
Chapter 24
Towards the Crystal Plasticity Based
Modeling of TRIP-Steels—From
Material Point to Structural Simulations

Stefan Prüger and Björn Kiefer

Abstract With the complex multi-scale behavior of high-alloyed TRIP steels in
mind, this contribution aims to complement recently established continuummechani-
calmodeling approaches for suchmaterials, by considering their anisotropic inelastic
response at the single crystal level. This approach generally enables the consideration
of initial textures and their deformation-induced evolutions. It also represents the key
theoretical and algorithmic foundation for future extensions to include phase transfor-
mation and twinning effects. Several rate-independent and rate-dependent formula-
tions are investigated. The former are naturally associated with Karush-Kuhn-Tucker
type inequality constraints in the sense of amulti-surface plasticity problem, whereas
in the latter, these constraints are handled by penalty-type approaches. More specif-
ically, the primary octahedral slip systems of face-centered cubic crystal symmetry
are explicitly taken into account in our model application of the general framework
and hardening models of increasing complexity are incorporated. To test the effi-
ciency and robustness of the different formulations, material point simulations are
carried out under proportional and non-proportional deformation histories. A rate-
independent augmented Lagrangian formulation is identified as most suitable in the
considered context and its finite element implementation as a User-definedMATerial
subroutine (UMAT) is consequently studied in depth. To this end, the loading orienta-
tion dependence of the deformation and localization behaviors are analyzed through
simulation of a mildly notched tensile specimen as a representative inhomogeneous
boundary value problem.
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24.1 Introduction

During the past decades, new steel grades with improvedmechanical properties, such
as high strength and pronounced ductility, have been developed, mainly motivated
by light-weight applications in the automotive industry, cf. [1–3]. The initially fully-
austenitic steel, X3CrMnNi16-6-6, developed in the DFG Collaborative Research
Center 799, clearly belongs to this group of advanced high-strength steels. Exten-
sive mechanical and microstructural characterization, see [4–9] revealed that the
mechanical properties can be attributed to the evolution of the microstructure during
deformation, i.e. depending on temperature, stacking-fault energy and strain-rate, the
face-centered cubic (fcc) austenite (γ ) forms twins or stacking-faults with hexagonal
close-packed structure (ε) or transforms to body-centered cubic (bcc)martensite (α′).
In particular, the different deformationmechanisms can occur concurrently, as shown
in Fig. 24.1, which renders the formulation of constitutive models at the macroscopic
scale a challenging task, cf. [10–12]. Although such models are already quite com-
plex, they rarely incorporate the effect of evolving anisotropy due to texture evolution,
which is of great importance in forming simulations. Furthermore, the application
of such models in structural simulations is naturally associated with a length scale,
at which the characteristic sizes of the microstructure are small compared to other
dimensions of the problem. Therefore, employing such models to predict the behav-
ior of devices at the micrometer scale seems to be questionable. In contrast, crystal
plasticity based modeling approaches can in principle account for these effects, how-
ever, an appropriate scale-transition law has to be incorporated to give reasonable
predictions at macroscopic scale. Keeping in mind that the deformation behavior of
the TRIP-steel under consideration is mainly influenced by interaction of the defor-
mation mechanisms at multiple scales—ranging from interactions between grains to
interactions of stacking-faults with martensitic inclusions within a single grain—a
crystal plasticity based multi-scale modeling approach seems to be even more appro-
priate. Although the kinematic aspects of the different deformation mechanisms are
reasonable well understood, their incorporation into conventional crystal plasticity
models is a challenging subject of ongoing research, especially for TRIP-steels.

Aiming for a comprehensive description of the transformation behavior in low-
alloyed TRIP-steels, a material model that incorporates the stress-assisted trans-
formation from fcc austenite to body-centered tetragonal (bct) martensite under
thermomechanical loading is proposed in [13], which also takes into account the
twinned martensite microstructure. The influence of the initial crystal orientation on
the mechanical and the transformation behavior under homogeneous deformation is
studied in [14] for the two cases of a single austenitic grain and an austenitic grain
embedded in a ferritic, elastic-plasticmatrix,which is described by a phenomenologi-
cal, isotropic J2-plasticitymodel. In [15] thematerialmodel is extended to account for
anisotropic plastic slip bymeans of a crystal plasticitymodel, which is employed both
within the austenitic grains and in the ferritic matrix. A significant influence of the
initial orientation of the austenitic grains—embedded in a single or oligocrystalline
ferritic matrix—is found for macroscopically homogeneous deformation states.
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Fig. 24.1 Deformation mechanisms observed in the TRIP-steel X3CrMnNi16-6-6 as functions of
temperature T or equivalently stacking-fault energy γSF. Data taken from [6]

Furthermore, in [16] thismodel is applied to the simulation of a representative volume
element of a low-alloyedTRIP-steelwith an idealizedmicrostructure containingmul-
tiple austenite grains embedded in discretely resolved polycrystalline ferrite matrix
under macroscopically homogeneous thermomechanical loading. Here the influence
of the sequence of thermal and mechanical loading on the mechanical response and
transformation behavior is investigated. The multi-scale character of the deforma-
tion and transformation behavior of low-alloyed TRIP-steels is accounted for in [17]
by assuming an idealized lath martensite microstructure and combining the elastic-
plastic material response of the two phases, austenite and martensite, with a criterion
for the stress-assisted transformation and explicitly enforcing the compatibility and
the stress equilibrium at their interfaces. In contrast to themodels mentioned above, a
single crystal material model for an initially fully-austenitic steel that shows a strain-
induced transformation from fcc austenite to bcc martensite is considered in [18] and
the transformation kinetics of Stringfellow [19] is applied at the single crystal scale
and the evolution of deformation bands/bands of stacking-faults that act as nucleation
sites for martensite is explicitly taken into account. Good agreement between numer-
ical simulations and experimental results from uniaxial tensile tests for a wide range
of strain rates is observed. A gradient extended crystal plasticity model that includes
both stress-assisted and strain-induced austenite to martensite phase transformation
is proposed in [20, 21] and is employed to study size effects in nanoindentation
and in three-point bending tests and to investigate the influence of grain boundaries
and twins in austenite grain on the transformation behavior. Consistent with ther-
modynamical considerations in [13, 14], a single crystal model that accounts for
the stress-assisted austenite to martensite transformation is discussed in [22] and
extended to include twinning [23]. Here again, the influence of the initial crystal
orientation on the mechanical behavior under homogeneous deformations is consid-
ered. Increasing research activity in the field of high-manganese TWIP steels has led
to the development of two single crystal material models [24, 25] that account for
three different deformation mechanisms, namely slip, twinning and stacking-fault
formation/ε-martensite formation. The latter model includes a dislocation density
based hardening law, which is successfully calibrated based on quasi-static tensile
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tests of a polycrystaline TWIP-steel together with the corresponding microstructure
evolution in terms of ε-martensite and twin volume [26]. Rather recently, a single
crystal plasticity model that incorporates the stress-assisted austenite to martensite
transformation is applied to the predictionof polycrystalline responseof twoand three
phase low-alloyed TRIP-steels and the corresponding forming limit diagrams [27].
Furthermore, the well-known transformation kinetics model of Olson-Cohen [28]
is extended in [29] to account for the crystallographic nature of the formation of
deformation bands/bands of stacking-faults. The kinetics law is then coupled to a
crystal plasticity model to describe the strain-induced transformation from austen-
ite to martensite. The comparison between numerical simulations and the results of
polycrystalline experiments shows that the temperature and stress-state dependency
of the mechanical response and the transformation behavior is well captured. For fur-
ther information on the application of crystal plasticity models, the reader is referred
to the comprehensive reviews [30–32].

