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CHAPTER 26

Deep Learning for the Russian Language

Ekaterina Artemova

26.1  IntroductIon

Deep learning has conquered the natural language processing (NLP) research 
area in the mid-2010s. Most research publications were focused on English 
and showed a significant improvement of results on major datasets. However, 
languages other than English were out of the scope of early deep learning 
research. Russian-oriented research first appeared on Russian local venues, such 
as Dialogue, Artificial Intelligence and Natural Language (AINL) and Analysis 
of Images, Social networks, and Texts (AIST). Early papers addressed such 
tasks as text classification and part of speech tagging. As of the late 2010s, a 
new trend for multilingual model development was established, which resulted 
in quite a few models for Russian, released by non-Russian universities and 
technology companies, such as Google or Facebook.

The deep learning breakthrough is grounded on the efficient use of large 
amounts of data, without any handcrafted features. While traditional statistical- 
based machine learning algorithms require a lot of manual annotation of textual 
data, the deep learning methods discover hidden patterns in the data without 
human help. Before the deep learning era, an NLP practitioner had to manually 
set hundreds of features: starting from such surface features as “is a word capi-
talized,” or “is there a comma before the word,” up to complex features that 
try to encode semantics. This resulted, among other things, in creating linguis-
tic corpora, such as Russian National Corpus (http://www.ruscorpora.ru/) 
and OpenCorpora (http://opencorpora.org) (for more, see Chap. 17).
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The advantages of the deep learning approach to text processing are two-
fold: first, it produces efficient word and sentence representations, sometimes 
addressed as word and sentence embeddings, which are capable of modeling 
lexical and grammatical meaning; second, due to multiple nonlinear transfor-
mations applied to word and sentence representations inside the deep model, 
language patterns are learned from actual observations, rather than from 
human annotations.

Although deep learning treats data differently from traditional machine 
learning, training a model is core to both approaches. The “black box” is a 
common metaphor to describe what a model is. We can treat any traditional 
machine learning or deep learning as a black box, which inputs some observa-
tions and outputs target labels. For example, for the task of sentiment analysis, 
the inputs are the users review and the outputs are either “positive” or “nega-
tive” labels (for more on sentiment analysis, see Chap. 28). Inside the black 
box are mathematical functions and objects that have many settings. The model 
is developed in two stages. During the first stage, which is addressed as the 
training stage, the model is trained to make correct predictions. The model is 
presented both with the inputs and correct labels and the settings of the model 
are adjusted so that the model is capable to produce correct answers. The cor-
rect labels help to rule the behavior of the model: if the predictions of the 
model are correct, it is encouraged to behave the same way, otherwise it is 
punished for incorrect predictions. It is common to say that the model is 
supervised while receiving feedback from correct labels. During the second 
stage, prediction or inference stage, the model is only used for prediction and 
the settings of the model are unchanged.

The procedure of training a model can be compared to the learning-by- 
doing, educational approach. The model is not presented with any theoretical 
statements, but rather is trained to perform in an expected way. While tradi-
tional machine learning exploits a variety of different models, deep learning 
apparatus is based on a single notion of artificial neural network, which is 
loosely inspired by the human brain. The usage of neural networks allows to 
develop more versatile models, as different types of neural networks are used as 
building blocks for specific tasks. This makes the models more reusable and 
easier to adjust to new tasks. Together, the ability to generalize well along with 
versatility turns deep learning into a powerful framework that is appealing for 
use in NLP, as it allows to attain a very high performance across many different 
NLP tasks.

This chapter provides an overview of deep learning applied to Russian 
NLP. The remainder is organized as follows: Sect. 26.2 introduces the main 
deep learning architectures, that is, neural network building blocks. Section 
26.3 presents a few NLP tasks and Russian-language examples along with the 
lists of available datasets and models. Section 26.4 concludes.
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26.2  deep LearnIng archItecture overvIew

The process of designing a neural network is similar to cooking a layered cake. 
An NLP practitioner first thinks of a preliminary sketch of the model and 
understands what the input to the model is, and what the model should out-
put. Next, the layers are added one by one to the model. The lowest layer is 
responsible for reading the textual input and creating an efficient representa-
tion of the input. The upper layers are aimed at solving the task under consid-
eration and preparing the desired output. The middle, or the hidden, layers do 
most of the work: hidden language patterns are discovered here by applying 
numerous nonlinear transformations.

