
Chapter 11
Forecasting Origin-Destination-Age-Sex
Migration Flow Tables
with Multiplicative Components

James Raymer, Xujing Bai, and Peter W. F. Smith

11.1 Introduction

Estimates of future internal migration are required for making accurate popula-
tion projections, and for policy development and planning. However, migration
forecasting is complicated from a demographic modelling perspective in that it
represents a transition from an origin population to a destination population. Andrei
Rogers, Frans Willekens, Alan Wilson, and Phil Rees developed the multiregional
population projection framework for including such transitions starting in the 1960s
(Rogers 1966, 1968, 1975; Wilson and Rees, 1974a, b, 1975; Rogers and Willekens
1976; Willekens and Rogers 1978). However, methods for producing dynamic
forecasts of interregional migration flows with measures of uncertainty are still
relatively few.

In this chapter, we build from a range of earlier efforts that used multiplicative
or log-linear models to forecast counts of migration flows by origin, destination,
age and sex (Stillwell 1986; Willekens and Baydar 1986; Van Imhoff et al.
1997; Van der Gaag et al. 2000; Sweeney and Konty 2002; Van Wissen et al.
2008). In particular, this research extends the multiplicative component approach
developed by Raymer et al. (2006) for projecting interregional migration in Italy and
Raymer et al. (2017) for projecting Indigenous migration in Australia. We illustrate
the forecast methodology by using origin-destination-age-sex tables representing
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internal migration flows amongst Australia’s state and territory populations. Our
research extends the earlier efforts cited above by forecasting each multiplicative
component separately and by integrating them together to provide forecasts of
interregional migration by age and sex with measures of uncertainty. Modelling each
component separately allows the forecaster more control by being able to specify
different models for each component.

The forecasting model for internal migration advocated in this chapter is different
from the current approach used by the Australian Bureau of Statistics (ABS),
which projects gross flows of in-migration and out-migration to/from each state
or territory separately from each other. While simpler to include in demographic
accounting models, projections of in-migration and out-migration (or even worse,
net migration) totals are not as reliable and are known to result in biased projections
(Rogers 1990) and inaccurate uncertainty measures (Raymer et al. 2012). Here,
biases refer primarily to projected measures that are systematically above (below)
the observed values. Most often, biases in regional projections occur when net
migration or in-migration rates are used. They are caused by the use of populations
not ‘at risk’ of migration in the denominators. Thus, by focusing on the underlying
structures of migration flows, we argue that more reliable projection models may be
produced for both internal migration and the subsequent population totals and age-
sex compositions. Moreover, when the internal migration projections inevitably fail
to predict perfectly the future, we have more detailed information about the potential
sources of error.

The structure of this chapter is as follows. We first explore how the internal
migration patterns in Australia have changed since 1981. We then explore the
stability in the underlying structures of migration flows over time, and identify the
most important migration structures required for both estimation and projection.
Finally, we illustrate the approach by predicting the observed flows with measures of
uncertainty for the 2006–2011 and 2011–2016 periods based on historical migration
flow data going back to the 1981–1986 period. We also produce and illustrate the
results of forecasts for two time periods beyond the observed data, i.e., 2016–2021
and 2021–2026.

11.2 Multiplicative Component Calculations

Analysing and predicting the counts of migration flows may be considered from a
categorical data analysis perspective. The basic categories are origin (O), destination
(D), age (A) and sex (S). Migration flow tables typically include two or more of these
categories. These tables can be decomposed into various hierarchical structures, not
all of which are necessary for understanding or for producing accurate predictions.
If certain (important) structures are unavailable, they can be imputed or ‘borrowed’
from auxiliary data sources. This general modelling framework comes from a
sequence of papers on the age and spatial structures of internal migration (Willekens
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Table 11.1 Notation for an
origin-by-destination
migration flow table

Region of destination
Region of origin 1 2 3 4 Total

1 0 n12 n13 n14 n1+
2 n21 0 n23 n24 n2+
3 n31 n32 0 n34 n3+
4 n41 n42 n43 0 n4+
Total n+1 n+2 n+3 n+4 n++

1983; Stillwell 1986; Van Imhoff et al. 1997; Rogers et al. 2002, 2003; Sweeney and
Konty 2002; Raymer et al. 2006, 2017; Raymer and Rogers 2007; Van Wissen et al.
2008).