Although the above literature review shows that numerous models have been pro-
posed, which account for the coupling of two or three deformation mechanisms or
the different nature of stress-assisted and strain-induced martensitic transformation,
a material model that thoroughly captures all the deformation mechanisms men-
tioned in Fig. 24.1 and their transition over a wide range of temperatures still seems
to be missing. In order to develop such a model—possessing a modular structure
and being robust at the same time—a numerical framework has to be identified that
allows for a robust and efficient implementation. While the above mentioned models
are almost exclusively based on rate-dependent formulations, it is argued in [33]
that such an approach may introduce an artificial rate-dependence into the model’s
response, if such a formulation is chosen only for numerical convenience and not
due to experimental results. Hence, a systematic study regarding different numerical
implementations has to be carried out to assess the efficiency and the robustness of the
corresponding stress-update algorithms also considering different model complexity.
The contribution at hand aims for such a study and will provide recommendations for
appropriate algorithms both for rate-dependent and rate-independent formulations.
Therefore, the choice of rate-dependence in the constitutive description of the differ-
ent deformationmechanisms can solely bemade based on experimental observations
rather than numerics. The current study employs a single crystal plasticity model that
is able to capture the deformation behavior of stable austenitic stainless steels as illus-
trated in [34]. Thus, an adequate description of the TRIP-steel X3CrMnNi16-6-6 at
temperatures T > 220 ◦C is considered, where dislocation glide is the main defor-
mation mechanism, see Fig. 24.1. This model will also form the basis for further
model developments, eventually providing a modular constitutive description of the
TRIP-steel under consideration. In order to enlighten the effect of rate-dependence
on the constitutive response and the robustness of the corresponding stress update
algorithms, the study comprises four different formulations and hardening laws of
different complexity.

This contribution is structured as follows. The single crystal plasticity model is
discussed in Sect. 24.2, while the comparison of the different formulations under
homogeneous proportional and non-proportional loading histories is considered in
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Sect. 24.3. In Sect. 24.4, a rate-independent formulation is employed to study the
orientation dependence of the deformation and localization behavior of a mildly
notched single crystal tensile specimen. Section24.5 summarizes the main findings
and outlines current and future research efforts on this topic.

24.2 Material Model

The constitutive behavior of face-centered cubic single crystals at finite deformations
is described by a material model that builds on the approach proposed by Schmidt-
Baldassari [35] in the rate-independent case and the formulation employed in [36–38]
for the rate-dependent case. It is based on the multiplicative split of the deformation
gradient into an elastic and a plastic part according to the proposal of Kröner [39]
and Lee [40]

F = Fe · Fp. (24.1)

In addition to this kinematic assumption, the intermediate configuration defined by
such a split is taken as isoclinic as suggested in [41].

The elastic behavior, defined with respect to that intermediate configuration, is
assumed to be governed by the isotropic, volumetric-isochorically decoupled free
energy function of compressible Neo-Hooke type

�e = 1

2
κ

[
ln (J e)

]2 + 1

2
μ

[
Ce : I − 3

]
. (24.2)

Herein, J e and Ce denote the determinant of the elastic part of the deformation
gradient Fe and the unimodular part of the elastic right Cauchy-Green tensor. The
latter is obtained from the elastic Cauchy-Green tensor

Ce = FeT · Fe (24.3)

via Ce = J e−2/3Ce, while κ and μ are the bulk and shear moduli, respectively. The
second Piola-Kirchhoff stress in the intermediate configuration Ŝ is defined as

Ŝ = 2
∂�e

∂Ce
(24.4)

and specifically reads as

Ŝ = J e ∂�e
vol

∂ J e
Ce−1 + 2

∂�e
iso

∂Ce
= κ ln (J e)Ce−1 + J e−2/3μ

[
I − 1

3
tr (Ce)Ce−1

]

(24.5)
for the elastic free energy density given in (24.2), cf. [42] for a detailed derivation.
Furthermore, the Mandel stress tensor M, which is also defined with respect to the
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intermediate configuration, can be expressed as

M = Ce · Ŝ =
[
κ ln (J e) − 1

3
μ tr (Ce)

]
I + μCe. (24.6)

The assumption of elastic isotropy is a reasonable approximation only for a few cubic
metals, e.g. α-Tungsten, aluminum and vanadium [43], which are characterized by a
Zener anisotropy index close to one [44]. This assumption is considered acceptable
for the current contribution due to its simplicity.However, an extension of thematerial
model to incorporate elastic anisotropy can be carried out by replacing the free energy
density in (24.2) by the quadratic anisotropic free energy function discussed in [45],
which is more suitable for moderately large elastic deformations. In contrast to the
elastic behavior, the inelastic deformation of a single crystal is inherently anisotropic
because it is governed by a finite number of distinct slip systems associated with the
crystal lattice. For most face-centered cubic crystals it is reasonable to consider only
the primary octahedral slip systems, consisting of {111} slip planes and 〈110〉 slip
directions, see Table24.1. The inelastic slip on the different slip systems, γα , is linked
to the plastic part of the deformation gradient and the plastic velocity gradient Lp

via the evolution equation

Lp = Ḟp · Fp−1 =
n∑

α=1

γ̇α sα⊗ nα, (24.7)

in which sα and nα denote the slip direction and the slip plane normal of the system
α. In addition, these vectors are of unit length |sα| = |nα| = 1 and are mutually
orthogonal sα · nα = 0, where the latter property results in the inelastic part of the
deformation gradient being isochoric. The onset of inelastic deformation on each
slip system is described by limit surfaces of the form

�α := τα − [
Y0 + Yα(εβ)

]
. (24.8)

Herein, τα denotes the resolved shear stress on the slip system α and is computed as

τα = M : [ sα⊗ nα] , (24.9)

while Y0 and Yα respectively correspond to the initial yield stress and the driving
force thermodynamically conjugate to the hardening variable εα . The driving force
is consequently defined as

Yα := ∂�p

∂εα

, (24.10)

where an additional split of the free energy due to elastic and inelastic effects has
been assumed. In the current contribution, two different hardening functions are
considered.
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Table 24.1 Primary slip systems of a face-centered cubic single crystal

Miller indices Schmid/Boas
notation [46]

