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Abstract. High throughput sequencing of RNA (RNA-Seq) can provide
us with millions of short fragments of RNA transcripts from a sample.
How to better recover the original RNA transcripts from those frag-
ments (RNA-Seq assembly) is still a difficult task. For example, RNA-
Seq assembly tools typically require hyper-parameter tuning to achieve
good performance for particular datasets. This kind of tuning is usu-
ally unintuitive and time-consuming. Consequently, users often resort to
default parameters, which do not guarantee consistent good performance
for various datasets.

Results: Here we propose BOAssembler, a framework that enables
end-to-end automatic tuning of RNA-Seq assemblers, based on Bayesian
Optimization principles. Experiments show this data-driven approach
is effective to improve the overall assembly performance. The approach
would be helpful for downstream (e.g. gene, protein, cell) analysis, and
more broadly, for future bioinformatics benchmark studies.

Availability: https://github.com/shunfumao/boassembler.
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1 Introduction

Sequence assembly is a process to recover the original genomic sequences from
their sampled reads. Based on sequence type (DNA/RNA) and the availability of
reference genome, there are different assembly problems. In this study, we focus
on reference-based RNA-Seq assembly, which is a critical step to understand
gene, protein and cell functions.

Existing popular reference-based RNA-Seq assemblers include Cufflinks [3]
and Stringtie [2]. They usually align reads onto reference genome first, and utilize
the read alignments to build a graph where each node represents a genome region
(exon) and each edge represents the connection between two nodes by some
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reads. They then traverse the graph to find paths as the reconstructed RNA
transcripts.

These assembly problems are essentially NP-hard [7] and existing tools resort
to heuristic methods. For example, from the graph, Stringtie will extract the
heaviest paths iteratively. Due to the heuristic approaches, these methods usually
require parameter tuning to achieve good performance for particular datasets.
Since most users may not understand the meaning of the parameters well and
tuning itself is tedious and time-consuming, they usually end up with default
settings. An automatic tuning framework, therefore, is necessary.

In machine learning (ML), Bayesian Optimization (BO) is gaining a surge
of interest as its usefulness in tuning hyper-parameters for modern deep learn-
ing systems [10,11]. BO is favorable for optimizing objective functions that are
expensive to evaluate and are over continuous domains of less than 20 dimensions
[12]. BO has been widely used in most deep learning systems such as Natural
Language Processing (NLP) [13], Reinforcement Learning (RL) [14], and Chan-
nel Coding [15]. Depending on algorithms and programming languages, several
popular BO packages have been developed, such as GPyOpt [16].

There are limited work to introduce BO into computational biology fields.
Recently [17] applies BO to improve eQTL analysis. To the best of our knowl-
edge, no work has introduced BO to assembly tasks yet, which are fundamentally
graph problems with their own unique challenges. To fill this gap, we have devel-
oped BOAssembler, which is a framework able to incorporate existing assemblers
(such as Stringtie) and BO methods (such as GPyOpt) to assist assembler devel-
opers and biologists to spend minimal efforts to obtain better assembly hyper-
parameters automatically fine-tuned for particular datasets.

Our contributions include: (a) We firstly explore the BO methods in
(reference-based RNA-Seq) assembly tasks. (b) Our designed experiments show
that BO is overall effective to improve assembly. (c) An open source end-to-end
framework (BOAssembler) is provided for the assembly community to use.

2 Methods

2.1 Assembly

There are two kinds of RNA-Seq assembly problems: de novo assembly and
reference-based assembly. For de novo assembly, we only have RNA-Seq reads,
which is common in non-model organisms. For reference-based assembly, there
is additional knowledge on the genome of the organism. De novo assembly is
apparently more challenging and typical tools (such as Trinity [4] and recently
Shannon [5]) require much more computational resources and more complicated
evaluations. As the first step to bridge assembly and BO, we focus on reference-
based RNA-Seq assembler. In particular, we focus on the widely used Stringtie,
as recommended in [6].

