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1 Université Lyon 2, DISP Laboratory (EA 4570), Lyon, France
mohand.bentaha@univ-lyon2.fr
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Abstract. Quality of post-consumer products is one of the major
sources of uncertainty in disassembly systems. This paper presents a
decision tool for disassembly process planning under variability of the
End-of-Life product quality. The objective is to maximize the profit of
the disassembly process. This latter is the difference between the revenue
generated by recovered parts and the cost of the disassembly tasks. The
revenue of a product (subassembly, component) depends on its quality.
The proposed approach helps to take decisions about the best disas-
sembly process and the depth of disassembly, depending on the quality
of the products to be disassembled. Industrial applicability and interest
are shown using an industrial case focused on the remanufacturing of
mechatronic parts in the automotive industry.
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1 Introduction

Reverse logistics and its processes are nowadays well accepted and understood.
In addition, it is well understood that ease materials recycling, reuse and re-
manufacturing constitute critical factors for sustainable competitiveness [12]. Re-
manufacturing is a key enabler technology [8,10] not only for sustainable devel-
opment but as well for economic and social developments. As such, it addresses
the 3 pillars of sustainability, i.e. Economic, Social, and Environmental.

The process of re-manufacturing requires to disassemble; to clean; to inspect,
diagnose and sort; to re-condition and to re-assemble [4,11]. When considering
“systems”, with several sub-systems as cars, computers, etc., a prior step to
disassembly is required in order to diagnose the defect and remaining function-
alities [9]. Such prior step is a pre-require since returned products are subject
to highly variable condition [3,6]. It leads to uncertainty and high variability in
the disassembly step while other steps remain less impacted. Disassembly lines
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remain artisanal with versatile workstations at the expense of efficiency. In order
to consider disassembly at an industrial level, one has to tackle these variability
and uncertainty in returned product quality.

The present paper considers the disassembly process as an industrial process.
In such a way, a single type of product is considered as input flow of the disas-
sembly process. Such hypothesis seems realistic when considering mass products
such as automobiles, cell phones, laptops, refrigerators, etc. Hence, the disassem-
bly process cannot be considered as an artisanal-work manner as is currently.
Thus, disassembly process has to be planned in advance and its financial via-
bility has to be demonstrated. This work proposes a tool in order to define the
optimal disassembly depth/level of a product regarding the profit. The original-
ity of the proposed approach is to consider the health state of the product, its
parts and sub-parts in the revenue estimation as random variables. The state
of a part allows to decide its re-cycling: maintenance, re-use, regeneration or
raw material recycling [7]. The re-cycling of a product impacts in a non-linear
way its resale price. The recycling decision requires a quantification of the part
capacity to re-enter a cycle. For such a purpose, we introduce the Remaining
Usage Potential (RUP).

The economical optimization of the disassembly process considers the cost
of the disassembly tasks and the revenue of the resale of the disassembled parts.
The latter is highly dependent on the re-entering usage cycle whose decision
is based on the RUP. The RUPs of a product and its parts are considered as
distributions since we consider mass recycling.

This paper is structured as follows. A formal description of the studied prob-
lem is presented in Sect. 2. Section 3 presents the developed model along with
the solution approach. Numerical experiments and optimization results are pre-
sented in Sect. 4. Section 5 concludes the paper with future research directions.

2 Problem Definition and Modeling

In this work, we consider a remanufacturing process where the revenue from
retrieved parts (subassemblies and components) depends on the quality of the
incoming return products. For an End-of-Life product, the problem consists on
the selection of a best disassembly process alternative, among all possible ones,
taking into account its RUP and precedence relationships amongst all disassem-
bly tasks and product parts obtained during the disassembly process.

The following assumptions are used. A single type End-of-Life product has
to be partially (or completely) disassembled. All received items contain all initial
parts with no addition or removing of components. In the case of industrialized
disassembly, as it is for remanufacturing systems, this hypothesis seems realistic
when a large percentage of products arrive in these conditions. Each component
or subassembly has a resale value which represents its revenue. This revenue
depends on the quality of the corresponding component or subassembly. The
state or quality of each subassembly is modeled using the concept of RUP which
follows a probability distribution. In the optics of industrialized disassembly,
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i.e. a large number of products of the same category are returned, to obtain such
a probability distribution, statistical studies on disassembled products can be
conducted.

2.1 And/or Graph

All possible disassembly process alternatives of an End-of-Life product, along
with the precedence relationships among tasks and product subassemblies and
components, are modeled explicitly using an and/or graph [1] (see Fig. 1).