Slip plane normal Slip direction

(1, 1, 1)[1, 1̄, 0] B5 n1 = n13 = [1, 1, 1]/√3 s1 = −s13 = [1,−1, 0]/√2

(1, 1, 1)[1, 0, 1̄] B4 n2 = n14 = [1, 1, 1]/√3 s2 = −s14 = [1, 0,−1]/√2

(1, 1, 1)[0, 1, 1̄] B2 n3 = n15 = [1, 1, 1]/√3 s3 = −s15 = [0, 1,−1]/√2

(1, 1, 1̄)[1, 1̄, 0] C5 n4 = n16 = [1, 1,−1]/√3 s4 = −s16 = [1,−1, 0]/√2

(1, 1, 1̄)[1, 0, 1] C3 n5 = n17 = [1, 1,−1]/√3 s5 = −s17 = [1, 0, 1]/√2

(1, 1, 1̄)[0, 1, 1] C1 n6 = n18 = [1, 1,−1]/√3 s6 = −s18 = [0, 1, 1]/√2

(1, 1̄, 1)[1, 1, 0] D6 n7 = n19 = [1,−1, 1]/√3 s7 = −s19 = [1, 1, 0]/√2

(1, 1̄, 1)[1, 0, 1̄] D4 n8 = n20 = [1,−1, 1]/√3 s8 = −s20 = [1, 0,−1]/√2

(1, 1̄, 1)[0, 1, 1] D1 n9 = n21 = [1,−1, 1]/√3 s9 = −s21 = [0, 1, 1]/√2

(1̄, 1, 1)[1, 1, 0] A6 n10 = n22 = [−1, 1, 1]/√3 s10 = −s22 = [1, 1, 0]/√2

(1̄, 1, 1)[1, 0, 1] A3 n11 = n23 = [−1, 1, 1]/√3 s11 = −s23 = [1, 0, 1]/√2

(1̄, 1, 1)[0, 1, 1̄] A2 n12 = n24 = [−1, 1, 1]/√3 s12 = −s24 = [0, 1,−1]/√2

Firstly, a purely phenomenological, Taylor-type hardening formulation of the form

Yα = �Y
[
1 − exp (−hA)

]
(24.11)

is introduced, which incorporates the cumulative inelastic slip A = ∑
α εα and is

parameterized by the asymptotic increase in the yield stress�Y as well as the dimen-
sionless shape parameter h. It can be deduced from the inelastic part of the free energy
function, i.e.

�p,Taylor = �Y

[
A + 1

h
exp (−hA)

]
, (24.12)

by means of (24.10). The application of the cumulative inelastic slip A in the harden-
ing function (24.11) idealizes the interaction between different slip systems, but due
to its simplicity, it has been extensively used to develop robust algorithmic frame-
works for single crystal plasticity models [47–49].

Secondly, the alternative anisotropic hardening function

Yα = �Y
∑

β
hαβ

[
1 − exp

(−hεβ

)]
, (24.13)

proposed in [50], is considered, which introduces the symmetric interaction matrix
hαβ in a phenomenological manner. It allows for a more complex interaction of
different slip systems and contains up to 6 material constants [46]. In the current
contribution the structure of the interaction matrix is adopted from [51]. The energy
corresponding to this type of hardening function is formulated as a quadratic form

�p,GC = 1

2
�Yh

∑

α
sα

∑

β
hαβsβ (24.14)
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in terms of the auxiliary variable sα . The exponential type hardening is obtained from
a non-associated evolution equation for sα , which eventually leads to

sα = 1

h

[
1 − exp (−hεα)

]
. (24.15)

The driving force Yα , introduced in (24.13), is obtained by taking the derivative of
(24.14) with respect to sα and the subsequent substitution of (24.15) to eliminate sα
from the resulting expression. Note that the hardening function (24.13) is exactly
the one employed in the “GC model” in [36], which emanates from the small strain
formulation presented in [50]. In order to close the system of equations evolution
laws for the internal state variables have to be defined.

In the rate-independent formulation one obtains

ε̇α = −λ̇α

∂�α

∂Yα

(24.16)

for the hardening variables and for the inelastic velocity gradient

Lp =
n∑

α=1

λ̇α

∂�α

∂M
(24.17)

from an associated formulation, which introduces the Lagrange multipliers λ̇α , that
are subject to the Karush-Kuhn-Tucker (KKT) conditions

�α ≤ 0 λ̇α ≥ 0 λ̇α�α = 0. (24.18)

Considering the limit surface (24.8) and comparing the inelastic velocity gradient
given in (24.17) with the evolution equation for the plastic part of the deformation
gradient (24.7), one can readily identify

γ̇α = λ̇α (24.19)

ε̇α = λ̇α (24.20)

in the rate-independent case. In contrast to the commonly adopted, computational
expensive active-set search algorithms to handle the inequalities in the KKT con-
ditions, two different formulations of the rate-independent problem are considered
here, which employ equality constraints only.

Firstly, the augmented Lagrangian formulation, initially proposed in connection
with crystal plasticity in [35], is employed, which takes the principle of maximum
plastic dissipation as starting point and reformulates the inequality constrained opti-
mization problem into an equality constrained optimization problem by means of
so-called slack variables [52, pp. 72, 158–164]. The Lagrange multipliers are then
obtained from
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λ̇α = max
(
0, η∗�α

)
, (24.21)

in which the viscosity-like parameter η∗ is introduced for purely numerical reasons,
as it regularizes the problem, while the constraints are exactly enforced by means of
the Lagrange multipliers.

Secondly, a formulation based on nonlinear complementary functions (NCP-
functions) is considered. These functions have originally been proposed for con-
strained optimization problems, cf. [53]. A slightly more general form of NCP-
functions is introduced by Kanzow and Kleinmichel in [54] and employed in the
current contribution, which reads as

√[
�α + λ̇α

]2 − ��αλ̇α + �α − λ̇α = 0. (24.22)

In particular, the parameter � = 0 is chosen here and the Lagrange multipliers are
obtained from (24.22) rather than from (24.18).

In the rate-dependent formulation, the KKT conditions in (24.18) are no longer
applicable and the corresponding Lagrange multipliers are replaced by a potentially
stress-dependent viscosity law v. This yields

ε̇α = −vα(τα,Yα)
∂�α

∂Yα

(24.23)

and

Lvp =
n∑

α=1

vα(τα,Yα)
∂�α

∂M
. (24.24)

Assuming that an equation analogous to (24.7) holds for the viscoplastic part of the
deformation gradient Fvp in the context of a rate-dependent formulation, one may
identify the general format for the evolution equations as

γ̇α = vα(τα,Yα) (24.25)

ε̇α = vα(τα,Yα). (24.26)

To study the influence of the type of viscosity law on the deformation behavior
of single crystals—in particular in the rate-independent limit—this contribution
considers two specific cases:

Firstly, the approach initially proposed by Perzyna [55] and extensively used in
the groups of Cailletaud and Forest, cf. [36–38, 50, 51, 56–60], is considered, in
which the viscosity law takes the form

vPCFα = 1

η

〈
�α

K

〉n
. (24.27)
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The positive material parameters K, n and η denote a stress-like scaling factor, the
rate sensitivity exponent and a time-like parameter, respectively, where the inverse
of the latter can be interpreted as a reference strain rate. The Macaulay brackets are
defined as

〈x〉 =
{
x if x > 0

0 else
(24.28)

and are identical to the max-function, m(x) = max(0, x), and the ramp function,
r(x) = 1

2 (x + |x |).
Secondly, the viscosity law introduced by Cuitiño and Ortiz in [61] and employed

for instance in Miehe’s group, cf. [47–49], which specifically reads

vOMα = 1

η

[[ 〈�α〉
τ
y
α (εβ)

+ 1

]n

− 1

]
(24.29)

is also employed in the studies presented here. Note that the current slip resistance
of the particular slip system α is denoted by τ

y
α and possesses the same functional

dependency on the hardening variable εβ as the quantity Y0 + Yα(εβ), but in (24.29)
only�α is explicitly dependent on both τα and Yα . Therefore, the slip resistance τ

y
α is

treated as history dependent normalization quantity, rather than an additional function
of Yα . This allows one to automatically guarantee thermodynamic consistency and
enforce that the slip γα evolves identically to the hardening variables εα .

