multiple hidden RNN-derived layers are used for processing input and
for producing context-aware word representations.

 3. Each word representation is fed into a feed forward layer for final predic-
tion and each word is assigned with a label. Alternatively, another model,

26 DEEP LEARNING FOR THE RUSSIAN LANGUAGE

476

 conditional random field (CRF), may be used on top of the recurrent
layer to reweight its prediction.

The main difference between text classification and sequence label affects
the final layer. When used for text classification, the final layer is applied only
once to get one class label. However, for sequence labeling it is applied to each
individual word representation from previous layer.

In contrast to text classification task, sequence labeling seems to be more
complicated from a linguistic point of view. Tasks, modeled as sequence label-
ing, are more advanced and range from POS tagging to coreference and gap-
ping resolution.

There are several Russian datasets for the sequence labeling task:

• Universal dependencies5 project presents four Russian corpora annotated
with POS tags

• Persons-1000 (Gareev et al. 2013) and FactRuEval (Starostin et al. 2016)
are large-scale datasets for named entity recognition

• AGGR-2019 (Smurov et al. 2019) is a corpus for gapping resolution
• RuCor and AnCor (Toldova et al. 2014) are corpora used for coreference

and anaphora resolution
• SberQUAD, a dataset for question answering, treats answer generation as

a retrieval of a relevant fragment of text.

26.3.4 Transfer Learning in NLP

Since 2017, NLP field has witnessed the emergence of transfer learning meth-
ods and algorithms. Transfer learning stands for the process of training a model
on a large-scale dataset to conduct a simple task, such as language modeling.
Next, this pretrained model is trained for the second time for more compli-
cated tasks. The transfer learning process is comparable to the way a child is
educated. Children acquire the language from their environment, and only in
the school they are taught to complete grammar tasks. The same way models
gain language understanding while being pretrained and then are supervised
for specific tasks.

Transfer learning led to a paradigm shift in NLP. Instead of using every time
pretrained word embeddings and training the whole model from scratch, now
a pretrained model is fine-tuned for downstream tasks. This requires much less
annotated data and leads to superior results simultaneously. Word embeddings
were an imperfect way to store language representation, which suffered from
language ambiguity. Pretrained models are less prone to polysemy and anton-
ymy and are able to handle multilinguality at the same time.

Despite the fact that transfer learning paradigms leads to superior results in
comparison to previous approaches, so far it has not enabled any exceptionally
new applications.

 E. ARTEMOVA

477

Inside transfer learning models are transformer layers (see Fig. 26.1d) that
are more advanced from a technical point of view when compared to other lay-
ers. The architecture of transfer learning models is sophisticated, enumerates
millions of parameters, and take weeks to be pretrained.

Not only transfer learning models established new state of the art for several
existing NLP tasks, they also appear to be efficient in new generations of tasks.
For example, there is evidence that the tasks that require commonsense under-
standing can be conducted using transfer learning techniques. This is sup-
ported by the idea that excessive pretraining results in a subtle understanding
of language patterns.

When pretrained on the corpus of multiple languages or on parallel corpus,
transfer learning models become aware of several languages at the same time
and can be shared across several languages for the same downstream task. For
example, Piskorski et al. (2019) show how NER in four Slavic languages can be
approached by a multilingual model.

Even though pretraining of a large model is expensive and time-consuming,
new models appear almost every month as of late 2019. Among others, ELMo
(Peters et al. 2018) and BERT by Google (Devlin et al. 2019) are the most
popular models. BERT’s successors, ALBERT, RoBERTa, XLNet, and T5,
released by Facebook, Microsoft, and other technology companies, are larger
and outperform BERT by far. At the same time, they are heavily criticized for
being unaffordable for smaller institutions. Indeed, few universities in Russia
have enough resources to train transfer learning models. Table 26.4 lists trans-
fer learning models available for the Russian language. RusVectores poses both
word and sentence embeddings model. RusVectores provides not only word
embeddings, but also a pretrained ELMo model, which can be treated as sen-
tence embedding models.

Transfer learning models can be exploited as a standalone sentence embed-
ding tool. Sentence embeddings are massively used in those applications, which
require modeling of sentence similarity. Consider, for example, the task of find-
ing an answer to a frequently asked question (FAQ). Imagine that the answers
to some FAQs are already known, and a user asks a new question. The most
similar question to the new one can be found by using an embedding-based
similarity measure. With a high chance, the answer to the retrieved question
should fit the new question, too.

Table 26.4 Transfer learning models for Russian

http://docs.deeppavlov.ai/en/master/
features/models/bert.html

BERT in DeepPavlov (Kuratov and Arkhipov
2019)

http://rusvectores.org Multiple Russian-only word and sentence
embeddings (Kutuzov and Kuzmenko 2017)

https://github.com/vlarine/ruberta Russian RoBERTa, RuBERTa

26 DEEP LEARNING FOR THE RUSSIAN LANGUAGE

http://docs.deeppavlov.ai/en/master/features/models/bert.html
http://docs.deeppavlov.ai/en/master/features/models/bert.html
http://rusvectores.org
https://github.com/vlarine/ruberta

478

Transfer learning models are excellent not only in solving complex down-
stream tasks, but also in text generation. Some researchers are afraid of the
fluency of these models and raise ethical questions of the harmless strategy of
releasing the models. When misused, the transfer learning models can generate
fake news and offensive utterances and be disturbing. However, these concerns
are vivid for English-spoken communities and do not reach Russia so far.