To begin, consider migration from origin i to destination j, denoted by nij. These
counts may be organised in a two-way table, such as in Table 11.1 for migration
between four hypothetical regions. Here, it is important to make a distinction
between cell counts (nij) and marginal totals, i.e., the total number of out-migrants
from each region (ni+), the total number of in-migrants to each region (n+j) and the
overall level of migration (n++). Note, within area movements (i = j) are excluded
from the analyses.

For describing, analysing and projecting migration flow patterns over time,
consider the following multiplicative decomposition of an origin-destination table:

nij = (T ) (Oi)
(
Dj

) (
ODij

)
, (11.1)

where T is the total number of migrants (i.e., n++), Oi is the proportion of all
migrants leaving from area i (i.e., ni+/n++) and Dj is the proportion of all migrants
moving to area j (i.e., n+j/n++). The interaction component ODij is defined as
nij/[(T)(Oi)(Dj)] or the ratio of observed migration to expected migration (for
the case of no interaction). This general type of model is called a multiplicative
component model and may be extended to include other categories, such as age or
sex.

The data for this research were obtained from the Australian quinquennial
censuses from 1981 to 2016 and include following characteristics:

– state or territory of current residence by state or territory of residence 5 years
ago,

– five-year age groups (0–4, 5–9, . . . , 80+ years), and
– sex.

We focus on the migration transitions between the eight states or territories of
Australia: New South Wales (NSW), Victoria (VIC), Queensland (QLD), South
Australia (SA), Western Australia (WA), Tasmania (TAS), Northern Territory (NT)
and Australian Capital Territory (ACT). Note, in this study, we apply the forecast
methodology described in the next section to a particular type of migration flows,
namely, transitions between the place of residence 5-years ago and place of
residence at the time of the census. However, the methodology may be applied
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to any type or category of migration flows so long as they are arranged in a
categorical fashion. Other common types of migration flows include population or
administrative register data on the number of moves (events) within a 1-year time
interval and census or survey data on transitions based on current residence by place
of birth, place of residence prior to last move, or place of residence 1 year ago (Bell
et al. 2015).

For illustration of the multiplicative component calculations and their inter-
pretations, the Australian interstate migration flow table and the corresponding
multiplicative components for the 2011–2016 period are presented in Tables 11.2
and 11.3, respectively. For example, the number of persons who migrated from
Australian Capital Territory (ACT) to New South Wales (NSW) (nACT, NSW ) was
23,609 persons. The multiplicative components for this migration flow are equal to:

nACT,NSW = (T ) (OACT ) (DNSW )
(
ODACT,NSW

)

= (824,392) (0.054)(0.232)(2.281)

= 23,609

Table 11.2 Interstate migration in Australia, 2011–2016

Region of destination
Region
of origin NSW VIC QLD SA WA TAS NT ACT Total

NSW 0 61,484 105,703 12,748 19,921 6590 6369 27,567 240,382
VIC 47,925 0 47,070 13,284 18,721 6932 5932 6725 146,589
QLD 77,163 46,585 0 10,611 21,071 7906 9710 7108 180,154
SA 12,904 19,813 15,507 0 7581 1800 3896 2250 63,751
WA 17,863 22,364 20,636 5741 0 4219 4733 2116 77,672
TAS 5356 9816 8944 1660 3645 0 725 794 30,940
NT 6629 6648 14,002 5610 5239 947 0 1253 40,328
ACT 23,609 8035 8295 1541 1818 600 678 0 44,576
Total 191,449 174,745 220,157 51,195 77,996 28,994 32,043 47,813 824,392

Table 11.3 Multiplicative components of interstate migration in Australia, 2011–2016