A typical reference-based RNA-Seq assembly includes aligning sampled RNA-
Seq reads onto a reference genome using external tools such as STAR [1] etc.
For Stringtie, a (splice) graph will be prepared where each node represents a
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unique exonic region supported by aligned reads and edges indicate how nodes
are bridged by reads. Graph traversal algorithms will be applied to find paths
as transcripts to best explain the constraints from graph nodes and edges.

Since assembly problems are NP hard [7], existing algorithms take a lot
of heuristics (predefined threshold values). Therefore, assembler performance
heavily depends on its parameters. For example in Stringtie, the parameter ‘-
f’ sets a fractional threshold so that the predicted transcripts having a lower
relative abundance level than this will be discarded; a reduced ‘-f’ threshold
therefore encourages transcripts to be retained to improve sensitivity.

Developers of assemblers typically tune parameters by intuition on a few
datasets, and offer selected parameters for assembler users to use. As the assem-
bly performance for various datasets are usually parameter dependent, a more
systematic method of tuning parameter is needed. Naive approaches would
include grid search or random search. However, because typical assembly param-
eters are continuous, and of around 10 to 20 dimensions, which could make grid
search on all possible combinations prohibitive. Random search [9], on the other
hand, are expensive to guarantee good coverage.

2.2 Bayesian Optimization

BO aims at maximizing a real-value black-box function f(θ) with respect to
θ [8] in a gradient-free approach. BO consists of a statistical surrogate objective
function to model the input-output relationship between θ and f(θ), and an
acquisition function to decide what to sample next. Firstly BO evaluates ran-
domly chosen K datapoints of θ, and fits the prior statistical objective model.
Then BO iteratively updates the posterior model with newly acquired f(θk), and
selects θk+1 to evaluate according to posterior. BO is a systematic approach to
explore the parameter space according to a Bayesian model with limited allowed
evaluations (i.e. iterations).

Our BOAssembler primarily uses Gaussian Process (GP) with Matern Kernel
[11] as a natural model for statistical objective function, and Expected Improve-
ment (EI) as a commonly used acquisition function. Specifically, assume we want
to sample a new datapoint θ, and our current best parameter is θ∗. Then the
improvement is defined as [f(θ) − f(θ∗)]+. Note that the improvement is posi-
tive only when f(θ) is larger than f(θ∗). Then the expected improvement can
be taken under posterior distributions of f given θ1:k:

EIk(θ) = E([f(θ) − f(θ∗)]+|θ1:k, f(θ1:k)) (1)

As the expected improvement can be computed in closed-form, we can select the
point with largest expected improvement to sample: θk+1 = arg maxEIk(θ).

The procedure of iterative update, based on GP and EI, is described in
Algorithm 1, which includes K datapoints for BO initialization, and T iterations
to acquire.
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Input:D, K, T
Output:Best parameter θ∗

Fit the GP with K initial samples θk, k ∈ {1, ..., K};
i=0;
while i<T do

Update the GP posterior probability distribution on f using all available
data;

Use EI to compute the θi+1 with updated posterior distribution;
Obtain f(θi+1);
i = i + 1;

end
Return θ∗ with best performance;

Algorithm 1. Baysian Optimization Algorithm

2.3 Combine BO and Assembly

The Motivation to Combine. We can formulate the problem of assembly
parameter tuning as follows. The reference-based assembler together with its per-
formance evaluation can be represented as an abstract function f(D, θ), where D
includes both the read alignments used for assembly and the reference transcrip-
tome (a set of ground truth RNA transcripts) used for evaluation, and θ refers
to the parameters of f . After read alignments are assembled with given param-
eter θ, the assembly output (a set of RNA transcripts) will be compared with
the reference transcriptome, and the quality of assembly is measured by scalar
metrics such as precision p and sensitivity s. f(D, θ) outputs an evaluation score
based on p and s. Our goal is to find a global optimal θ which maximizes f(D, θ)
under limited number of iterations, as running assembler per iteration is time
consuming.

