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Abstract. In the context of the digital twin, the relevance and challenges of the
uncertainty quantification are recognized. Data acquired in the physical domain
are incorporated into a cyber-space to assist in predictive and decision-making pro-
cesses. The acquisition of data in the physical domain involves themeasurement of
physical magnitudes. The digital as-built or as-manufactured model derives from
measured or scanned data of a physical product. Thus, it is relevant to know how
much the data are true. The uncertainty of a measured magnitude is a significant
indicator of the data truthfulness. This work shows how the uncertainty is being
modeled in standards related to product data representation and in an engineering
data fusion context. The ongoing uncertainty modeling work in the Collaborative
Research Center (SFB 805) at TU Darmstadt is presented as an example of a data
fusion context.
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1 Introduction

The digital twin concept involves integrating data from development, functional and
industrial design with data from the physical domain along the whole lifecycle. This
basic idea applies both to products and to production systems. It is grounded on the
creation of a digital as-built model of a physical product [1] and in the integration
of computation with physical processes, named as cyber-physical systems (CPS) [2].
A digital twin can be seen as the digital representation of a specific physical artifact,
identified by its serial number, at a specific point in time.

In the context of production, designers and engineers definewhatmust be achieved in
the physical domain and how to accomplish it. They used different software applications
along the development and design process, to define how the product must be, and how,
where, for how long and in what quantity, it must be manufactured. The result is an
extremely big amount of data related to the product itself, the processes to execute and
the resources to use. Using a concept coined in the 1990s, we could frame such data into
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a kind of industrial digital mock-up [3]. Then data and working instructions, which are
defined as mandatory, are transferred into the physical domain to manufacture physical
products. The physical product exists, and therefore, it is the true one, but the digital
one is the mandatory one. The physical product is assessed by performing a comparison
against the mandatory one, i.e. the digital one. A clear extension of the digital mock-up
concept is the current concept of the digital twin.

In the widest sense, a digital twin requires to implement an unbroken closed-loop
data flow [4], where data, acquired from test specimens, physical scale models, phys-
ical products and production systems, are incorporated into a cyber-space to assist in
predictive and decision-making processes [5, 6]. Data obtained from test specimens
and physical scale models are used to perform engineering calculations, e.g. material
property data [7] and performance data [8]. Data obtained from the physical product
are used to validate and certify the product against engineering requirements [9]. In the
cyber-physical production systems (CPPS), configuration and run-time data are used to
implement production and maintenance adaptive strategies that rely on system simula-
tions [5]. In parallel, to the digital twin concept, the digital thread concept was defined.
The digital thread comprises linking data and information generated along the product
lifecycle through a data-driven architecture of shared resources, this way, data from
the physical domain can be fed back and linked to design data (cyber domain) [6]. The
assumption, behind the unbroken closed-loop data flow, is that incorporating “true data”,
from the physical domain into the cyber domain, allows reducing uncertainty, improving
predictions and designing adaptive products and systems.

From an engineering perspective, the implementation of the digital twin concept is an
ongoing process that faces challenges: data acquisition, gathering and processing of large
data sets, data fusion, data standardization, uncertainty quantification, trustworthiness
of data, data security, models interoperability, high-fidelity computational models for
simulation and virtual testing at multiple scales, modeling of physical part variations,
synchronization between the physical and the digital world to establish closed loops,
complexity and cost of state-of-the-art IT-infrastructure [5, 9–12].

The acquisition of data in the physical domain involves the measurement of physi-
cal magnitudes or quantitative properties. In many occasions, the measurement result is
expressed by a twofold structure: the nominal value of the magnitude and the measure-
ment unit. The nominal value is considered as numerically exact and it is propagated
throughout successive processes [13]. However, the result of measurement should be a
threefold structure, where the uncertainty of the measurement is the third component.
The uncertainty is a way to indicate how good a nominal value is [14]. The benefits
derived from the digital twin implementation, depend on incorporating “true data” from
the physical domain into the digital domain. Therefore, it is relevant to know how much
the data are true. In the process of data transfer from the physical to the cyber domain, the
trustworthiness of data depends on several factors, mainly: integrity, reliability, security,
and quality [15]. The most widely used data quality dimensions are: accuracy, com-
pleteness, currency, and consistency. Within the accuracy dimension, the uncertainty of
ameasuredmagnitude is a significant contributor to the indicator of the data truthfulness.

This work provides a review of how the uncertainty is being considered in the context
of the digital twin. The literature points out the relevance, the challenges and the lack
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of uncertainty quantification in the context of the digital twin [12, 13, 16, 17]. Section 2
provides a review of the uncertainty definition. Section 3 points out some of the main
challenges of its quantification. Section 4 deals with the uncertainty representation, how
it is modeled in standards related to product data representation, how it is considered in a
data fusion context, and in particular, in an engineering data fusion context represented
by the case of the Collaborative Research Center (SFB 805) at TU Darmstadt. The
communication ends with conclusions and future works.