Oi Dj ODi,NSW ODi,VIC ODi,QLD ODi,SA ODi,WA ODi,TAS ODi,NT ODi,ACT

T = 824,392

NSW 0.292 0.232 0.000 1.207 1.647 0.854 0.876 0.779 0.682 1.977
VIC 0.178 0.212 1.408 0.000 1.202 1.459 1.350 1.345 1.041 0.791
QLD 0.219 0.267 1.844 1.220 0.000 0.948 1.236 1.248 1.387 0.680
SA 0.077 0.062 0.872 1.466 0.911 0.000 1.257 0.803 1.572 0.609
WA 0.094 0.095 0.990 1.358 0.995 1.190 0.000 1.544 1.568 0.470
TAS 0.038 0.035 0.745 1.497 1.082 0.864 1.245 0.000 0.603 0.442
NT 0.049 0.039 0.708 0.778 1.300 2.240 1.373 0.668 0.000 0.536
ACT 0.054 0.058 2.281 0.850 0.697 0.557 0.431 0.383 0.391 0.000
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From these calculations, we see that the overall level of interstate migration was
824,392 persons, the share of all migration from the ACT was 5.4% (i.e., 44,576 /
824,392 * 100), the share of all migration to NSW was 23.2% (i.e., 191,449 /
824,392 * 100), and that there was more than twice the expected value of migration
between these two areas (i.e., 23,609 / (824,392 * 0.054071 * 0.232231) = 23,609 /
10,352). In Table 11.2, the largest flows are between the largest population states of
NSW, Victoria (VIC) and Queensland (QLD). The smallest flows are between the
smallest states or territories (Tasmania (TAS), Northern Territory (NT), and ACT).
In Table 11.3, we see that the largest ODij ratios are between neighbouring states
or territories, e.g., ACT and NSW, and the smallest are between states or territories
that are far apart, e.g., TAS and NT.

Next, consider the multiplicative components for a four-way table of migration
by origin, destination, age and sex. The multiplicative component model that fully
explains this table is specified as:

nijxy =(T ) (Oi)
(
Dj

)
(Ax)

(
Sy

) (
ODij

)
(OAix)

(
OSiy

) (
DAjx

) (
DSjy

) (
ASxy

)

(
ODAijx

) (
ODSijy

) (
DASjxy

) (
ODASijxy

)
, (11.2)

where Ax is the proportion of all migrants in age group x and Sy is the proportion
of all migrants in sex group y. This model is a lot more complicated because there
are now four main effects, six two-way interaction components, three three-way
interaction components and one four-way interaction component between the origin,
destination, age and sex variables. However, for the main effects and two-way
interaction components, the interpretations of the parameters remain relatively sim-
ple. For example, the destination-age interaction (DAjx) component is calculated as
n+jx+/[(T)(Dj)(Ax)] and represents the ratio of observed age patterns of in-migration
to each region divided by the expected age pattern of in-migration. Fortunately, the
three-way and four-way interaction terms do not add much additional information
and are rarely needed for estimation or projection (see, e.g., Van Imhoff et al. 1997;
Smith et al. 2010). The same is true for the two-way interactions between origin and
sex (OSiy) and destination and sex (DSjy). Thus, for most analyses, estimations and
projections, the following reduced model may be used:

nijxy = (
T

)
(Oi)

(
Dj

)
(Ax)

(
Sy

) (
ODij

)
(OAix)

(
DAjx

)(
ASxy

)
. (11.3)

To illustrate the effectiveness of this model, consider the migration flows presented
in Fig. 11.1. Here, we compare the observed and estimated age patterns of female
internal migration between NSW and QLD for the 2006–2011 and 2011–2016
periods using the model specified in Eq. 11.3. Clearly, there are not much differences
between the estimated and observed flows of migration in this case.