Bayesian optimization works well for black-box gradient-free global optimiza-
tion with moderate dimensionality. It is thus favorable to apply BO to optimize
assembler parameters due to the following reasons: (a) Empirically BO works
well for parameters with moderate dimensionality (less than 20). This is consis-
tent with assemblers which typically have this number of parameters. (b) f(.)
is continuous, and the parameter θ are correlated, and has well-defined feasi-
ble set. The assembler parameters usually have continuous values within certain
ranges. (c) The function f(.) is expensive to evaluate, thus to evaluate all pos-
sible combinations of parameters is prohibitive. Indeed, assembly tasks are time
consuming. (d) f(.) is a ‘black-box’, while gradient-based optimization methods
cannot be applied. Assemblers typically do not have a gradient due to the usage
of thresholds, which makes black-box method favorable.

The Architecture. Figure 1 illustrates the overall architecture of BOAssem-
bler. There are two parts: the assembly part (e.g. f(D, θ)) and BO part.

The assembly part wraps up the RNA-Seq reference-based assembler (here
Stringtie), which takes fixed read alignments as well as adjustable assembler
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Fig. 1. BOAssembler architecture.

parameters as input, and outputs assembled RNA transcripts (in gtf format). In
addition, the assembly part includes an evaluator block to access the assembly
output. Basically, it calls the gffcompare1 tool, which takes as input the assem-
bly output and reference transcriptome, and outputs sensitivity and precision
statistics. The sensitivity is the percentage of reference RNA transcripts that
have been correctly recovered, and the precision means the percentage of assem-
bled transcripts that correctly match the reference transcriptome. We further
combine the sensitivity and precision (such as F1 score) as f(D, θ), to be used
by the BO part. The evaluator may also take adjustable parameters as discussed
in Sect. 2.3.

The BO part has its theory described in Sect. 2.2. The BO part mainly relies
on GPyOpt, which implements the core BO methods (e.g. the GP + EI app-
roach). The BO part treats the assembly part as a black box, where the input
to the box is the parameters for assembler and evaluator, and the output of the
box is the combined performance metric for the assembler (such as F1 score).
The BO part will iteratively optimize the parameters for the black box function
(e.g. the assembly part) based on the feedback of performance metric.

Metrics to Optimize. The assembly part outputs f(D, θ), which is a met-
ric score and serves as an input to BO part. In particular, it is defined as a
weighted F1 score (Sw = λp × (1− λ)s

λp+(1− λ)s ) on top of the evaluator’s output in terms
of sensitivity s and precision p of the assembly. λ ∈ (0, 0.5) is also BO tunable.

There are several candidate metrics including the mean value (Sm = s+ p
2 )

and the F1 score (SF1 = 2sp
s+ p ). We found the BO part tends to overfit either

s or p towards 1 when using Sm. Though SF1 is able to balance s and p, we
find Sw is better to improve the final performance of sensitivity and precision.
In our experiments, s tends to have a lower value range than p (due to many
reference RNA transcripts do not have enough coverage), we hope to reward
more for sensitivity improvement but still have gain on precision. Therefore, we
1 https://ccb.jhu.edu/software/stringtie/gffcompare.shtml.

https://ccb.jhu.edu/software/stringtie/gffcompare.shtml
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come up with the weighted F1 score Sw, which uses BO to figure out how much
percentage we want to reward especially for the improvement of sensitivity.

Hyper-parameters. Our final goal is to find good assembler parameters. To
achieve this, we hope to find hyper-parameters (θ) that achieves high metric score
Sw. θ include both assembler parameters and evaluator parameter (λ). Each
parameter has its name, type, default value and range. For example, Stringtie
has a parameter ‘-f’ with type float, default value 0.1 and range (0.0, 1.0)2.