Neural network architectures are constructed from various types of building 
blocks or layers. A crucial component of neural networks is the embedding 
layer. It maps words to vectors in a low dimensional space. These vectors, 
referred to as word embeddings, can be manipulated as any mathematical 
object: not only is it possible to calculate a similarity between them, but also to 
sum them up or to subtract them. The closer the words are by lexical meaning, 
the closer the corresponding word embeddings should be. The construction of 
word vectors can be treated either as a standalone task (see Sect. 26.3.1 of this 
chapter) or as a part of the whole neural network training. Word embeddings 
can be seen as a broad understanding of the grammar and semantics. When 
pretrained on a large general corpus, such as Wikipedia, word embeddings 
reveal the understanding of general language that can be adopted for a more 
specific domain. Word embeddings are shallow representations that only incor-
porate previous training in the input layer of the network. The upper layer of 
the network still needs to be trained from scratch.

Two major neural network architectures are Feed Forward Networks (FFNs) 
and recurrent neural networks (RNNs). The main difference between these 
architectures is in the way these architectures input the textual data.

FFNs treat the input text as a so-called “bag of words,” disregarding gram-
mar and word order and taking only word frequency into account. For exam-
ple, the sentence “the cat sat on the mat” would be turned into the following 
tuple: ([the, cat, sat, mat, on], [2, 1, 1, 1, 1]). Although FFNs are capable of 
combining the words in a meaningful way, it is still a significant disadvantage 
for languages with free word order, where the word order heavily affects the 
meaning of the sentence.

The design of RNNs overcomes the disadvantages of FFNs by introducing 
a built-in memory mechanism that summarizes the input text. RNNs can be 
seen as a tool which reads the input text sequentially in a word-by-word fash-
ion. As the memory is updated after reading a new word, RNNs are endowed 
with memorizing the word order and the understanding of the current word 
context. RNNs are usually treated as the analytical module of the whole net-
work and are rarely used as a standalone component. The power of RNNs is in 
their ability to produce context-aware word representations, which help, for 
example, to disambiguate word senses. RNNs often work in tandem with 
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FFNs, so that the output of the RNN is fed into a FFN, intended for final 
prediction.

The duality of feedforward and recurrent neural networks is caused by the 
difference of two widely used models for text representation. In contrast to the 
bag-of-words model exploited by FFNs, the recurrency targets at language 
modeling, which is central to the majority of NLP tasks. A language model has 
a double purpose: first, it assigns a probability to a sequence of words. Second, 
it predicts the next word based on a number of previously used words. The 
probability of a sentence, estimated by a language model, is closely related to 
the quality and correctness of the sentence. Language models help to evaluate 
the quality of machine translation or any other natural language generation 
task. By predicting the next word, the language model creates context- 
dependent word and sentence representations.

Although one of the early works by Bengio et al. (2003) shows that FFN 
can be treated as a language model, RNN outperforms by far FFNs for the task 
of language modeling. Finally, technical limitations of vanilla RNNs are resolved 
by gated architectures, such as long short-term memory (LSTM) and gated 
recurrent unit (GRU) networks. Both LSTM and GRU are very efficient as 
language models and are de-facto baseline NLP architectures.

The building blocks of neural network architectures are not limited to feed-
forward and recurrent layers. Convolutional neural networks (CNNs) are an 
extension of the FFN architecture. CNNs excel in discovering local patterns. 
They can be seen as a magnifier, which moves over a word sequence and identi-
fies important features. CNNs are often utilized on the lowest network layers 
to process not words, but rather characters, to discover long orthographic and 
derivational patterns. Many applications in Russian, a morphologically rich lan-
guage, benefit from the ability of CNNs to capture derivational word suffixes 
and endings. It helps to handle rare words, such as family names, terminology, 
toponyms, and slang, as well as to take surface features into account (Fig. 26.1).