2 Uncertainty

In general, uncertainty involves imperfect, imprecise or unknown data, information or
knowledge. There are two facts to keep in mind. The first one is that uncertainty refers to
something: a property, a measurement, a model, an assumption, a specific data. The sec-
ond one is that the existence of uncertainty imposes that truth exists [18]. In engineering,
the truth exists in the physical domain: products and production systems.

Based on its nature, uncertainty is usually classified under twomain types: epistemic
and aleatoric [19]. Epistemic uncertainty relates to the lack of knowledge. Aleatoric
uncertainty relates to the variability of physical processes. Epistemic uncertainty can
be introduced by means of poor assumptions, poor models and missing data. Aleatoric
uncertainty is inherent to the non-deterministic nature of the manufacturing and mea-
surement processes [16]. Different approaches are proposed to evaluate the epistemic
uncertainty, e.g. evidence theory, possibility theory and interval analysis [19]. The evi-
dence theory uses basic probabilistic assignments to indicate the degree to which a
piece of evidence supports a hypothesis. Aleatoric uncertainty is quantified by means
of statistical methods using a probability distribution [19, 20]. Considering the design
and development of complex multidisciplinary engineering systems, Thunnissen [21]
proposed two additional uncertainty types: ambiguity and interaction. Ambiguity uncer-
tainty relates to the use of imprecise terms and expressions by individuals when com-
municating a specification. Interaction uncertainty relates to situations where several
disciplines, individuals and factors are involved but their interaction was not properly
foreseen, or a disagreement arises.

3 Quantification of Uncertainty

The quantification of uncertainty is widely acknowledged and affects both the collected
data and the models created for a process of interest. It can be seen as a process of deter-
mining uncertainties associated with model-based predictions. A sensitivity analysis is
also required to quantify the impact that each input data have on the results provided by
the model. It involves identifying and characterizing all the key sources of uncertainty
and propagating input uncertainties through the model [19, 20].

One of the main challenges of uncertainty quantification in the digital twin context
is that different types of uncertainty are present when transferring data from the physical
domain into the digital or cyber domain.Materialmechanical properties derived from test
specimens, with values considered as exact, are used as input in models to estimate and
simulate the result frommanufacturing processes.However, the physical partmay exhibit
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a microstructure that is not uniform and so are its mechanical properties [7, 22]. Data
derived from functional tests of scale models are mergedwith simulation data, numerical
uncertainties are derived from approximations to geometry and boundary conditions, and
from physical models and parameters [8]. Different sensing and measuring devices are
used to monitor and measure parameters, both in products and in production systems.
This situation leads to fuse data from different sources. Quantifying the quality of the
data, or uncertainty, providedby the different sensors anddevices is critical, overall,when
data from different sources are conflicting [23]. The quantification of the uncertainty of
the true data gathered in the physical domain is an impediment to achieve an appropriate
fusion of physical and virtual systems, and a limitation for the digital twin concept
implementation [5, 11–13].

When analyzing current practices at the physical level, literature also shows examples
of how the uncertainty quantification is an issue. The complexity in calculating the
measurement uncertainty derives from the significant number of factors that affect it,
e.g. human-caused, environmental, logical, mechanical, methodological and numerical
[24]. As an example, Abollado et al. [25] concluded that at the shop-floor level, the
quantification of uncertainty in the industry requires support with the identification of
uncertainty key drivers and the definition of best practices.

4 Representation of Uncertainty

The formal representation of concepts, in a computer-processable way, is addressed by
creating data models, information models or ontologies. This section shows how the
concept of uncertainty is being represented in the context of CPS and the digital twin.
A formal representation depends on how the concept of uncertainty is defined.

In a Cyber-Physical Systems (CPS) context, heterogeneous physical elements com-
municate via networking equipment and interact with applications and humans. Zhang
et al. [17] consider uncertainty, as a lack of confidence, due to the interactions between
hardware, software and humans, and the need for them to be context aware. Uncertainty
represents a state where an agent does not have full confidence in a belief that it holds,
and it can be represented by a measurement. Uncertainty is specialized into: content,
environment, geographical location, occurrence, and time; and it can follow a pattern or
be random.Ameasurement can be represented by vagueness, probability, and ambiguity.