In order to carry out material point calculations and structural simulations, the
different formulations of the rate-dependent and the rate-independent material mod-
els have been implemented into the scientific computing environment MATLAB and
subsequently into the finite element program ABAQUS via the User-defined MATe-
rial interface (UMAT). The evolution equations for the internal state variables are
integrated by means of an implicit Euler backward scheme and a projection tech-
nique is employed to enforce the incompressibility constraint for the inelastic part of
the deformation gradient. Details of the corresponding algorithms and the associated
tangent operator can be found in [62].

24.3 Material Response Under Homogeneous Deformation

In this chapter, the material model described in Sect. 24.2 is employed in the simula-
tion of a fully deformation-controlled simple shear test as well as a non-proportional
tension/compression-shear cycle. The results obtained with the different formula-
tions are illustrated in the subsequent sections.
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24.3.1 Simple Shear Loading

Due to its simplicity, the fully deformation-controlled simple shear test is extensively
used in the literature to assess the robustness of various stress-update algorithms for
single crystal plastictiy, cf. [35, 47, 63–69]. For comparison, this test is also employed
here, where the coefficients of the associated deformation gradient are prescribed as

[F] =
⎡

⎣
1 γ (t) 0
0 1 0
0 0 1

⎤

⎦ . (24.30)

In particular, the simple shear motion, introduced in [63] is considered, in which
the crystal lattice is misaligned with respect to the global coordinate axes and is
characterized by the following orientation in terms of Euler angles {ϕ1,�, ϕ2} =
{0◦, 18.4349◦, 0◦} in Bunge notation [70], i.e. a sequential rotation about the z-, x-
and z-axes is considered. The material parameters employed in the simulation cor-
respond to an ideal plastic behavior at the scale of the slip system and are specified
in Table24.2. Therefore, any effective hardening or softening observed in the subse-
quently shown stress-strain diagrams is attributed to the reorientation of the crystal
lattice,which approaches a stable orientation for large shearγ , asymptotically leading
to a constant shear stress. Additionally, the rate-dependent material response is char-
acterized by the rate exponent n = 20 for the OM-viscosity function (24.29), while
for the PCF-viscosity function (24.27) parameters are set to n = 10 and K = 10−3

GPa, consistent with the experimentally observed range of rate-sensitivity expo-
nents [71]. The influence of the chosen increment size�γ on the stress-strain curve is
depicted in Fig. 24.2. In the rate-independent formulation, the augmented Lagrangian
algorithm takes 15, 60 and 600 steps to reach the final shear amplitude γ = 6, while
the Kanzow NCP-function respectively requires 100, 600, 1200 and 1800 steps.
It can be seen that both formulations converge to the same material response for
the smallest increment size. The augmented Lagrangian formulation reproduces the
characteristic features of the stress-strain curve even for very large shear increments
and the stress response converges monotonically as the shear increment is refined. In
contrast, the formulation based on the Kanzow NCP-function requires significantly
smaller shear increments to ensure the numerical convergence of the Newton-type
algorithm. But even though the numerical convergence is achieved, the simulated
stress-strain curve is very sensitive to the chosen increment size, in particular in the
strain range 2 ≤ γ ≤ 6. Herein, the constitutive response converges to the results
of the augmented Lagrangian formulation with decreasing shear increment size in
a non-monotonic manner. Although not shown in Fig. 24.2a, the same observations

Table 24.2 Material parameters for finite strain, simple shear loading

κ in GPa μ in GPa Y0 in GPa �Y in GPa h η in s

49.98 21.1 0.06 0.0 0.0 50.0
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Fig. 24.2 Influence of the
shear increment size �γ on
simulated stress-strain curves
for finite strain, simple shear
loading, a rate-independent
and b rate-dependent
formulations. Gray lines
with symbols indicate the
stress response for different
shear increment sizes, while
colored lines correspond to
the stress response obtained
with the smallest shear
increment size
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Fig. 24.3 Normalized
viscosity functions for
viscous parameters adopted
in the simple shear test

10−6 10−5 10−4 10−3 10−2 10−1

Φα in GPa

10−25

100

1025

1050

η
v α

PCF-viscosity funct.

OM-viscosity funct.

have been made for the original Fischer-Burmeister NCP-function, which is recov-
ered by the choice � = 2 in (24.22).