When compared to feedforward and convolutional neural networks, recur-
rent neural networks are much slower to train, since they pose long-term 
dependencies and it is hard to parallelize recurrent computations. The recently 
introduced transformer layer combines the best of two approaches. It consists 
of multiple feedforward layers and a powerful attention mechanism that is anal-
ogous to human attention in the same way the artificial neural networks model 
biological neural networks. The attention mechanism directs focus to a certain 
part of the task while maintaining a background understanding of the whole 
task. It models word-by-word interactions on each feedforward layer, so that 
different types of dependencies are considered. The self-attention mechanism 
is used both to produce context-aware word embeddings, and also measures 
how strong the dependencies are between the words.

At the core of the recent paradigm shift in NLP, are pretrained language 
models that are built with rare exceptions with transformer blocks. Not only 
word embeddings, but the whole neural network is now pretrained as a lan-
guage model. It becomes possible, since the language modeling objective, next 
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Fig. 26.1 Neural network layers. (a) feed forward layer, (b) convolutional building 
layer, (c) recurrent layer, (d) transformer layer

word prediction, does not require any human annotation. The training data 
comes for free and the amount of training data available in almost every lan-
guage are potentially unlimited. Transformer-derived language models seem to 
capture many facets of language relevant for other NLP tasks. When pretrained 
on large and diverse corpora, they can be fine-tuned for downstream tasks and 
surpass previous results in almost every application (for more on corpus lin-
guistics, see Chap. 17).

Despite having excellent results for NLP tasks, neural networks have some 
disadvantages. First of all, they are frequently treated as black boxes as they 
lack interpretability. There have been several attempts to find a plausible expla-
nation of how exactly neural networks operate. One of the hypotheses states 
that the neural network follows the common linguistic pipeline of staged pro-
cessing of the language. It has been shown that if the neural network is deep 
enough, lower layers may become morphology aware, middle layers model 
syntactic dependencies, while the upper layers discover complex semantic pat-
terns. Secondly, deep learning technologies require a lot of data and computa-
tional sources. Modern computations, which may take about a month of 
training, are worth thousands of dollars. Thirdly, ethical concerns arise when 
training a model on textual data collected from the Web. A model can become 
unfair when trained on all misconceptions, offensive and biased judgments, 
fake news and false facts, published on the Web (for more on Runet, see  
Chap. 16). Finally, the fluency of text generation models may lead to poten-
tially harmful usage. New breed of text generation models impresses with their 
ability to generate coherent text from minimal prompts. When provided with 
a headline, such a model will compose a news story; when provided with a 
movie title, it will compose a movie plot. Text generation models can often 
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give the appearance of common sense and intelligence, so that it may become 
quite challenging to recognize, whether a text was composed by a human or 
by a machine. This frustrates research progress in language generation devel-
opment, as, it sees, text generators may be misused to generate fake news or 
propaganda or to increase the amount of spam on the Web. It is of crucial 
importance, the release of a powerful text generator is accompanied with a 
tool, which is capable of recognizing machine generated text and can be used 
to tackle online disinformation.

26.3  nLp tasks

26.3.1  Word Embeddings: How Do Computers Understand 
Lexical Meaning

Word embedding stands for a group of methods which are used to map words 
from a large vocabulary, to vectors. These vectors should consist of real num-
bers, have few zeros and be of relatively small dimensionality: it is common to 
construct 300-dimensional word embeddings. These vectors are treated as 
mathematical objects: not only similarity (or distance) between them can be 
computed, but also they can be added together or subtracted. At the core of 
numerous methods for word embedding construction is the distributional 
hypothesis: words that occur in the same contexts tend to have similar mean-
ings (Harris 1954). Word embedding models are trained on large text corpora. 
They aim at finding words that share contexts and represent them with such 
vectors that would be close, according to a mathematical similarity measure. 
For example, the embeddings of such words as kofe (“coffee”) and čaj (“tee”) 
should have a high similarity degree, since they are used in a similar way, along 
with the words pit′ (“to drink”), čaška (“cup”), nalit′ (“to pour”), et cetera. 
What is more, advanced word embedding models allow to conduct arithmeti-
cal operations: kofe (“coffee”) to utro (“morning”)  =  “čaj (“tee”) to večer 
(“evening”); Moskva (“Moscow”) to Rossiâ (“Russia”) = Berlin (“Berlin”) to 
Germaniâ (“Germany”). Of course, these associations are corpus-specific and 
may not be present in other models. The examples are provided by RusVectores 
(https://rusvectores.org), a free online service which provides, and which 
computes semantic relations between words in Russian and provides pretrained 
distributional semantic models (word embeddings), including contextual-
ized ones.