Usage and Extension of BOAssembler. To tune assembler parameters for
a particular dataset in BOAssembler, the user only needs to provide a small
sample of read alignments of the target dataset. The sampling can be done by
our provided scripts. After some iterations, BOAssembler will report suggested
parameters and its tuning history.

BOAssembler currently uses Stringtie as its default assembler. It supports
Cufflinks as well. Extension to use other reference-based RNA-Seq assemblers is
also straightforward. The user only needs to follow the Stringtie example, to add
a line of Python code in a specified Python file, and to add a config file which
contains the parameters to be tuned.

3 Result and Discussion

3.1 Datasets

Our goal is to use BOAssembler to tune assembler’s hyper-parameters on a
smaller dataset, and apply recommended hyper-parameters on a large assembly
task. Since the smaller dataset has representative data of large assembly task,
we expect tuned hyper-parameters can overall improve the large assembly task
in terms of sensitivity and precision.

We build our results based on simulated datasets, since real datasets lack
ground truth and it is hard to judge if an assembled RNA transcript is a false
positive, or a new RNA transcript that has yet to be discovered. Consequently,
the evaluator metric Sw is not feasible for real datasets. The simulated datasets
are generated based on real ones in the following steps.

Firstly we prepare three real datasets, including: 132.05M Illumina single end
reads (50-bp) sampled from human embryonic stem cells (HESC) (GSE51861,
used in [18]), 115.36M Illumina pair end reads (101-bp) sampled from Lym-
phoblastoid cells (LC) (SRP036136, used in [19]), and 183.53M Illumina pair
end reads (100-bp) sampled from HEK293T (Kidney) cells (SRX541227), previ-
ously produced and studied in StringTie [2].

Secondly, we use RSEM [20] to generate simulated reads from real datasets.
To begin with, we choose LC reference transcripts (containing 207266 RNA

2 See http://ccb.jhu.edu/software/stringtie/index.shtml?t=manual for an example of
Stringtie’s parameters.

http://ccb.jhu.edu/software/stringtie/index.shtml?t=manual
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transcripts) as the ground truth reference transcriptome annotations. We then
do quantification of real datasets using RSEM and get learned statistics from real
datasets. Based on learned statistics, we use RSEM to sample simulated reads
from ground truth reference transcriptome. The simulated HESC has 150M 50-
bp single-end reads, the simulated LC dataset has 150M 101-bp pair end reads
and the simulated Kidney dataset has 150M 100-bp pair end reads.

Lastly, we use STAR [1] (2-pass strategy) to align three simulated datasets
onto the human reference genome (hg19)3. From each alignment (in bam format),
we subsample to get smaller alignment files of chromosome15 as fixed datasets
for BOAssembler. The small datasets are about 1.5%, 3.1%, and 2.1% of large
datasets for HESC, LC and Kidney respectively. We’ve proposed another more
complicated sampling method (available at Github site) across chromosomes,
which offers similar performance.

3.2 Experiment Procedure

For each dataset, we run BOAssembler on the smaller datasets. The evaluation
for metric also uses a subset (e.g. chromosome 15) of reference transcriptome.
Each iteration takes around 1 min, and we typically see convergence of metric
score around 40 to 50 iterations. Compared to grid search for possible combina-
tions of 10 to 20 parameters, BOAssembler is much more efficient.

After automatic tuning, BOAssembler will recommend parameters with high
metric scores. We then apply these parameters on large datasets, which typically
take several hours to finish the assembly tasks using 25 cores of a linux server.

3.3 Experiment Results

Table 1 compares the performance of default parameters (Default) and
BOAssembler-tuned parameters (Tuned) for each simulated dataset, in terms
of sensitivity and precision. We also list their standard F1 score here since it’s
related to the metric BOAssembler tries to optimize. But we’ll focus on sensi-
tivity and precision which are of practical interest.