In the rate-dependent formulation, the stress-strain curve under quasi-static
loading condition, γ̇ = 10−5s−1, is determined in 60, 180 and 600 steps for the
OM-viscosity function and in 420, 600 and 1800 steps for the PCF-viscosity function.
Figure24.2b shows that apart from small deviations, which are due to the different
viscosity functions and viscous parameters employed, the stress-strain curves feature
the same behavior up to γ ≈ 2.3. For larger shear strains however, a significant differ-
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ence in the computed stress response is observed. While the OM-formulation leads
to a stress-strain curve possessing the same characteristics as the rate-independent
case, the PCF-formulation yields a stress response for which the transition to higher
stress levels is significantly delayed. The working hypothesis explaining this obser-
vation is that small differences in the evolution of the plastic slip γα determined
from the PCF- and OM-viscosity functions accumulate and that such an accumu-
lation eventually leads to sudden deviation in the stress response at γ ≈ 2.3. The
presence of small differences between the different rate-dependent formulations is
clearly visible from the comparison of the normalized viscosity functions (24.27)
and (24.29), as illustrated in Fig. 24.3. In order to check the hypothesis, a sensitiv-
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Fig. 24.4 Influence of an initial misorientation on: a the normalized stress-strain curve, b the
evolution of the hardening variables and c the reorientation of the 〈100〉 directions in the pole
figure employing a stereographic projection for finite strain, simple shear loading. The gray lines
in a denote different realizations of perturbed initial orientations possessing a misorientation of 2◦,
while the arrow indicates the specific orientation for which the evolution of εα and the reorientation
behavior are shown in (b) and (c), respectively.The labels of the different slip systems employed in
b is consistent with Table24.1. Note that, in c colored and gray solid lines represent the response
of the augmented Lagrangian formulation for a perfectly oriented and a misaligned crystal, while
the dotted lines correspond to the results of the rate-dependent PCF-formulation for a perfectly
oriented crystal. Additionally, small black circles indicate the orientation at γ = 2.0, while the
triangles denote a stable crystallographic orientation
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ity analysis is performed, in which the influence of a small initial misorientation
(2◦) on the stress-strain curve is investigated. The simulations are carried out by
means of the augmented Lagrangian formulation of the rate-independent material
model and the shear component γ is incremented in 600 equidistant steps. The cor-
responding results are shown in Fig. 24.4a. It can be seen that the initial part of the
stress-strain curve is rather nonsensitive to the perturbation of the initial orienta-
tion and that the initial misorientation strongly affects the stress-strain curve only
in the range 2 ≤ γ ≤ 4.5, which is consistent with the scatter observed in Fig. 24.2
for the different step sizes and formulations. Observing that small differences in the
initial conditions lead to considerable deviations in the stress response indicates a
stability problem, in particular a bifurcation. However, it is not caused by the Tay-
lor ambiguity problem [72], where several combinations of plastic slip variables
exist that lead to the same stress state. This is because, as shown in the literature,
both the rate-independent augmented Lagrangian formulation as well as the rate-
dependent formulations yield unique solutions for the slip system selection and the
corresponding rates [67, 72] and thus the Taylor ambiguity problem is avoided. Con-
ducting a systematic variation of the initial orientation according to φ1 = φ2 = 0◦
and � ∈ [0◦, 45◦] reveals that the stability issue mentioned above is related to the
discrete nature of the plastic flow of the single crystal. In fact choosing initial ori-
entations in the range � ∈ [22.5◦, 45◦] asymptotically leads the reorientation of the
crystal towards the stable orientation indicated by triangles in Fig. 24.4c. In the nar-
row range � ∈ [17◦, 22◦] the crystal approaches a different stable orientation, while
for � ∈ [0◦, 16◦] a constant rotation of the crystal lattice is predicted by the material
model. As the initial orientation {ϕ1,�, ϕ2} = {0◦, 18.4349◦, 0◦} and the perturbed
initial orientations considered are very close to the boundary of the two ranges of
�, the sensitivity of the stress response to small perturbations is not surprising. It is
therefore concluded that small initial misorientations or the accumulation of small
differences in the evolution of the plastic slip variables in the rate-dependent case are
responsible for selection of slip systems made by the corresponding algorithms. In
addition to the stress-strain response, Fig. 24.4b illustrates the evolution of the hard-
ening variables for three different cases. In particular, a rate-independent, perfectly
oriented crystal as well as a rate-independent crystal with a specific misorientation
of 2◦, indicated by an arrow in Fig. 24.4a and a rate-dependent, perfectly oriented
crystal based on the PCF-formulation is considered. Note that the slip systems, which
are active only in the range 0 ≤ γ ≤ 1 and overall show a low activity, i.e. εα < 0.35,
are not shown for the sake of clarity. Comparing the pattern of activation and deac-
tivation of the slip systems of the perfectly oriented and the misaligned crystal, it
is obvious that the initial misorientation delays the deactivation of the slip systems
D4 and D6 as well as the activation of the systems C3, C5, A2 and B2(15), where
the latter corresponds to slip system 15 in Table24.1. This delay is responsible for
the postponed transition to the orientation {ϕ1,�, ϕ2} = {90◦, 45◦, 0◦}, for which a
constant yield stress and no rotation of the crystal is observed [63]. Furthermore, it is
observed that the pattern of activation and deactivation of the slip systems computed
for the perfectly oriented, rate-dependent crystal is similar to the pattern obtained
for the misaligned, rate-independent crystal. This indicates that the slip γα deter-
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mined via the rate-dependent formulation causes a small misalignment of the crystal
compared to the results of the rate-independent response of the perfectly oriented
crystal employing the augmented Lagrangian formulation, as shown in Fig. 24.4c.
This leads to a different reorientation of the 〈100〉 directions and a delayed transition
towards the orientation {ϕ1,�, ϕ2} = {90◦, 45◦, 0◦}. These observations therefore
support the hypothesis introduced above and give an explanation for the differences
in the stress response presented in Fig. 24.2.

Technically, the misorientation �R is incorporated by means of the Euler-
Rodrigues formula

�R = I + [1 − cos (α)] + sin (α)A with A = −ε · a, (24.31)

where ε is the Levi-Civita tensor, while a denotes the rotation axis and α the corre-
sponding angle. Themisorientations employed in this section are generated by taking
the rotation axis according to the 42 equally spaced points on the unit sphere [73]
and the rotation angle α = 2◦. The initial orientation of the crystal with a predefined
misorientation R∗ is then obtained, according to [74, p. 68] from

�R = R∗ · R−1, (24.32)

in which R is the unperturbed initial orientation.

24.3.2 Non-proportional Tension/compression-Shear
Loading

While the fully deformation-controlled simple shear test provided valuable insight
into the robustness of the different formulations in the ideal plastic case, the capa-
bilities of the different formulations in the hardening case are assessed now under
complex loading conditions employing a non-proportional load cycle, similar to
the one proposed in [38]. It corresponds to a uniaxial tension/compression loading
combined with a simple shear loading and approximately mimics the deformation
path observed in the dual actuator loading system described in [75] or a thin-walled
tubular specimen in a tension-torsion testing device [76]. The temporal change of the
coefficients of the deformation gradient tensor associated with this so-called butterfly
test are prescribed according to

[F] =
⎡

⎣
∗ F12(t) ∗
0 F22(t) ∗
∗ ∗ ∗

⎤

⎦ (24.33)

and are illustrated in Fig. 24.5a. The remaining coefficients, indicated by ∗, are deter-
mined by an iterative procedure, the constitutive driver, described in [77, 78] that
enforces the associated components of the first Piola-Kirchhoff stress to vanish, see
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Fig. 24.5 a Biaxial,
non-proportional
deformation path in the
butterfly test and b
stress-strain curve for simple
shear loading considering
different interaction
matrices, indicated by case
(i),(ii) and (iii), see
Table24.3
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also [79, p. 562f] for a spatial formulation. Furthermore, this procedure is enhanced
by an adaptive time-stepping algorithm to allow for a step size adjustment of the
prescribed components F12 and F22 based on the convergence behavior.