To assess the goodness-of-fit (g) between the observed and estimated migration
flow tables, we focus on the following formula:
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Fig. 11.1 Observed and estimated age patterns of female migration between New South Wales
and Queensland, 2006–2011 and 2011–2016

g = 100

N

∑N

i=1

∣∣nijxy − n̂ijxy

∣∣

n̂ijxy

where N denotes the total number of cells in the origin-destination-sex-age table in
a single period, which for our tables is equal to 1904, i.e., 8 origins × 8 destinations
× 2 sexes × 17 age groups, not including the diagonal elements where i = j. The
observed number of interstate migrants by age and sex is denoted by nijxy and
the corresponding estimated flows is denoted by n̂ijxy . The test-statistics for the
unsaturated model (Eq. 11.3) applied to the 2006–2011 and 2011–2016 data are
16.3% and 16.1%, respectively. For migration flows, we find this simple goodness-
of-fit measure works well due to high likelihood of zeros in the observed data when
broken down by origin, destination, age and sex. By placing the estimated values in
the denominator, this allows us to provide measures for all predicted cell values.

In summary, multiplicative components are useful for analysing the key struc-
tures driving migration patterns. These can then be used for the purpose of
estimating migration. Moreover, when particular interaction effects cannot be
derived from available data, they may be obtained or calculated using other
comparable data sets (e.g., interaction data from historical periods or from other
populations). Since Snickars and Weibull (1977) found that historical migration
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tables provide much better estimates of current accessibility than any distance
measure, historical data are often used to capture the spatial patterns of migration
(see also Tobler 1995). For projection of internal migration patterns, this means we
can effectively utilise trends exhibited by previous migration data sets.

11.3 Trends Over Time

In this section, we calculate and present each of the multiplicative components
specified in Eq. 11.3 for the periods 1981–1986 to 2011–2016. The purpose of
presenting these patterns is primarily to highlight the consistencies and/or any major
deviations found in the trends over time, particularly since extrapolations of these
components are combined and then used to predict future counts of migration by
origin, destination, age, and sex.

The overall level components (T) and proportions of interstate migration in
Australia are presented in Fig. 11.2 for the periods 1981–1986 to 2011–2016.
During this time, total interstate migration increased from 717 thousand persons
in 1981–1986 to 792 thousand persons in 1991–1996, followed by a decline to
774 thousand persons in 2006–2011 and then a sharp increase to 824 thousand
persons in 2011–2016. While the total level of interstate migration demonstrated
certain amount of fluctuation, its proportion in the total Australian population kept
decreasing from around 5.5% in 1981–1986 to 4.4% in 2011–2016. The general
decline in the propensity to migrate internally has been observed across Australia by
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Bell et al. (2018), as well as in other developed countries (Cooke 2013; Champion et
al. 2018). The underlying causes are thought to be population ageing and changing
economic structures (i.e., manufacturing to service-based).

For the origin and destination main effect components (Oi and Dj, respectively)
presented in Fig. 11.3, we see that the largest states of NSW, VIC and QLD
contributed the largest shares of both out-migration and in-migration. While NSW
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consistently sent out the largest shares of interstate migrants from 1981–1986 to
2011–2016, it never received the largest share of in-migration – the largest share of
in-migration was received by Queensland. Indeed, one of the distinctive features
of internal migration in Australia over the past several decades is persistent net
migration loss from New South Wales to other states in the country. Over 20 years
ago, Burnley (1996) attributed this to high levels of immigration to and housing
costs in Sydney.

The age and sex main effect components (Ax and Sy, respectively) of interstate
migration are presented for the seven time periods in Fig. 11.4. For the age main
effects, we find relative increases in shares of migration amongst 30–65 year olds
and corresponding declines in the child age groups. These changes are likely caused
by the ageing of the population. As for the main effect component for sex, there was
a steady (albeit small) decrease in the share of male migrants from 52% in 1981–
1986 to 49% in 2001–2006, which then held constant until the most recent period.
This shift towards more female migration is likely caused by the increasing numbers
of women seeking tertiary education and employment in Australia.

The values of the origin-destination (ODij), origin-age (OAix), destination-age
(DAjx) and age-sex (ASxy) interaction components, presented in Figs. 11.5, 11.6,
11.7 and 11.8, respectively, represent ratios of observed to expected values. The
expected values are calculated based on the multiplication of the overall level
component (T) by the main effect components (Oi, Dj, Ax or Sy) corresponding to
the two variables being interacted. Note, a value of 1.0 implies no difference from
the expected value.