26.4 concLusIon

This chapter discusses the applications of deep learning methods to Natural
Language Processing tasks and is particularly oriented at the Russian language.
We traced the development of deep learning methods for NLP from early
stages of using feed forward networks to recent developments in transfer learn-
ing. Two basic text representation models, namely bag-of-words and language
models, were presented and related to the duality between convolutional and
recurrent neural networks. We have recognized a recent paradigm shift, caused
by new advances in architecture design and development of transformer layers.
Several analogies between human intelligence and neural networks were drawn.
Neural networks aim at resembling human by using artificial neurons and
attention mechanisms, and acquiring language from textual data.

With no doubt, deep learning is a leading paradigm in modern language
technology. Unfortunately, the Russian language resources do not provide
enough resources to exploit deep learning scope fully. The Russian research
community is facing a need for both keeping track of worldwide challenges
and, if necessary, reapply the methods initially developed for the English lan-
guage to the Russian language.

The latter requires an increase not only of computational powers, which is
rather a financial matter but also of the amounts of annotated data. Recent
government decisions and AI-centered strategies seem to provide financial sup-
port to the research community that may help to narrow the gap between
English and Russian language resources.

Not only is Russian different from English from a linguistic point of view,
but also different language technology applications are demanded in Russia
and English-spoken countries. The major NLP applications in Russia are
related to marketing, e-Government transformation, and call center automa-
tion. Whole domains such as Legal Tech, medical NLP, educational NLP still
stay out of business focus and are subject to further development. Minority
languages currently are not supported by major language technology applica-
tions with Yandex.Search (the web search engine and the core product of
Yandex) being the only exception.

At the same time, while language technologies become more and more
sophisticated, the entry threshold to the NLP field is lowered. Recent advances
in programming tools and programming languages made it possible to develop
high-level languages, which can be easily comprehended by users with little or

 E. ARTEMOVA

479

no previous programming experience. Successful implementations of many
deep learning architectures have substantially facilitated the development of
practical applications. The complexity of deep learning models comes along
with the flexibility of fine-tuning and reuse across practical applications. The
nearest future will likely witness the transformation of learnable approaches to
daily routines.

notes

1. https://tatianashavrina.github.io/taiga_site/.
2. http://ucts.uniba.sk/aranea_about/.
3. https://rusidiolect.rusprofilinglab.ru, yet not published.
4. https://www.nltk.org.
5. https://universaldependencies.org.

references

Baranova-Bolotova, V., V. Blinov, and P. Braslavski. 2019. Lightning Talk-Humor
Recognition in Russian Language. In Companion Proceedings of the 2019 World Wide
Web Conference, 1268–1269. ACM.

Bartunov, S., D. Kondrashkin, A. Osokin, and D. Vetrov. 2016. Breaking Sticks and
Ambiguities with Adaptive Skip-Gram. Artificial Intelligence and Statistics: 130–138.

Bengio, Y., R. Ducharme, P. Vincent, and C. Jauvin. 2003. A Neural Probabilistic
Language Model. Journal of Machine Learning Research 3 (Feb): 1137–1155.

Devlin, J., M.W. Chang, K. Lee, and K. Toutanova. 2019. BERT: Pre-Training of Deep
Bidirectional Transformers for Language Understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, vol. 1. (Long and Short Papers),
4171–4186.

Gareev, R., M. Tkachenko, V. Solovyev, A. Simanovsky, and V. Ivanov. 2013. Introducing
Baselines for Russian Named Entity Recognition. In International Conference on
Intelligent Text Processing and Computational Linguistics, 329–342. Berlin,
Heidelberg: Springer.

Gordeev, Denis, Alexey Rey, and Dmitry Shagarov. 2018. Unsupervised Cross-Lingual
Matching of Product Classifications. In Proceedings of the 23rd Conference of Open
Innovations Association FRUCT, 62. FRUCT Oy.

Harris, Z.S. 1954. Distributional Structure. Word 10 (2–3): 146–162.
Heinzerling, B., and M. Strube. 2018. BPEmb: Tokenization-Free Pre-Trained

Subword Embeddings in 275 Languages. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation. LREC-2018.

Joulin, A., E. Grave, P. Bojanowski, and T. Mikolov. 2017. Bag of Tricks for Efficient
Text Classification. In Proceedings of the 15th Conference of the European Chapter of
the Association for Computational Linguistics 2, Short Papers, 427–431.

Kuratov, Y., and M. Arkhipov. 2019. Adaptation of Deep Bidirectional Multilingual
Transformers for Russian Language. arXiv preprint arXiv:1905.07213.