Each subassembly is represented by a node labeled Ak, k ∈ K. For a simplifi-
cation reason of the and/or graph, the components generated by all disassembly
tasks are not explicitly represented in the graph. Each node labeled Bi, i ∈ I,
represents a disassembly task. Two types of arcs define the precedence relations
between subassemblies and disassembly tasks: and and or. The first type imposes
a mandatory precedence relation and the second type is employed for optional
precedence dependencies. A sink node ‘S’ is introduced and linked with dummy
arcs to all the disassembly tasks to model the case of partial disassembly (Fig. 1).
For a detailed description of the and/or graph modeling process, see [2,5].
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Fig. 1. And/or graph of the ball point pen example [1].
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2.2 Remaining Usage Potential and Its Probability Density
Function

In order to assess the state to be considered for disassembly, we defined the
Remaining Usage Potential (RUP). The RUP stands for the “usage” quantity
remaining for a product or a part. In our proposition, the RUP is evaluated prior
to the disassembly. The RUP is evaluated on a [0, 1] scale; 1 corresponds to the
product state at the beginning of its exploitation (the product is at its maximal
RUP); 0 means that the product/part has reached its end of life and has to be
recycled as raw material.

The RUP is modeled as a probability density function since this study con-
siders a mass disassembly process. As such, the number of products to be con-
sidered is high and the RUP shall be considered in a statistical way. We consider
the RUP as a normal probability density function truncated in 0 and 1. The
RUP follows a truncated normal distribution on [0, 1] with μ and σ parameters:
RUP � N[0,1](μ, σ); μ and σ are respectively the mean and standard deviation of
the original non truncated normal distribution. Figure 2 shows, over [0, 1] inter-
val, 3 truncated normal distribution functions with parameters: (µ = 0, σ = 0.2),
(µ = 0.5, σ = 0.3) and (µ = 1, σ = 0.2). Curves in Fig. 2 shall stand for the RUP
of either a product, a part (component) or a sub-part (subassembly):

• The yellow curve, with µ = 0 and σ = 0.2, shows a heavily worm part whose
RUP is statistically low.

• The blue curve, with µ = 1 and σ = 0.2, shows a slightly used part whose
RUP is statistically high.

• The red curve in the middle, with µ = 0.5 and σ = 0.3, shows a middle term
part whose RUP is statistically average.

Fig. 2. RUP distribution examples as normal distributions truncated on [0, 1]. (Color
figure online)
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2.3 Part Revenue with Respect to Its RUP

Since the items have not the same RUP, their resale prices have to be consid-
ered as functions of their RUPs. The resale price represents the revenue (Re)
due to recycling recovery of disassembly items. Obviously, the higher the RUP,
the higher the revenue. We defined the revenue Re as a function of the RUP:
Re(RUP). In addition, we assume that the resale price is bounded. The upper
bound corresponds to the resale price of an “almost new” used item. Indeed, it
is not realistic to consider the sale price as upper bound since as soon as an item
is used it depreciates. The lower bound corresponds to the resale price of the
raw material of the item. The upper bound, resp. the lower one, corresponds to
Re(RUP = 1) = b, resp. Re(RUP = 0) = a, with b > a > 0. We defined 3 cases
for Re according to the RUP, with the corresponding definition of Re(RUP):

• The first case considers a linear RUP revenue function, i.e. Re is proportional
to the item’s RUP: Re = (b − a) · RUP + a, affine function.

• The second case considers a rapid growth of the Re revenue according to the
item’s RUP with a stabilization when the item’s RUP becomes medium. Such
a Re revenue variation is modeled with a root function. Such a case means
that the re-sale price of an item remains hight the long “RUP” term despite
the drop of the RUP: Re = (b − a) · 4

√
RUP + a, root function.

• The third one considers Re low for low and medium RUP levels and increases
rapidly for high levels of the RUP:

Re = e
1

e−1

(
e ln(a)−ln(b)

)
e

1
e−1

(
ln(b)−ln(a)

)
eRUP

, exponential function.

2.4 Part Revenue Probability Density Function

Combining the RUP probability density function with the part revenue func-
tion gives the part revenue probability density function. For the 3 Re functions
presented above, the corresponding probability density functions are:

fRe
(re) =

1
b − a

φ(μ, σ, re−a
b−a )

Φ(μ, σ, 1) − Φ(μ, σ, 0)
I[a,b] (pdf-affine)

fRe
(re) =

4
(b − a)4

(re − a)3
φ(μ, σ, ( re−a

b−a )4)
Φ(μ, σ, 1) − Φ(μ, σ, 0)

I[a,b] (pdf-root)

fRe
(re) =

1
re (ln(re) − α)

φ(μ, σ, ln( ln(re)−α
β ))