Word embeddings may serve as input to a neural network model, which 
further will be trained for any downstream task, and may be used as a stand-
alone model for studies of language usage. Word embeddings help to detect 
semantic shift, caused by either diachronic (Kutuzov et  al. 2018) or social 
changes (Solovyev et al. 2015). Bilingual word embeddings help to develop 
dictionaries and find similar concepts in different languages (Gordeev 
et al. 2018).
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Fig. 26.2 Word2vec configurations. (a) continuous bag of words, (b) skip-gram

The most popular word embedding model is word2vec (Mikolov et  al. 
2013) and its extension fasttext (Joulin et al. 2017). Word2vec exploits neural 
networks to compute word embeddings. It has two configurations: in a con-
tinuous bag of words, CBOW, it predicts a word based on surrounding words 
(two to the left and two to the right). In skip-gram, SGNS, it predicts sur-
rounding words based on the given central word (Fig. 26.2).

SGNS is a de-facto state of the art model for word embeddings and is almost 
a default choice for many NLP applications for the English language. However, 
for the Russian language SGNS might not be the best choice. When trained on 
raw texts, SGNS does not take into account the derivational forms of the 
words. As a result, for the word kot (a cat) there might be up to ten possible 
vectors for each possible derivational form. This would make a similarity mea-
sure almost invalid, since the closest words to the vector kot (a cat) would be 
the vectors of the derivational forms kotu (to the cat), kote (about the cat), et 
cetera. To overcome this issue, a preliminary normalization is required to 
replace each word with its base form. Normalization methods, however, may 
either have limited vocabulary and introduce some mistakes while processing 
out of vocabulary words or require word embeddings. This vicious circle is 
broken by the fasttext model that does not modify word2vec mathematics but 
treats the words differently. Instead of computing a single vector for a given 
word, it computes multiple vectors for all character n-grams (sequences of two 
to five characters) and then combines them to get the final vector.

Fasttext allows to capture such properties of rich morphology in Russian as 
derivational patterns in suffixes and endings. It is strongly recommended to use 
fasttext for the Russian language as the word embedding model. See Table 26.1 
for available pretrained word embedding models and Table  26.2 for word 
embedding training tools.

Word embedding models often fail when faced with such complex language 
phenomena as antonyms or homonyms. Although word embeddings are 
exceptionally powerful for finding words that share a similar meaning, they 
often mistake for words that have opposite meanings, such as proigrat′ (“to 
lose”) or vyigrat′ (“to win”), as they occur in similar contexts. Word embed-
ding models suffer from polysemy and homonymy. Such words as luk (“onion” 
or “bow” or “a look”) and zamok (“castle” or “lock”) get a single vector, 
despite having multiple sense. A few models, such as AdaGram (Bartunov et al. 
2016) and SenseGram (Pelevina et  al. 2016), try to overcome this issue by 
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Table 26.1 Word embeddings for Russian

http://rusvectores.org Multiple Russian-only word and sentence embeddings 
(Kutuzov and Kuzmenko, 2017)

http://docs.deeppavlov.ai/en/
master/features/pretrained_
vectors.html

Multiple Russian-only word and sentence embeddings

https://fasttext.cc/docs/en/
crawl-vectors.html

Google fasttext embeddings trained with limited 
preprocessing for 157 languages

http://vectors.nlpl.eu/
repository/

Thirteen Russian word embedding models trained with 
clearly stated hyperparameters, on clearly described and 
linguistically preprocessed corpora

https://github.com/
bheinzerling/bpemb

BPE embeddings for 275 languages

Table 26.2 Tools to train word embeddings

Library Language URL

Gensim Python https://radimrehurek.com/gensim/
AllenNLP Python https://github.com/allenai/allennlp
flair Python https://github.com/zalandoresearch/

flair
fasttext C++/terminal interface https://fasttext.cc
Deeplearning4j Java/Scala http://deeplearning4j.org

simultaneous word sense disambiguation, and word embedding training. 
However, current pretrained language models are a much more efficient solu-
tion to this issue, as they search for context-dependent word embeddings.