Recall that the degree of anisotropy in the hardening behavior of the single crys-
tal material model depends on the choice of the interaction matrix in the hardening
law, given in (24.13). Since its coefficients can be estimated from non-proportional
tests involving strain path changes, cf. [80], it is interesting to study the influence
of the interaction matrix on the performance of the different formulations in case
of the butterfly test. Therefore, the initial orientation of the crystal is taken as
{ϕ1,�, ϕ2} = {0◦, 0◦, 0◦}, i.e. the crystal axes are aligned with the axes of the global
coordinate system and the hardening parameters are chosen according to Table24.3,
while the remaining parameters are taken from Table24.2. The coefficients of the
interaction matrix are adopted from the literature without modifications, while the
hardening parameters�Y are rescaled in the cases (ii) and (iii). This rescaling is nec-
essary in order to solely study the effect of the deviation of the interactionmatrix from
the Taylor-type hardening case, because according to (24.13) keeping the parame-
ter �Y constant would result in considerably different hardening rates. Therefore,
the hardening parameters �Y are adjusted in such a manner that the stress-strain
curves coincide under simple shear loading for the arbitrarily chosen orientation
{ϕ1,�, ϕ2} = {90◦, 45◦, 0◦}, see Fig. 24.5b.
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Table 24.3 Hardening parameters employed in the comparative study under finite deformation
tension/compression-shear loading

case Y0 in GPa �Y in GPa h h0 h1 h2 h3 h4 h5 References

(i) 0.06 0.049 10 1.0 1.0 1.0 1.0 1.0 1.0 –

(ii) 0.06 0.04083 10 1.0 1.4 1.4 1.4 1.4 1.4 [58]

(iii) 0.06 0.01704 10 1.0 4.4 4.75 4.75 4.75 5.0 [37]

Fig. 24.6 Influence of the
interaction matrix on: a the
stress path in the butterfly
test for different numbers of
increments and b the norm
of the prescribed
deformation increment for
the rate-independent,
augmented Lagrangian
formulation. The three
different interaction matrices
are indicated by case (i), (ii)
and (iii), in agreement with
Table24.3. The filled
symbols denote changes in
the deformation path
consistent with Fig. 24.5a
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The calibrated material model is used to simulate the stress response to the
non-proportional deformation path illustrated in Fig. 24.5a employing the rate-
independent, augmented Lagrangian formulation and the rate-dependent formula-
tion based on the OM-viscosity function, because both formulations proved robust
and yielded consistent results in the fully deformation-controlled test conducted in
Sect. 24.3.1. For the rate-independent formulation, the computed stress path is illus-
trated in Fig. 24.6a, in which the reference simulations, depicted with colored lines,
required 1000, 2000 and 4500 increments for the different interaction matrices in
cases (i), (ii) and (iii), respectively. Furthermore, white circles denote simulation
results obtained with coarser increment sizes in the cases (i) and (ii), in which 50 and
1500 increments were employed, still yielding sufficiently accurate predictions of
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the stress path. It is clearly visible from Fig. 24.6a that the interaction matrix signifi-
cantly influences the stress response, especially at the latter stages of the deformation
path, suggesting that the material parameters entering the interaction matrix could
in principle be identified from such a non-proportional test.

Besides this observation, the choice of interaction matrix also significantly influ-
ences the performance of the augmented Lagrangian formulation in conjunction with
the constitutive driver. In particular, while a rather coarse incrementation can be cho-
sen in case (i), i.e. an interaction matrix corresponding to Taylor-type hardening is
employed, the beneficial robustness of the formulation is diminished in case of the
two-parameter interaction matrix (ii) and especially in case of the four-parameter
interaction matrix (iii), at least if the same accuracy as in the reference simulation is
sought. This aspect is also illustrated in Fig. 24.6b, which shows the evolution of the
norm of prescribed deformation gradient components for the reference simulations.
While no adaptive adjustment of the increment size is necessary in cases (i) and (ii),
it is worth noting that at least one and a half times the number of increments are
required in case (ii) compared to the reference simulation with Taylor-type harden-
ing (i) to obtain a stress response independent of the chosen step size. In case (iii),
an adaptive adjustment of the increment size is even necessary, particularly at the
change in the deformation path from the combined tension/compression-shear load-
ing to only shear loading in order to ensure convergence of the constitutive driver,
yielding increment sizes below 10−6. Thus, although the augmented Lagrangian for-
mulation proved very robust in a fully deformation-controlled test in the absence of
hardening, similar results cannot be obtained in situations where the hardening is
anisotropic. This is due to the inclusion of interaction matrices other than the one
corresponding to Taylor-type hardening and in particular in situations that involve
iterative procedures to ensure stress-free conditions in certain directions. This is not
surprising, because interaction matrices not associated with Taylor-type hardening
allow for a change of the shape of the elastic domain and not only its size, which con-
fronts the corresponding stress-update algorithm with a significantly more difficult
task.

Furthermore, the rate-dependent formulation based on the OM-viscosity function
is nowemployed in the simulationof the non-proportional tension/compression-shear
cycle, where the deformation gradient coefficients are prescribed at Ḟ22 = 10−2 s−1

and Ḟ12 = 5 × 10−3 s−1, respectively. The computed stress path is illustrated in
Fig. 24.7a. Again, reference solutions are indicated by colored lines. Here, they were
respectively obtained with 1000, 2000 and 3300 increments for the three differ-
ent interaction matrices. In the cases (i) and (ii), additional simulations have been
carried out with a coarser incrementation, employing 800 and 1000 increments. The
corresponding results are again depicted with white circles. For these two cases, only
minor differences are observed compared to the rate-independent results and the devi-
ations can be attributed to the chosen viscosity parameters and the moderate loading
rate. Note that the stress-update algorithm corresponding to the rate-dependent OM-
formulation allows for a further reduction of the number of increments in case (i)
and (ii), but this results in a significant loss of accuracy in the predicted stress path.
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Fig. 24.7 Influence of the
interaction matrix on: a the
stress path in the butterfly
test for different numbers of
increments and b the norm of
the prescribed deformation
increment for the
rate-dependent formulation
based on the OM-viscosity
function. The three different
interaction matrices are
indicated by case (i), (ii) and
(iii), in agreement with
Table24.3. The filled
symbols denote changes in
the deformation path
consistent with Fig. 24.5a

−1.0 −0.5 0.0 0.5 1.0

σ22 in GPa

0.0

0.4

0.8

1.2

σ
1
2

in
G

P
a

case (i)
case (ii)
case (iii)

(a)

0.2 0.4 0.6 0.8

t/tsim

10−5

10−4

10−3

10−2

(Δ
F
2
2
)2

+
(Δ

F
1
2
)2

(b)

In case (iii), associated with the four-parameter interaction matrix, the stress path
predicted by the rate-dependent formulation differs significantly from the results
of the rate-independent formulation. A noticeable difference is already observed in
the first part of the loading cycle, corresponding to a constrained uniaxial tensile
loading, in which F12 = F21 = 0. Here, non-zero shear stresses σ12 of considerably
different magnitude develop for both the rate-dependent and rate-independent for-
mulation, as depicted in Fig. 24.8b. These stresses can be attributed to the above
mentioned constraint in combination with the activation of the slip systems given in
Table24.4. While the four-parameter interaction matrix provokes the activation of
five slip systems in the rate-independent formulation, eight slip systems are active
in the rate-dependent formulation, as shown in Fig. 24.8a. Note that for the latter the
eight hardening variables εα do not evolve identically. On the contrary, the simu-
lations conducted with the interaction matrices (i) and (ii), identical slip along the
same set of active systems is determined. Thus, the high-symmetry of the initial
orientation is preserved during the first part of the loading cycle and the constraint
is automatically fulfilled.