Φ(μ, σ, 1) − Φ(μ, σ, 0)
I[a,b] (pdf-expo)

where α =
1

e − 1
(e ln(a) − ln(b)) and β =

1
e − 1

(ln(b) − ln(a));

e = 2.71828 · · · is the Euler’s constant

φ(μ, σ, x) = 1
σ

√
2π

e− 1
2σ2 (x−μ)2 defines the normal probability density func-

tion of mean μ and standard deviation σ and Φ(μ, σ, ·) defines its cumulative
distribution function. We consider 3 cases for the RUP distribution, i.e. RUP �
N[0,1](μ, σ), according to the part quality (see Fig. 2): bad (µ = 0, σ = 0.2),
medium (µ = 0.5, σ = 0.3) and good (µ = 1, σ = 0.2).
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3 Optimization Model and Solution Approach

To model the defined disassembly process planning problem, the following nota-
tions are introduced.

3.1 Adopted Notation

Ak : a subassembly: k ∈ K;
Bi : a disassembly task: i ∈ I;
ci : cost of disassembly task Bi, i ∈ I: ci = c · ti,∀i ∈ I; ti is the processing

time of task Bi and c is a fixed cost per disassembly time unit, i ∈ I;
D� : set of indices of tasks disassembling subassembly �, � ∈ L;
G� : set of indices of tasks generating subassembly or component �, � ∈ L;
I : set of disassembly task indices: I = {1, 2, . . . ,N}, N ∈ N

∗;
K : set of indices for the generated subassemblies: K = {0, 1, . . . ,K}, K ∈ N;
L : set of all product part indices (subassemblies and components): L =

{1, 2, . . . , L}, L ∈ N
∗;

Li : set of indices of retrieved subassemblies and components by the execution
of disassembly task Bi, i ∈ I;

Pk : set of indices of Ak predecessors, k ∈ K: Pk = {i| Bi precedes Ak};
R̃e� : revenue generated by a subassembly or component �, � ∈ L, where R̃e� is

a function of R̃UP�: R̃e�(R̃UP�), � ∈ L; R̃UP� represents the remaining
usage potential of a subassembly or component �, � ∈ L;

Sk : set of indices of Ak successors, k ∈ K: Sk = {i| Ak precedes Bi}.

3.2 Decision Variables

xi =

{
1, if disassembly task Bi, i ∈ I is selected;
0, otherwise.

y� =

{
0, if

∑
i∈G�

xi = 1, � ∈ L and
∑

i∈D�
xi = 1 (� subassembly);

1, otherwise.

Variable y�, � ∈ L means: for a subassembly with index � ∈ L, if a disassem-
bly task with index i, i ∈ G� which generates � is chosen and, next, another
disassembly task j, j ∈ D�, of the same disassembly process alternative, which
disassembles it is also chosen, then its revenue R̃e� is not taken into account
while calculating the revenue of the whole disassembly process.
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3.3 Objective Function and Constraints

The objective is to determine a disassembly process alternative with the max-
imum profit while considering the quality or states of the subassemblies and
components generated during the disassembly process. The objective function
and associated constraints are formulated as follows:

max

{
∑

i∈I

∑

�∈Li

R̃e� · y� · xi −
∑

i∈I

ci · xi

}

(1)

s.t.
∑

i∈S0

xi = 1 (2)

∑

i∈Sk

xi �
∑

i∈Pk

xi,∀k ∈ K\{0} (3)

If
∑

i∈D�

xi = 1 and
∑

i∈G�

xi = 1 then y� = 0,∀� ∈ L (� subassembly) (4)

y� = 1,∀� ∈ L (� component) (5)
xi, y� ∈ {0, 1},∀i ∈ I,∀� ∈ L (6)

The terms of the objective function represent, respectively, the earned profit
of retrieved parts and the cost of the corresponding disassembly tasks. Prece-
dence constraints, partial disassembly and possible values of the decision vari-
ables are defined by constraints (2)–(6).

3.4 Solution Approach

In order to solve the developed model, we consider different values of the revenue
R̃e�,∀� ∈ L, where � represents a subassembly or a component. These values
depend on: μ̂� (mean of R̃e�) and σ̂� (standard deviation of R̃e�), ∀� ∈ L.

Concretely, 3 values of R̃e�,∀� ∈ L will be considered: Re� = μ̂� and
Re� = μ̂� ± σ̂�, ∀� ∈ L. The values of μ̂� and σ̂� of the revenue R̃e� of each
subassembly and component �, � ∈ L, are calculated using numerical integra-
tions. Subsequently, the obtained problems will be solved using the IBM solver
CPLEX 12.6.