As of the mid 2010s, using pretrained word embeddings as an input to any 
machine learning or deep learning has become a must. The word embeddings 
can be fine-tuned while training the model for a downstream task or remain 
constant. Fine-tuning of word embeddings may help to resolve some issues 
related to antonyms or homonyms. When fine-tuned for sentiment classifica-
tion (for more on Sentiment analysis, see Chap. 28), embeddings for words 
horošij (“good”) and plohoj (“bad”), which may be initially close, will be pushed 
apart from each other.

Last but not least, an alternative approach to word tokenization, called byte 
pair encoding (BPE; Heinzerling and Strube 2018), suggests not to use whole 
words as text units, but rather split the words into subwords, based on frequent 
n-grams. BPE tokens resemble to a certain degree, morphemes, and seem quite 
promising for Russian.

To conclude this section, we will list a few pretrained word embedding 
models for Russian in Table 26.1.

All these models are available for downloads as single files. The models are 
trained on large freely available corpora, such as Wikipedia, Taiga,1 and 
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Araneum.2 The vocabulary of the models ranges from 100K to 700K unique 
tokens and the model size ranges from 200MB to 3GB.

RusVectores additionally provides web interface for exploration of word 
embedding models, along with visualization and semantic calculator.

Table 26.2 lists tools freely available to train embedding models from 
scratch. Gensim is one of the most popular Python libraries for building word 
embedding models and topic models, though Gensim does not provide deep 
learning functionality. In contrast to Gensim, AllenNLP and flair provide refer-
ence implementations for deep learning models for NLP, including word2vec 
and fasttext. These libraries provide tools for processing textual data and share 
similar functionality, though target different audience. AllenNLP is more 
advanced and flair is designed as a very simple framework. Both AllenNLP and 
flair have Python interfaces. Fasttext is available as a console application of the 
same name. Deeplearning4j is a general deep learning framework that provides 
scripts for training deep learning models.

26.3.2  Text Classification

The task of text classification is to assign categories to texts. This is a common 
supervised task: given labeled data (i.e. texts, annotated with class labels), a 
model should be first trained, and then applied to unlabeled test data.

Text classification is one of the most demanded industrial NLP tasks. 
Sentiment analysis and information filtering are the most common applications 
of text classification algorithms. Sentiment analysis is widely used for marketing 
research. Companies use sentiment classification for product analytics, brand 
monitoring, customer support, and market research. One of the main informa-
tion filtering techniques is spam filtering, which exploit classification algorithms 
to distinguish between spam and ham incoming emails. In general, email cat-
egorization is a powerful idea which facilitates the work of an office employee. 
Other information filtering applications may include identification of trolls, 
obscene content detection, ad blocking and privacy protection. What is more, 
hotlines use text classification for language identification.

Virtual personal assistants, such as Apple Siri or Amazon Alexa, are becom-
ing an internal part of our daily lives. They use the whole range of NLP meth-
ods, including text classification. Each user utterance is classified according to 
its intent, according to the desired action of the user (i.e. whether the user 
meant to launch an application, make a call, write a note, etc.).

The classification of Russian texts is almost no different from English text 
classification and follows a standard pipeline:

 1. Word embeddings are used as an input to the model
 2. Multiple hidden CNN- or RNN-derived layers are used for input 

processing
 3. A feed forward layer is used for final prediction.
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The labels in the training set, that is, the correct answers, are used for super-
vision. When presented with correct answers, the model is able to adjust its 
own parameters so that its predictions become correct.

The quality of the classification task is evaluated according to the ratio of 
correct predictions and the ratio of erroneous predictions.