26 DEEP LEARNING FOR THE RUSSIAN LANGUAGE

https://tatianashavrina.github.io/taiga_site/
http://ucts.uniba.sk/aranea_about/
https://rusidiolect.rusprofilinglab.ru
https://www.nltk.org
https://universaldependencies.org

480

Kutuzov, A., and E. Kuzmenko. 2017. WebVectors: A Toolkit for Building Web
Interfaces for Vector Semantic Models. In Analysis of Images, Social Networks and
Texts, AIST 2016. Communications in Computer and Information Science, ed.
D. Ignatov et al., 661. Cham: Springer.

Kutuzov, A., L. Øvrelid, T. Szymanski, and E. Velldal. 2018. Diachronic Word
Embeddings and Semantic Shifts: A Survey. In Proceedings of the 27th International
Conference on Computational Linguistics, 1384–1397.

Litvinova, Olga, Pavel Seredin, Tatiana Litvinova, and John Lyell. 2017. Deception
Detection in Russian Texts. In Proceedings of the Student Research Workshop at the
15th Conference of the European Chapter of the Association for Computational
Linguistics, 43–52.

Mikolov, T., I. Sutskever, K. Chen, G.S. Corrado, and J. Dean. 2013. Distributed
Representations of Words and Phrases and Their Compositionality. In Advances in
Neural Information Processing Systems, 3111–3119.

Panicheva, Polina, and Tatiana Litvinova. 2019. Semantic Coherence in Schizophrenia
in Russian Written Texts. In Proceedings of the 25rd Conference of Open Innovations
Association FRUCT, 240. FRUCT.

Pelevina, M., N. Arefiev, C. Biemann, and A. Panchenko. 2016. Making Sense of Word
Embeddings. In Proceedings of the 1st Workshop on Representation Learning for
NLP, 174–183.

Peters, Matthew E., Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. 2018. Deep Contextualized Word
Representations. In Proceedings of NAACL-HLT, 2227–2237.

Piskorski, J., L. Laskova, M. Marcin ́czuk, L. Pivovarova, P. Pr ̌ibáň, J. Steinberger, and
R. Yangarber. 2019. The Second Cross-Lingual Challenge on Recognition,
Normalization, Classification, and Linking of Named Entities across Slavic
Languages. In Proceedings of the 7th Workshop on Balto-Slavic Natural Language
Processing, 63–74.

Rogers, Anna, Alexey Romanov, Anna Rumshisky, Svitlana Volkova, Mikhail Gronas,
and Alex Gribov. 2018. Rusentiment: An Enriched Sentiment Analysis Dataset for
Social Media in Russian. In Proceedings of the 27th International Conference on
Computational Linguistics, 755–763.

Sboev, Alexander, Ivan Moloshnikov, Dmitry Gudovskikh, Anton Selivanov, Roman
Rybka, and Tatiana Litvinova. 2018. Deep Learning Neural Nets Versus Traditional
Machine Learning in Gender Identification of Authors of RusProfiling Texts.
Procedia Computer Science 123 (2018): 424–431.

Smetanin, S., and M. Komarov. 2019. Sentiment Analysis of Product Reviews in Russian
Using Convolutional Neural Networks. In 2019 IEEE 21st Conference on Business
Informatics (CBI), vol. 1, 482–486. IEEE.

Smurov, I.M., M. Ponomareva, T.O. Shavrina, and K. Droganova. 2019. Agrr-2019:
Automatic Gapping Resolution for Russian. Computational Linguistics and
Intellectual Technologies: 561–575.

Solovyev, Valery D., Vladimir V. Bochkarev, and A.D. Kaveeva. 2015. Variations of
Social Psychology of Russian Society in Last 100 Years. In 2015 IEEE International
Conference on Smart City/SocialCom/SustainCom (SmartCity), 519–523. IEEE.

Starostin, A.S., V.V. Bocharov, S.V. Alexeeva, A. Bodrova, A.S. Chuchunkov,
S.S. Dzhumaev, and M.A. Nikolaeva. 2016. FactRuEval 2016: Evaluation of Named

 E. ARTEMOVA

481

Entity Recognition and Fact Extraction Systems for Russian. In Computational
Linguistics and Intellectual Technologies. Proceedings of the Annual International
Conference Dialogue (2016), vol. 15, 702–720.

Toldova, S.J., A. Roytberg, A.A. Ladygina, M.D. Vasilyeva, I.L. Azerkovich,
M. Kurzukov, and Y. Grishina. 2014. RU-EVAL-2014: Evaluating Anaphora and
Coreference Resolution for Russian. In Computational Linguistics and Intellectual
Technologies: Proceedings of the International Conference “Dialogue”, 681–694.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence and indicate if changes
were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

26 DEEP LEARNING FOR THE RUSSIAN LANGUAGE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Chapter 26: Deep Learning for the Russian Language
	26.1 Introduction
	26.2 Deep Learning Architecture Overview
	26.3 NLP Tasks
	26.3.1 Word Embeddings: How Do Computers Understand Lexical Meaning
	26.3.2 Text Classification
	26.3.3 Sequence Labeling
	26.3.4 Transfer Learning in NLP

	26.4 Conclusion
	References

	Untitled