4 Numerical Illustration: Application to an Industrial
Case

Model (1)–(6) is implemented in Linux using C++ on a PC with 8×CPU 2.80
GHz and 32 Go RAM. It is solved using ILOG CPLEX 12.6. It is applied to
a case product in the automotive part remanufacturing: a Knorr-Bremse EBS
1 Channel Module. Such a product is composed of at least 45 components; see
here for detailed example of End-of-Life EBS 1 Channel Module disassembly.

https://www.youtube.com/watch?v=j4TlwWyeC7k
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Figure 3 represents its and/or graph and gathers the obtained optimization
results for different values of Re�, � ∈ L. The obtained results can be summarized
as follows: the profit of the disassembly process depends not only on the sequence
and level of disassembly but also on the state or quality of the product. In
fact, profit is the difference between revenues (Re) of the components and/or
subassemblies and costs ci of the disassembly tasks. As disassembly costs are
known and fixed, then the profit in our case depends mainly on the revenues
of the components and/or subassemblies. Revenues are random and they are
functions of states of the components and subassemblies. Thus, the profit of the
disassembly process depends on the sequence and level of disassembly of the
product. The level of disassembly is itself dependent on the states (quality) of
the components and subassemblies.
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Fig. 3. Alternatives and disassembly levels returned according to the type of revenue
functions: EBS 1 Module.

Figure 3 shows in detail the alternative and the level of disassembly returned
for each revenue function type of components and subassemblies. In order to
identify easily the disassembly alternatives in Fig. 3, a color is assigned to each
alternative as shown in Table 1. Table 2 illustrates the obtained disassembly alter-
native and objective value for each type of revenue function and each value of
this revenue (Re�,∀� ∈ L). The results, as example, show that for the same
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Table 1. Colors representing all obtained disassembly alternatives.

Disassembly alternative Alternative color

B2 B22

EBS 1 Module
B1 B4 B15 B34 B43

B3 B10 B20 B34 B43

B1 B6 B20 B34 B43

Table 2. Obtained disassembly alternatives and their objective values (cents e).

Re� = μ̂� Re� = μ̂� − σ̂� Re� = μ̂� + σ̂�

Affine 63550.2 54146.7 72953.7

EBS 1 ModuleRoot 72710.7 69702.4 76084.2

Expo 26689.4 6782.7 46828.7

alternative and the same level of disassembly, values of the corresponding profits
depend on the type of the revenue functions considered. These objective values
are relatively important for functions of type root, relatively low for functions
of type expo and are rather average for functions of type affine.

The results of this section show the applicability of the developed optimiza-
tion model and solution approach in real disassembly context. Indeed, the com-
putational time is short enough (maximum solution time is less than 5 s) to give
to the decision maker the opportunity to generate different disassembly alterna-
tives depending on the profit expected from the retrieved parts. The profit itself
depends on the quality of the products. This model helps to make a decision
on the disassembly alternative to be retained as disassembly process. Therefore,
the choice between complete or partial disassembly can be made on the basis of
the economic arguments.

5 Conclusion

To define effective disassembly and derive the economic benefits of the disassem-
bly process, product quality uncertainty must be taken into account. In order
to provide an answer to this expectation, we presented in this work a decision
tool on the disassembly process planning taking into consideration the quality
of the products to be disassembled. The quality of a product is modeled using
the Remaining Usage Potential (RUP) concept. RUP models the amount of use
remaining before disassembling a product (or subassembly). At the beginning of
the operation phase of a product, RUP has a value of 1; a value 0 of RUP means
that the product must undergo a recycling of its material. The RUP is taken as
a random variable with known normal probability distribution truncated on 0
and 1. To model this problem, a stochastic program is developed. The objective
is to maximize the profit of the disassembly process. The latter is the difference
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between revenues of subassemblies and components and costs of the disassembly
tasks. Subassemblies and components revenues are defined as functions of the
RUP.

The developed methodology is evaluated and applied to an industrial prod-
uct, a Knorr-Bremse EBS 1 Channel Module, which represents a real case study,
in the automotive part remanufacturing sector, to show the industrial applica-
bility of the developed optimization tool. The optimization results have shown
that the profit of the disassembly process depends on the alternative and level
of disassembly of the product, and that the disassembly alternative and level are
themselves dependent on the states or quality of the components and subassem-
blies. The results also showed that the level of disassembly for the same sequence
or disassembly alternative depends on the type of variation of components and
subassembly revenues according to RUP.

The obtained results are promising and have shown the applicability of the
developed methodology to real industrial case. The modeling process and opti-
mization tool presented can be easily adapted for more real life cases like End
of Life Vehicles (ELV) or Waste Electrical and Electronic Equipment (WEEE).
Undertaking such case studies is one of our next research objectives.
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