There are a few recent Russian-language datasets for text classification:

• A large-scale dataset for sentiment analysis, which consists of texts from 
social media (Rogers et al. 2018).

• A dataset for sentiment analysis of product reviews on e-commerce sites 
(Smetanin and Komarov 2019).

• A collected dataset for humor recognition in short stories (Baranova- 
Bolotova et al. 2019).

• RusIdiolect3 is a dataset for experimental studies of the idiolect of a native 
Russian speaker, such as deception detection (Litvinova et al. 2017).

• RusProfiling is a popular dataset for author profiling, including gender 
identification. Current state of the art results are achieved by Sboev 
et al. (2018).

These datasets are available to download from the Web. In contrast to major 
English datasets gathered in Natural Language Toolkit4 (NLTK), there is no 
unified application programming interface (API) to access Russian datasets.

Finally, the major component of fasttext (Joulin et al. 2017) functionality is 
a simple yet strong classification algorithm. It is very fast and easy to use and is 
strongly recommended as a strong baseline.

Finally, there are a few applications of word embeddings outside linguistic 
field. For example, (Panicheva and Litvinova 2019) report on using word 
embeddings to measure speech coherence of patients, affected by schizophre-
nia. “Semantic coherence” is defined as mean pairwise similarity between words 
in a sample text, written by a patient. Word embeddings allow to measure 
semantic coherence, as they provide a simple approach to measure word simi-
larity. The schizophrenia status of a patient along with text samples is provided 
in RusIdiolect corpus. The findings of Panicheva and Litvinova show that 
semantic coherence features allow to distinguish between healthy patients and 
patients, who suffer from schizophrenia. This is comparable to results reported 
for similar task in English. This research project aims at studying various phe-
nomena present in the schizophrenia and by no means calls to replace tradi-
tional medical diagnostics.

26.3.3  Sequence Labeling

The task of sequence labeling is to assign categories to single words. Common 
examples of a sequence labeling tasks are part-of-speech (POS) tagging or 
named entity recognition (NER). POS tagging is the task of labeling a word 
with a corresponding POS tag. NER seeks to identify such named entities as 
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Table 26.3 Two examples of sequence labeling tasks

Boris (Boris) Pasternak (Pasternak) rodilsâ (was born) v (in) Moskve (Moscow)

POS tags PROPN PROP VERB PREP PROPN
NE tags Person Person O O Location

POS tagging (first line), named entity recognition (second line). Each word is assigned with two tags: a POS tag 
and a named entity tag. If the word is not a named entity, the tag “O” is used

persons, locations, organizations, et cetera, and assign them with a correspond-
ing tag. See Table 26.3 for examples of POS tagging and NER.

Sequence labeling applications range from linguistics tasks, such as POS tag-
ging, which can be treated is a preliminary step for further analysis, up to more 
complex tasks, such as coreference and gapping resolution. NER, as a sequence 
labeling task, can be treated as a preliminary step for machine translation. 
Named entities should be identified and treated differently from regular words 
for proper translation. When used in Legal Tech or medical applications, NER 
helps to discover important features, such as legal condition or diseases, used 
further for decision-making. In Russian realities, Legal Tech applications are 
very much in demand. This motivates several research groups to develop NER 
methods for specific domains.

Sequence labeling helps virtual assistants to understand user needs better. 
While text classification helps to detect user intent, sequence labeling methods 
are able to fill in slots, that is, to discover specific details, such as what exactly 
application should be launched or which contact should be addressed. Gapping 
and coreference are crucial for handling messaging history. Gapping resolu-
tions helps to find omitted predicates in consequent turns, while coreference 
resolutions helps to connect nouns and names with corresponding pronouns.

RNN and its variations are widely used for sequence labeling tasks due to its 
ability to process a sequence word by word. We can think of RNN as an atten-
tive reader that reads each word carefully, thinks over the context of the word, 
and then makes a decision as to what tag to assign. It is worth noting that 
bidirectional variations of RNN, capable of both left-to-right and right-to-left 
reading, are suited to model languages with free word order as they maintain 
both left and right contexts.