As Table 1 shows, BOAssembler has improved sensitivity, and precision for
all small datasets. In particular, HESC small is improved by 16.9% in sensitivity
and 27.4% in precision, LC small is improved by 1.2% in sensitivity and 13.1% in
precision, Kidney small is improved by 3.2% in sensitivity and 5.5% in precision.
Notice that the real Kidney dataset has been used in Stringtie’s original work,
so the default parameters of Stringtie should have been adjusted for this dataset
statistics. Still BOAssembler improves the its performance further.

The trend of performance improvement is mostly reflected in assembly tasks
on large datasets, which is mostly interesting to us. In particular, HESC large is
improved by 6.5% in sensitivity and 32.2% in precision, Kidney large is improved
by 0.3% in sensitivity and 0.6% in precision. LC large has a small loss around

3 http://hgdownload.cse.ucsc.edu/goldenpath/hg19/bigZips/.

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/bigZips/
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Table 1. Performance on different simulated datasets

Dataset Sensitivity (%) Precision (%) F1

Default Tuned Default Tuned Default Tuned

HESC (small) 22.1 39 31.9 59.3 26.11 47.05

HESC (large) 14.3 20.8 54.2 86.4 22.63 33.53

LC (small) 25.8 27 40 53.1 31.37 35.8

LC (large) 15.7 14.5 64.3 74.3 25.24 24.26

Kidney (small) 20.1 23.3 27.9 33.4 23.37 27.45

Kidney (large) 14.8 15.1 54.1 54.7 23.24 23.67

1.2% in sensitivity, but it gains 10%, which is significant, in precision. The exper-
iments show that by tuning hyper-parameters through BOAssembler on small
datasets, we are able to improve large assembly tasks overall (though there could
be fluctuations) to a smaller extent.

The diminished performance gain of tuned parameters on large datasets,
compared to the gain on small ones, may be because of an averaging effects across
more variant alignment statistics in large datasets. To better catch up large
dataset statistics, we have also prepared small datasets selected from certain
regions, the performance improvement trend is similar.

By comparing the BOAssembler suggested parameters with assembler’s
default ones, we could also gain more insights into the datasets. For example,
in HESC small datasets, the parameter ‘f’ is suggested to decrease from 0.1 to
0, this will allow more transcripts of low expression levels to also be considered
as assembly output (hereby improve sensitivity). Meanwhile, the parameter ‘m’
is suggested to increase from 200 to 500 to allow only longer (e.g. at least 500)
assembled transcripts to be considered (hereby improve precision).

3.4 Discussion

We expect our study and developed BOAssembler will contribute to the assem-
bly community as follows: (a) For bioinformaticians who develop assembly algo-
rithms, the framework or ideas behind it could provide them with more conve-
nient ways to set default parameters for their assemblers. (b) For biologists who
use reference-based RNA-Seq assemblers, BOAssembler can help them improve
assembly performance, so they can gain better insights into the datasets, and
the improved assembled RNA transcripts will be helpful for downstream gene,
protein and cell related analysis. (c) For benchmark work of assemblers, typ-
ically several datasets are prepared and different assemblers are compared by
using their default parameters. BOAssembler or its ideas will help the bench-
mark work in a fairer basis, since default parameters can not guarantee consistent
good performance across various datasets.

Whereas this is, to our best knowledge, the first efforts to bring assembly
and BO together, there are several interesting future directions. (a) As from
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experiments, we have observed that the gain of tuned parameters gets dimin-
ished for larger datasets, which implies BO tuned parameter overfits to small
training dataset. Since evaluating assembler is expensive, more efficient data
subsampling and cross-validation methods to avoid overfitting will be helpful.
(b) Another interesting exploration is how to define a metric score that is better
than the current weighted F1 score for Bayesian Optimization, to better bal-
ance sensitivity and precision. (c) There’re many problems in assembly areas
(including variant calling) that heavily relay on hyper-parameter tuning for bet-
ter performance. Introduce similar frameworks to these problems shall have wide
applications.

Funding. This project is funded by NIH R01 Award 1R01HG008164 by NHGRI and

NSF CCF Award 1703403.
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