For the origin-destination components in Fig. 11.5, there are a couple of things
to highlight. First, most of the values are above or below 1.0, which signifies the
importance of this component in understanding the migration patterns. Second,
there is relative stability in the ratios exhibited over time with all interactions, more
or less, remaining the same in terms of being ‘higher than expected’ or ‘lower
than expected.’ Third, the patterns exhibit clear trends over time, for example,
the interaction between SA and NT has been steadily declining since the 1986–
1991 period. Fourth, each origin has its own distinct destination patterns with, for
example, ACT having more than twice the expected flows to NSW, and nearly half
the expected flows to all other states and territories (except VIC which exhibits
ratios of around 0.75). The interaction components for migration from VIC, on
the other hand, are above 1.0 for state destinations but below 1.0 for territory
destinations.

For the origin-age and destination-age components presented in Figs. 11.6 and
11.7, most of the ratios are near the value of 1.0 implying the state /territory
age profiles of out-migration and in-migration resemble the overall age profile of
migration (Ax). Notable differences in the out-migration age profiles (Fig. 11.5)
include higher levels amongst retired age groups for VIC (before 2001) and QLD,
relatively low levels of out-migration amongst older persons from WA, TAS (before
2001), NT, and ACT, and a sharp and consistent peak of 15–19 year olds leaving
TAS. Notable differences in the in-migration age profiles (Fig. 11.6) include VIC
receiving relatively more young adults (in recent periods) and fewer older migrants,
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Fig. 11.4 Age (Ax) and sex (Sy) main effect components of interstate migration in Australia,
1981–1986 to 2011–2016

with the opposite occurring for QLD. WA, NT and ACT received considerably fewer
older migrants, whereas it was the opposite for TAS. Finally, TAS appears to be
growing as a retirement destination while at the same time becoming less attractive
to young adults.

Finally, for the female age-sex interaction components (ASxy) presented in Fig.
11.8, we find, for ages above 65 years, there has been a decreasing trend in the
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Fig. 11.5 Origin-destination (ODij) interaction components of interstate migration in Australia,
1981–1986 to 2011–2016

ratios towards 1.0. In general, it can be said that males and females have similar age
profiles of migration, except in older age groups where there are more females in
the population due to their lower mortality rates.
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11.4 Forecasts

In this section, we show how the multiplicative component model can be used to
produce predictions of internal migration by origin, destination, age and sex. The
emphasis is on extrapolating each of the multiplicative components separately and
then combining them to derive the forecasts of internal migration. For illustration,
we first apply simple linear and log-linear trend extrapolations to each of the
components specified in Eq. 11.3 to produce predictions of the 2006–2011 and
2011–2016 flows. For instance, the formulas of the linear and log-linear trend
models for ODij components, respectively, are:

ODij ( t) = α + β Y (t) + ε(t) and (11.4)

ln
[
ODij (t)

] = α + βY (t)t + ε(t) (11.5)

where ODij(t) denotes the ODij component at time t, Y(t) denotes the corresponding
year, and α and β denote the intercept and slope parameters estimated using ordinary
least squares regression applied to the training sample data. The extrapolations are
based on the 1981–1986 to 2001–2006 multiplicative components. Note, as part
of the modelling process, the predicted main effect components are rescaled so
that they sum to 1.0 and, when two-way interaction components are included, all
predicted values are rescaled to match the estimated overall level (T) component.
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In comparing the goodness-of-fit statistics for the linear and log-linear trend
models, we find little difference between the two approaches. The linear model
produced slightly lower g values of 24.1% and 30.7% for the 2006–2011 period
and 2011–2016 period, respectively, compared to 24.4% and 31.2%, respectively
for the log-linear model. Note, calculations of the mean squared error (MSE), mean
absolute error (MAE) and symmetric mean absolute percentage error (SMAPE)
goodness-of-fit measures also resulted in similar values for the linear and log-linear
trend models, where:

MSE = 1

N

∑N

i=1

(
nijxy − n̂ijxy

)2
,

MAE = 1

N

∑N

i=1

∣
∣n̂ijxy − nijxy

∣
∣ and

SMAPE = 100

N

∑N

i=1

∣∣n̂ijxy − nijxy

∣∣
(∣∣nijxy

∣
∣ + ∣

∣n̂ijxy

∣
∣)/

2

,

where N denotes the total number of cells (i.e., 1904) in the origin [i] by destination
[j] by sex [y] by age [x] table [i �= j], n denotes the observed number of interstate
migrants, and n̂ denotes the corresponding estimated flows. In the end, because the
difference was so small (see also Fig. 11.9), we decided to use the log-linear trend
model because it ensured positive predicted values.