Comparing the complete stress paths obtained for the rate-dependent and the rate-
independent formulations in case of the interactionmatrix (iii) once again, it becomes
apparent that the different slip activity during the initial stage of the non-proportional
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Fig. 24.8 a Evolution of the
hardening variables under
constrained uniaxial tension,
b influence of initial
misorientation on stress path
under constrained uniaxial
tension during the initial
stage of the non-proportional
deformation path
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Table 24.4 Hardening variables εα at F22 = 1.1 in constrained uniaxial tension during the initial
stage of the non-proportional loading

B2 C1 A6 A2 B5 C5 D6 D1

augm.-Lagr. – 0.04587 – – 0.04160 0.06728 9.8 × 10−6 0.06205

OM-viscoplast. 0.00155 0.00797 0.00154 0.02586 0.17239 0.00369 0.00285 0.00419

test results in a more complex stress path for the rate-dependent formulation. This
observation is also reflected in a different history of the prescribed deformation incre-
ments shown in Fig. 24.7b, which is obtained by the adaptive procedure mentioned
above. However, the sudden decrease in the increment size, indicated by a black cross
in Fig. 24.7a, b, is not linked to any sharp change in the stress path. It is rather caused
by rapidly changing shear components of the deformation gradient, determined from
corresponding zero stress condition, to allow for a constant slip activity.

Similar to the approach employed in Sect. 24.3.1, a sensitivity analysis is con-
ducted to investigate the deviation of the stress paths during the initial constrained
uniaxial tensile loading. To this end, the initial orientation is perturbed employ-
ing (24.31) and (24.32) and choosing α = 0.5◦. A wide range of stress paths is
obtained for selected perturbed initial orientations employing the rate-independent
augmented Lagrangian formulation. The corresponding results are illustrated in
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Fig. 24.8b togetherwith the uniaxial stress path of the perfectly oriented single crystal
simulated employing the rate-dependent OM-viscosity function. The striking simi-
larity in the results of the two formulations is the sudden change of the shear stressσ12,
which is observed immediately at the initiation of plastic flow in the rate-independent
formulation for some perturbed initial orientations. In the rate-dependent result how-
ever this sudden deviation from uniaxial tension is shifted to higher stresses.

Due to the fact, that the loading axis is aligned with a direction of high symme-
try for the perfect cube orientation {ϕ1,�, ϕ2} = {0◦, 0◦, 0◦}—yielding up to eight
potentially active slip systems—the stress response obtained either experimentally
or from numerical simulations is rather sensitive to small misorientations [61, 68].
As mentioned above the interaction matrix in case (iii) initially provokes the activa-
tion of this set of eight slip systems associated with the high symmetry orientation
in the rate-dependent formulation (see Fig. 24.8a and Table24.4). However, at an
uniaxial stretch F22 ≈ 1.02, several slip systems are deactivated and concentrated
slip on system B5 is observed, which accompanies the sudden change in the shear
stress σ12 in the response of the rate-dependent model.

The strong sensitivity of the actual stress path to small initial misorientations,
illustrated in Fig. 24.8b, indicates an unstable orientation, which is also supported by
two results found in the literature. Firstly, the combinatorial search conducted in [67]
for a single crystal—with an anisotropic hardening law (based on a six-parameter
interaction matrix)—under incompressible, uniaxial tension loading in cube orien-
tation revealed that there exist three different slip system solutions. One corresponds
to the activation of eight systems, while the other two only activate four systems.
This is consistent with the results presented in [72], where it was also found that the
Taylor ambiguity problem occurs if anisotropic hardening is included in the model
for fcc single crystals. Secondly, it has been reported in [72] that the value of the
rate-sensitivity exponent influences the stability of a crystallographic orientation. In
particular, crystallographic orientations which are stable in simulations carried out
by rate-independent formulations can become unstable in the corresponding rate-
dependent formulation, if the viscous parameters are not chosen such that they are
able to recover the rate-independent limit. The choice of viscous parameters and the
Taylor ambiguity problem are therefore regarded as the key factors for the significant
deviations in the stress path and slip activity obtained by the rate-independent and
rate-dependent formulations. The large difference in the plastic slip activity may also
be amplified due to application of the iterative procedure to determine the non-zero
shear components of deformation gradient, which eventually leads to an unsym-
metric plastic slip. The initial variation in stress path clearly has an influence on the
subsequent evolution of the stress along the remaining non-proportional deformation
path. Thus, it cannot be expected that the stress path obtained by the rate-dependent
formulation in Fig. 24.7 returns to the one of the augmented Lagrangian formulation
in Fig. 24.6 for the interaction matrix employed in case (iii).
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24.4 Constrained Tension Test

To further illustrate the robustness of the rate-independent, augmented Lagrangian
formulation, it is tested within the finite element solution of a spatially inhomoge-
neous finite deformation boundary value problem. In particular, a constrained tension
test is simulated employing a tensile specimen with a geometrical imperfection. The
corresponding dimensions are given in Fig. 24.9, where the imperfection is intro-
duced in terms of two symmetrical notches reducing the width of the specimen at its
center to 90% of the original width. Along the lower edge of the specimen the dis-
placement in 2-direction is fixed, while at the upper edge a proportionally increasing
displacement is homogeneously prescribed. Additionally, the influence of two dif-
ferent types of boundary conditions is studied. Firstly, a clamped condition, in which
the displacement in 1-direction u1 = 0 is prescribed at both edges and secondly, a
free lateral contraction condition, for which the displacement in 1-direction u1 = 0
is only enforced at points A and B in Fig. 24.9, is considered. In either case, the
displacement in 3-direction is also fixed for the entire specimen. The geometry of
the specimen is discretized with 400 three-dimensional linear hexahedral elements,
denoted as C3D8 according to ABAQUS conventions. The material model outlined
in Sect. 24.2 with Taylor-type hardening, (24.11), is employed in the simulation.
The corresponding material parameters are given in Table24.5. With this model at
hand, the influence of the initial orientation of the crystal on the force displace-
ment curve is studied first. Therefore, four different initial orientations with respect
to loading axis, namely {ϕ1,�, ϕ2} = {30◦, 45◦, 0◦}; {0◦, 0◦, 0◦}; {0◦, 45◦, 30◦} and
{289◦, 163.6◦, 42.5◦} are chosen, where the Schmid factor m of the most favor-

(a) (b) (c) (d)

Fig. 24.9 a Geometry of a mildly notched tensile specimen of unit thickness with a notch radius
of 125mm and an initial reduction the of specimen width to 90%, b clamped and c free contraction
boundary conditions, d finite element mesh
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Table 24.5 Material parameters employed in the constrained tension test

κ in GPa μ in GPa Y0 in GPa �Y in GPa h

49.98 21.1 0.06 0.049 10

Fig. 24.10 Influence of the
initial orientation on the
overall force-displacement
curve (a) and the minimal
width wmin of the specimen
measured in 1-direction (b).
Symbols indicate the
deformation at which field
distributions of the
logarithmic strain LE22 are
shown in Fig. 24.12
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ably orientated slip systems take the values of m = 0.3291;m = 0.4082;m =
0.4183;m = 0.5, respectively, if the crystal is deformed under homogeneous uniax-
ial tension. Consistent with the Schmid factors, the orientation {30◦, 45◦, 0◦} requires
the highest force to activate the plastic flow, as shown in Fig. 24.10a. For the orien-
tation {289◦, 163.6◦, 42.5◦}, a considerably lower force is required at initial yield,
but the plastic flow is accompanied by strong initial hardening, leading to almost the
same force level as the former orientation (Fig. 24.10a).