The pipeline of the sequence labeling task does not differ significantly from 
the text classification pipeline:

 1. Word embeddings are used as an input to the model. Word embeddings 
may be extended with convolved character representations, which would 
take care of derivational patterns.

 2. Multiple hidden RNN-derived layers are used for processing input and 
for producing context-aware word representations.

 3. Each word representation is fed into a feed forward layer for final predic-
tion and each word is assigned with a label. Alternatively, another model, 
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 conditional random field (CRF), may be used on top of the recurrent 
layer to reweight its prediction.

The main difference between text classification and sequence label affects 
the final layer. When used for text classification, the final layer is applied only 
once to get one class label. However, for sequence labeling it is applied to each 
individual word representation from previous layer.

In contrast to text classification task, sequence labeling seems to be more 
complicated from a linguistic point of view. Tasks, modeled as sequence label-
ing, are more advanced and range from POS tagging to coreference and gap-
ping resolution.

There are several Russian datasets for the sequence labeling task:

• Universal dependencies5 project presents four Russian corpora annotated 
with POS tags

• Persons-1000 (Gareev et al. 2013) and FactRuEval (Starostin et al. 2016) 
are large-scale datasets for named entity recognition

• AGGR-2019 (Smurov et al. 2019) is a corpus for gapping resolution
• RuCor and AnCor (Toldova et al. 2014) are corpora used for coreference 

and anaphora resolution
• SberQUAD, a dataset for question answering, treats answer generation as 

a retrieval of a relevant fragment of text.

26.3.4  Transfer Learning in NLP

Since 2017, NLP field has witnessed the emergence of transfer learning meth-
ods and algorithms. Transfer learning stands for the process of training a model 
on a large-scale dataset to conduct a simple task, such as language modeling. 
Next, this pretrained model is trained for the second time for more compli-
cated tasks. The transfer learning process is comparable to the way a child is 
educated. Children acquire the language from their environment, and only in 
the school they are taught to complete grammar tasks. The same way models 
gain language understanding while being pretrained and then are supervised 
for specific tasks.

Transfer learning led to a paradigm shift in NLP. Instead of using every time 
pretrained word embeddings and training the whole model from scratch, now 
a pretrained model is fine-tuned for downstream tasks. This requires much less 
annotated data and leads to superior results simultaneously. Word embeddings 
were an imperfect way to store language representation, which suffered from 
language ambiguity. Pretrained models are less prone to polysemy and anton-
ymy and are able to handle multilinguality at the same time.

Despite the fact that transfer learning paradigms leads to superior results in 
comparison to previous approaches, so far it has not enabled any exceptionally 
new applications.
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Inside transfer learning models are transformer layers (see Fig. 26.1d) that 
are more advanced from a technical point of view when compared to other lay-
ers. The architecture of transfer learning models is sophisticated, enumerates 
millions of parameters, and take weeks to be pretrained.

Not only transfer learning models established new state of the art for several 
existing NLP tasks, they also appear to be efficient in new generations of tasks. 
For example, there is evidence that the tasks that require commonsense under-
standing can be conducted using transfer learning techniques. This is sup-
ported by the idea that excessive pretraining results in a subtle understanding 
of language patterns.

When pretrained on the corpus of multiple languages or on parallel corpus, 
transfer learning models become aware of several languages at the same time 
and can be shared across several languages for the same downstream task. For 
example, Piskorski et al. (2019) show how NER in four Slavic languages can be 
approached by a multilingual model.

Even though pretraining of a large model is expensive and time-consuming, 
new models appear almost every month as of late 2019. Among others, ELMo 
(Peters et al. 2018) and BERT by Google (Devlin et al. 2019) are the most 
popular models. BERT’s successors, ALBERT, RoBERTa, XLNet, and T5, 
released by Facebook, Microsoft, and other technology companies, are larger 
and outperform BERT by far. At the same time, they are heavily criticized for 
being unaffordable for smaller institutions. Indeed, few universities in Russia 
have enough resources to train transfer learning models. Table 26.4 lists trans-
fer learning models available for the Russian language. RusVectores poses both 
word and sentence embeddings model. RusVectores provides not only word 
embeddings, but also a pretrained ELMo model, which can be treated as sen-
tence embedding models.