11.4.1 Model Selection

To identify the best multiplicative model for forecasting origin-destination-age-sex
tables of migration, we predicted a range of unsaturated models starting with the
model specified in Eq. 11.3 and used the g measure as a basis for comparison.
All models used log-linear trend extrapolation to predict the component values
for 2006–2011 and 2011–2016 based on the observed values from 1981–1986 to
2001–2006.

We tested and compared four models. Model 1 includes extrapolations of all
components specified in Eq. 11.3. Model 2 replaces the extrapolations for the OA,
DA and AS components with the most recent observed component values (i.e.,
2001–2006) and held them constant for the holdout sample forecasts. Model 3
only includes extrapolations for the overall level and main effect components and
held all two-way interaction components constant at the 2001–2006 values. Finally,
Model 4 only extrapolated the overall level component. The remaining components
represented the observed 2001–2006 values. These four models are specified as
follows:
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Fig. 11.9 Observed and predicted female flows of migration between Victoria and South Aus-
tralia, 2006–2011 and 2011–2016

Model 1 nijxy= (T̂ )(Ô i)(D̂j)(Âx)(Ŝy)(ÔDij)(ÔAix)(D̂Ajx)(ÂSxy),

Model 2 nijxy= (T̂ )(Ô i)(D̂j)(Âx)(Ŝy)(ÔDij)(OAix)(DAjx)(ASxy),

Model 3 nijxy= (T̂ )(Ô i)(D̂j)(Âx)(Ŝy)(ODij)(OAix)(DAjx)(ASxy),

Model 4 nijxy= (T̂ )(Oi)(Dj)(Ax)(Sy)(ODij)(OAix)(DAjx)(ASxy),

where the ‘hat’ symbol denotes log-linear extrapolation. The goodness-of-fit values,
including g, MSE, MAE and SMAPE, for these four models are presented in
Table 11.4. Surprisingly, there was very little difference between the overall
goodness-of-fit tests. The ‘best’ performing model for both holdout sample pre-
diction periods was the simplest model, Model 4, that only extrapolated the
overall level component and held the remaining components fixed at the observed
2001–2006 values. We did not expect Model 4 to perform as well as the other
models. Presumably, it did so because the historical trend data used to predict
the multiplicative components forced the predicted values further away from the
holdout sample than was observed in the most recent period used in the training
sample.
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Table 11.4 Goodness-of-fit statistics of different forecast models for internal migration

Measure Model 2006–2011 2011–2016

g (%) (T) 24.1 30.3
(T)(O)(D)(A)(S) 24.9 31.1
(T)(O)(D)(A)(S)(OD) 24.6 31.5
(T)(O)(D)(A)(S)(OD)(OA)(DA)(AS) 24.4 31.2

MSE (T) 39,300 66,981
(T)(O)(D)(A)(S) 39,537 80,410
(T)(O)(D)(A)(S)(OD) 43,050 87,791
(T)(O)(D)(A)(S)(OD)(OA)(DA)(AS) 38,449 72,110

MAE (T) 71 92
(T)(O)(D)(A)(S) 73 104
(T)(O)(D)(A)(S)(OD) 74 108
(T)(O)(D)(A)(S)(OD)(OA)(DA)(AS) 75 108

SMAPE (%) (T) 19.0 21.5
(T)(O)(D)(A)(S) 20.1 23.3
(T)(O)(D)(A)(S)(OD) 19.8 23.3
(T)(O)(D)(A)(S)(OD)(OA)(DA)(AS) 20.1 24.3

11.4.2 Forecasting Internal Migration by Age and Sex
with Measures of Uncertainty

In this section, we introduce uncertainty measures to Model 4, which turned out
to be both the most effective and simplest model. As stated above, we predict the
overall level component for the two most recent periods based on a simple log-
linear extrapolation. The estimated total levels of interstate migration are 814,176
persons for the 2006–2011 period and 829,022 persons for the 2011–2016 period.
The corresponding observed values were 774,013 persons and 824,392 persons,
respectively.