Besides the influence of the initial orientation on the initial yield and the hardening
behavior, the onset of necking and localization of the deformation is also strongly
affected by the choice of initial orientation. While the force-displacement curves for
the orientations {0◦, 0◦, 0◦} and {0◦, 45◦, 30◦} show a rather smooth transition to the
geometrically-induced softening, more rapid drops in the applied force are observed
for the other two orientations. A similar trend is observed for the respective minimal
width of the specimen wmin measured in 1-direction, shown in Fig. 24.10b, where
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Fig. 24.11 Influence of the
boundary conditions on the
overall force-displacement
curve (a) and the minimal
width wmin of the specimen
measured in 1-direction (b).
Symbols indicate the
deformation at which field
distributions of the
logarithmic strain LE22 are
shown in Fig. 24.13
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the former two orientations continuously deviate from the initially linear relation
between wmin and u2, while especially the orientation {30◦, 45◦, 0◦} is characterized
by a sudden change in the specimen width. In each case, the deformation at which
the deviation from this linear relation occurs, does not coincide with the maximum
applied force, but happens, as expected, at considerably smaller deformations. The
deformed specimen geometry and the spatial distribution of the logarithmic strain
in longitudinal direction, i.e. (LE22) are illustrated in Fig. 24.12, where the latter is
computed from

LE = 1

2
ln

(
F · FT) . (24.34)

The evolution of the strain fields further confirms the important influence of the
initial orientation on the mode of localization (symmetric/unsymmetric). In case of
the highly symmetric crystal orientation, {0◦, 0◦, 0◦}, the strain field is symmetric
even during necking. The location, at which the highest strain is observed, is shifted
rapidly from the notch surface, for the elastic solution, shown on the left in the
top row of Fig. 24.12, to the center of the specimen during elastic-plastic loading. In
contrast, the strainfield of the initial orientation {289◦, 163.6◦, 42.5◦} shows a smooth
transition at the initiation of plastic deformation. While during the initial stages of
elastic-plastic loading a rather large volume experiences pronounced deformation,
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Fig. 24.12 Influence of the initial crystal orientation on the evolution of the logarithmic strain
LE22, a {ϕ1,�, ϕ2} = {0◦, 0◦, 0◦} and b {ϕ1,�, ϕ2} = {289◦, 163.6◦, 42.5◦}
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the deformation eventually localizes within a band. Interestingly, the inclination of
the deformation band changes during the loading history due to the reorientation of
the crystal.

Motivated by similar studies presented in [81], the influence of the boundary con-
ditions indicated in Fig. 24.9 shall now be analyzed. Inspecting the respective force-
displacement curves, depicted in Fig. 24.11a, onlyminor differences are observed for
these two scenarios. In particular, the clamped condition leads to a slight increase of
the required force atmoderate elongations (u2 ≤ 5mm) and to an earlier localization,
compared to the free lateral contraction condition. Especially, the latter observation
is also clearly visible in the evolution of theminimal specimenwidth, see Fig. 24.11b.
Although the influence of the boundary condition is not as pronounced as reported
in [81], the main characteristic, namely the earlier localization for the clamped con-
dition is consistent with the results from the literature. The reason why the current
simulation only shows a small sensitivity with respect to the boundary condition is
that the reference case employed a double slip formulation, while the current model
includes all primary slip systems of the fcc material. Moreover, inspecting the strain
fields in Fig. 24.13 reveals that the clamped condition has significant influence only
in the initial loading stages, where it leads to the development of a localization band
immediately after plastic yielding—an effect that is absent in the free lateral con-
traction case. However, as the prescribed deformation is increased the strain fields
become increasingly similar, although they differ in absolute values of LE22.

Finally, it is worth emphasizing two aspects that pertain to all of the numerical
tensile test studies. Firstly, although significant deformation increments can occur
at the Gauss point level for elements within a developing deformation band, the
material routine, in fact, did not require a reduction in the global time step. This
again emphasizes the robustness of the augmented Lagrangian formulation, also in
the context of inhomogeneous deformation states. Secondly, it is well-known that
the formation of localization bands in the geometrically-induced softening regime
leads to spurious mesh-dependencies of numerical results. The reason is that in local
formulations—which lack the notion of an intrinsic length scale— localization zones
degenerate to discontinuities surfaces, whose predicted widths solely depend on the
spatial resolution of the finite element mesh. Generalized continuum formulations
have been proposed in the literature that circumvent this problem and also naturally
incorporate size effects, cf. [82–85] for gradient extended formulations and [86–89]
for micromorphic formulations. However, the application of the proposed material
model within the framework of a generalized continuum formulation is beyond the
scope of the current contribution.
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Fig. 24.13 Influence of the boundary conditions on the evolution of the logarithmic strain LE22
for an initial orientation {ϕ1,�, ϕ2} = {0◦, 45◦, 30◦}. a free lateral contraction and b clamped
condition
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24.5 Conclusions

In the current contribution, a material model for face-centered cubic single crystals,
suitable for finite deformations, was discussed. Four different formulations were
considered accounting for both rate-dependent and rate-independent flow behavior.
Furthermore, a nonlinear anisotropic hardening law based on an interaction matrix
has been incorporated, which accounts for the interaction of different slip systems
in a phenomenological manner. The robustness of the corresponding stress update
algorithms was assessed under homogeneous deformation states employing pro-
portional and non-proportional loading histories. In the rate-independent case the
augmented Lagrangian based formulation, originally proposed in [35], proved to be
very robust, while the rate-dependent model adopted from [61] provided convincing
results. However, increasing the complexity of the hardening law by choosing the
parameters in the interaction matrix increasingly different from Taylor-type hard-
ening, had a strong impact on the performance of the corresponding algorithms,
resulting in a strong reduction of the prescribed deformation increment size. But this
observation can readily be explained by the fact that such anisotropic interaction
matrices induce an evolution of the shape of the elastic domain and not only its size,
complicating the stress update considerably. Thus, the successful application of these
two stress-update algorithms even in the case of anisotropic hardening emphasized
their robustness.

In order to assess the performance of the rate-independent, augmented Lagrangian
formulation under inhomogeneous deformations, an implementation of this model as
a user-definedmaterial subroutine (UMAT) into the finite element programABAQUS
has been employed in the simulation of a single crystalline, mildly notched tensile
specimen. Herein, a strong influence of the initial orientation on the deformation
and localization behavior was observed. Even during the formation of localization
bands in the specimen—resulting in substantial deformation increments at the Gauss
point level—an adjustment of the global time step was not necessary, confirming the
robustness of the augmented Lagrangian formulation in connection with a Taylor-
type hardening law also under inhomogeneous deformation states.

Having identified robust numerical frameworks for both the rate-dependent and
the rate-independent case, current research efforts are focused on model extensions
towards the inclusion of martensitic phase transformation and twinning by means of
analytical homogenization approaches. Furthermore, a comparison with experimen-
tal results at the single crystal scale is sought, fromwhich the constitutive parameters
will be identified.
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