Transfer learning models can be exploited as a standalone sentence embed-
ding tool. Sentence embeddings are massively used in those applications, which 
require modeling of sentence similarity. Consider, for example, the task of find-
ing an answer to a frequently asked question (FAQ). Imagine that the answers 
to some FAQs are already known, and a user asks a new question. The most 
similar question to the new one can be found by using an embedding-based 
similarity measure. With a high chance, the answer to the retrieved question 
should fit the new question, too.

Table 26.4 Transfer learning models for Russian

http://docs.deeppavlov.ai/en/master/
features/models/bert.html

BERT in DeepPavlov (Kuratov and Arkhipov 
2019)

http://rusvectores.org Multiple Russian-only word and sentence 
embeddings (Kutuzov and Kuzmenko 2017)

https://github.com/vlarine/ruberta Russian RoBERTa, RuBERTa
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Transfer learning models are excellent not only in solving complex down-
stream tasks, but also in text generation. Some researchers are afraid of the 
fluency of these models and raise ethical questions of the harmless strategy of 
releasing the models. When misused, the transfer learning models can generate 
fake news and offensive utterances and be disturbing. However, these concerns 
are vivid for English-spoken communities and do not reach Russia so far.

26.4  concLusIon

This chapter discusses the applications of deep learning methods to Natural 
Language Processing tasks and is particularly oriented at the Russian language. 
We traced the development of deep learning methods for NLP from early 
stages of using feed forward networks to recent developments in transfer learn-
ing. Two basic text representation models, namely bag-of-words and language 
models, were presented and related to the duality between convolutional and 
recurrent neural networks. We have recognized a recent paradigm shift, caused 
by new advances in architecture design and development of transformer layers. 
Several analogies between human intelligence and neural networks were drawn. 
Neural networks aim at resembling human by using artificial neurons and 
attention mechanisms, and acquiring language from textual data.

With no doubt, deep learning is a leading paradigm in modern language 
technology. Unfortunately, the Russian language resources do not provide 
enough resources to exploit deep learning scope fully. The Russian research 
community is facing a need for both keeping track of worldwide challenges 
and, if necessary, reapply the methods initially developed for the English lan-
guage to the Russian language.

The latter requires an increase not only of computational powers, which is 
rather a financial matter but also of the amounts of annotated data. Recent 
government decisions and AI-centered strategies seem to provide financial sup-
port to the research community that may help to narrow the gap between 
English and Russian language resources.

Not only is Russian different from English from a linguistic point of view, 
but also different language technology applications are demanded in Russia 
and English-spoken countries. The major NLP applications in Russia are 
related to marketing, e-Government transformation, and call center automa-
tion. Whole domains such as Legal Tech, medical NLP, educational NLP still 
stay out of business focus and are subject to further development. Minority 
languages currently are not supported by major language technology applica-
tions with Yandex.Search (the web search engine and the core product of 
Yandex) being the only exception.

At the same time, while language technologies become more and more 
sophisticated, the entry threshold to the NLP field is lowered. Recent advances 
in programming tools and programming languages made it possible to develop 
high-level languages, which can be easily comprehended by users with little or 
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no previous programming experience. Successful implementations of many 
deep learning architectures have substantially facilitated the development of 
practical applications. The complexity of deep learning models comes along 
with the flexibility of fine-tuning and reuse across practical applications. The 
nearest future will likely witness the transformation of learnable approaches to 
daily routines.

notes

1. https://tatianashavrina.github.io/taiga_site/.
2. http://ucts.uniba.sk/aranea_about/.
3. https://rusidiolect.rusprofilinglab.ru, yet not published.
4. https://www.nltk.org.
5. https://universaldependencies.org.
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Attribution 4.0 International License (http://creativecommons.org/licenses/
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medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence and indicate if changes 
were made.

The images or other third party material in this chapter are included in the chapter’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If 
material is not included in the chapter’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need 
to obtain permission directly from the copyright holder.
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