In addition to the point predictions, we include 80% and 95% prediction intervals.
These are calculated by simulating predictions of each of the components in
the model specified in Eq. 11.3, assuming normal distributions for the logged
components. For the components held constant over time, we use a random walk
model where the variance of the errors is equal to the observed variance in each of
the differenced logged components. For instance, for ODij components,

ln
[
ODij ( t)

] = ln
[
ODij (t − 1)

] + ε(t).

The overall level component is predicted using a linear regression model on the log
scale, Eq. 11.5. Here, the variance is equal to the prediction error variance under
the model. We used random walk models because they were relatively simple and
resulted in good fits for our tests. Note, had the results been less satisfactory, we
could have considered other time series models (e.g., AR(1)). Finally, the simulated
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Table 11.5 Calibration (%)
of holdout sample predictions
of Australian internal
migration by age and sex,
2006–2011 and 2011–2016

2006–2011 2011–2016

Model 80% 95% 80% 95%
Log-linear 85% 96% 88% 98%
Random walk 85% 95% 85% 97%

components were combined by multiplying them together to provide realisations for
the predicted migration flows by origin, destination, age and sex and for each time
period. The presented prediction intervals set out below are the empirical quantiles
of 1000 simulated predicted flows.

We introduce two models to forecast the inter-state migration flows: (1) log-linear
forecasting of the total levels and random walk of the other components around
the observed values in the last period (2001–2006), and (2) random walk of both
the overall level (T) and the other components around the last observed values.
To evaluate the forecasting models, we calculate the coverage of the nominal 80%
and 95% prediction intervals as the percentage of the observed origin-destination-
sex-age flows that lie within the intervals. These calibration statistics are presented
in Table 11.5 as the percentage of the total number of observations, excluding the
diagonals, where i = j, in the origin-destination-age-sex tables. While they may
not provide accurate estimates of the coverage of the nominal intervals, if there
is correlation between the migration flows within and/or between years, they can
indicate failures in the measures of uncertainty. However, in general, we find that
the calibration statistics for both intervals for both models are reassuringly close to
the nominal values.

The predicted and observed levels of out-migration, in-migration and net migra-
tion for the 2006–2011 and 2011–2016 periods are presented in Fig. 11.10 for the
eight states and territories in Australia. The results were obtained from Model 4 that
included log-linear forecasts for the total levels and random walk forecasts for the
other components. In general, we find the predicted means are close to the observed
values in both periods and that the prediction intervals cover the observed values.
There were, however, two notable differences between observed and estimated
totals. The first is the results for NSW, where the mean level of out-migration was
much higher for both the 2006–2011 and 2011–2016 periods. The other is QLD,
where the predicted means of in-migration were higher than the observed values. In
both cases, however, the 95% prediction interval covered the observed values. These
differences can largely be explained by the unanticipated changes to the Oi and Dj

components in the model observed during the 2006–2011 and 2011–2016 periods
(see Fig. 11.3).

The observed and estimated female age-specific patterns of in-migration and
out-migration are presented in Figs. 11.11 and 11.12, respectively, for the 2011–
2016 period. During this time period, the mean number of female migrants were
overestimated by around 0.7%, while the corresponding number of male migrants
were overestimated by around 0.4%. We also find that the interstate migration of
younger age groups, especially the 20–24 year old age group, are underestimated,
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Fig. 11.10 Observed and forecasted in-migration, out-migration and net migration by state and
territory in Australia, 2006–2011 and 2011–2016
Note: Values shown on the y-axis represent the counts of interstate migration measured in
thousands. Error bars represent the 95% prediction intervals for the forecasted flows.

while the middle age groups are overestimated. These differences can be partially
attributed to unanticipated increases in the proportions of migrants aged 20–25 years
in 2006–2011 and 2011–2016 (see Fig. 11.4).

In summary, we found the multiplicative component model did well in predicting
the observed patterns of migration by origin, destination, age and sex, particularly
when the uncertainty in the predictions is taken into account. If this model were to
be put into practice, more attention could be placed on the extrapolation of the age-
specific components, especially if the aim was to reduce uncertainty in the forecasts.
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Fig. 11.11 Observed and estimated age-specific female in-migration with 80% and 95% predic-
tion intervals (in thousands) by state and territory in Australia, 2011–2016

In our illustration, we found some of the predicted age patterns differed considerably
from the observed values.

In addition to the holdout sample forecasts, we applied the method described
above to the whole time series of data from 1981–1986 to 2011–2016 and forecasted
the internal migration tables forward for the periods 2016–2021 and 2021–2026.
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Fig. 11.12 Observed and predicted age-specific female out-migration with 80% and 95% predic-
tion intervals (in thousands) by state and territory in Australia, 2011–2016

The forecasted total number of interstate migrants is 825,915 persons in 2016–2021
with 95% prediction interval ranging between 757,295 and 894,984 persons. For
the 2021–2026 period, the forecasted total number of interstate migrants increased
to 835,248 persons with the 95% prediction interval ranging between 762,748
and 916,675 persons. In Fig. 11.13, we present the forecasted in-migration, out-
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migration and net internal migration for each state and territory for the two periods
with comparisons to the observed levels in 2011–2016. In general, we find the
levels of internal migration very stable over time. NSW and QLD are forecasted to
keep contributing the largest amounts of out-migration and in-migration. Finally, to
illustrate the performance of the model on forecasting age-sex-specific migration
flows between pairs of origins and destinations, we present the age profiles for
female migrants moving between NSW and QLD, representing a major internal
migration flow in the system, and SA and TAS, representing a relatively small flow,
in Fig. 11.14.

Fig. 11.14 Age-specific female migration flows (in thousands) between selected states in Aus-
tralia for the observed 2011–2016 flows and forecasted 2016–2021 and 2021–2026 flows
Note: The areas with dark and light grey colours represent the 95% prediction intervals for the
forecasted flows in 2016–2021 and 2021–2026 respectively.
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11.5 Conclusion

In this chapter, we have shown how the multiplicative component projection
model may be used to provide future estimates of internal migration by origin,
destination, age and sex with measures of uncertainty. It extends earlier research
using multiplicative or log-linear models to forecast internal migration (Stillwell
1986; Willekens and Baydar 1986; Van Imhoff et al. 1997; Van der Gaag et al. 2000;
Sweeney and Konty 2002; Raymer et al. 2006; Van Wissen et al. 2008; Raymer et
al. 2017) by modelling each component separately and integrating uncertainty. The
methodology is relatively simple and robust. It directly provides the forecasted sizes
of migration flows that can be used to construct transition probabilities for use in
multiregional cohort component projection models, assuming one could also infer
the probability of staying or not migrating, or aggregate them for use in standard
‘single region’ cohort component projection models.

Further research is needed to examine the appropriateness of the simple extrap-
olation method for each multiplicative component before being used in practice. In
particular, it would be useful to assess the forward forecasted results with future
measured values as good holdout sample results do not always ensure good out-
of-sample predictions. The underlying assumptions presented in this chapter are
admittedly simple but our aim was to illustrate the method. Further research should
investigate differently forecasting assumptions and experimentations with different
data and longer time series.

In conclusion, we hope that the methodology presented in this chapter will
inspire improving methods for forecasting internal migration. Internal migration
has become increasingly important as a component of population change, in both
developing and developed societies (White 2016). Also, many countries have
internal migration flow data by origin, destination, age and sex – our research
has shown how one can make better use of these data to make future predictions
of internal migration. The basic argument is that migration processes evolve over
time in predictable ways. By modelling the underlying structures of migration flow
tables, we are able to both simplify the process of estimation as well as improve the
accuracy of the forecasts.
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