In the context of virtual product development, Anderl et al. [13] and Heimrich
et al. [26] consider uncertainty in properties related to products and processes. Uncer-
tainty is modeled in the form of single values, intervals, fuzziness, and stochastic
measures. They proposed an approach based on three layers: representation, presen-
tation, and visualization. The representation layer comprises an ontology-based infor-
mation model that supports an Uncertainty Mode and Effect Analysis (UMEA) process.
The model extends concepts provided by the standard ISO 10303 for the exchange of
product model data (STEP), e.g.: UncertaintyType, UncertaintyDriverProduction, and
UncertaintyDriverUsage.
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4.1 Uncertainty in the Standard ISO 10303 (STEP)

The standard ISO 10303 is an enabler of the digital thread and defines the basic concepts
related to uncertainty in: ISO10303-41 [27] and ISO10303-45 [28]; which are part of the
STEPModule and Resource Library (SMRL). The concepts are based on the definitions
provided by the guide to the expression of uncertainty in measurement [20], which con-
siders that a measurement is only complete when accompanied by a quantitative value
of its uncertainty. The Part 41 defines the product_property_definition_schema, which
specifies concepts to define product properties; themeasure_schema, which specifies the
concepts to describe physical quantities, e.g.:measure_value, unit, si_unit, named_unit,
measure_with_unit [27]. In the Part 45, thematerial_property_definition_schema, spec-
ifies concepts to define material properties; the qualified_measure_schema, speci-
fies concepts to qualify quantities by their uncertainty, e.g.: value_qualifier, uncer-
tainty_qualifier, standard_uncertainty, qualitative_uncertainty, measure_qualification,
measure_representation_item [28]. Additionally, basic concepts, dealingwith geometric
shape variation tolerances, are defined in the ISO 10303-47. The ISO 10303-50 defines
basic concepts dealing with the definition of mathematical structures and data related to
the properties of a product.

In addition to the basic definitions, application protocols are developed to specify
information requirements to specific engineering application contexts. The ISO 10303-
235 is the application protocol (AP) related to engineering properties for product design
and verification [29]. It defines the processes for the testing, measurement, and approval
of engineering properties, both of product samples and the manufactured product itself.
The normative model, designed as Application Interpreted Model (AIM), comprises
all the uncertainty related concepts defined in the STEP (SMRL). This AP is of interest
when aiming to feedback data related to material properties derived from test specimens,
and data derived from functional tests of scale models.

The ISO 10303-242 is for managed model-based 3D engineering, its scope is lim-
ited to product data related to design and manufacturing planning of mechanical parts
and assemblies [30]. It substitutes the former applications protocols AP 203 and AP
214. In addition to schemas from the ISO 10303-41 and the ISO 10303-45 previously
mentioned, it adopts schemas defined in the ISO 10303-59, related to the quality of
product shape data. Among many other concepts, within the mechanical design, it
comprises the definition of properties of parts and tools, data defining surface con-
ditions, dimensional and geometrical tolerance data, quality criteria and inspection
results of 3D product shape data. Successful implementation tests of the AP 242,
to exchange 3D models with the specification of tolerances are reported in the lit-
erature [31]. The AP242 comprises schemas such as: product_data_quality_criteria,
product_data_quality_definition, product_data_quality_inspection_result. Some of the
main uncertainty related concepts are: QualitativeUncertainty, StandardUncertainty,
ValuewithTolerances, ValueWithUnit, MeasuredQualification, MeasuredCharacteristic,
PropertyValue. PropertyValue represents the value of a property and is an abstract super-
type of: StringValue, ValueList, ValueSet and ValueWithUnit. It has an optional attribute
named qualifications where the uncertainty or the precision of the value could be spec-
ified. A ValueWithUnit is an abstract supertype of: NumericalValue, ValueRange, and
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ValueWithTolerances. These concepts allow expressing the value of part properties for
its propagation throughout different processes.

Another relevant AP is the AP 219 for dimensional inspection information exchange
[32]. This AP could be considered as an antecedent to the aimed closed-loop data flow
from manufacturing (physical domain) to design (digital/cyber domain). Where data
and results from the part inspection could be feedback to design. It comprises all the
basic concepts defined in the STEP integrated generic resources that were commented
previously, however, its industrial implementation has not been reported. In that sense, it
can be stated that to achieve the digital thread concept onlywith STEP related technology
is not feasible yet. As an alternative, the Quality Information Framework (QIF) was
defined to support manufacturing quality information.

4.2 Uncertainty in the Standard QIF

QIF is an ANSI standard that defines a set of information models to enable the closed-
loop exchange of metrology data from product design to inspection planning to inspec-
tion execution to data analysis and results reporting. It defines several areas of quality
information: measurement plans, measurement results, measurement rules, measure-
ment resources and results analysis [33]. It is a feed forward and feedback data quality
flow that supports the digital thread concept [34].

QIF is structured into six application area information models: Model-Based Design
(MBD), Plans, Resources, Rules, Results, and Statistics; and it is specified in a set of
XML schemas. It allows the definition of rules by means of the called QIF Rules model.
Rules can be defined by each organization to defineworking practices, e.g. how a product
should be measured based on measurement requirements [33]. It adopts the uncertainty
definitions provided by the guide to the expression of uncertainty in measurement [20].
However, it considers it as an optional attribute. In instance files, QIF allows quantities
to appear without explicit unit and uncertainty for each value. Units can be specified in a
QIF instance file by using theFileUnits element defined in theUnits schema. This schema
defines also the concepts: SpecifiedDecimalType and MeasuredDecimalType. The for-
mer allows specifying a decimal type value with two optional attributes: decimalPlaces
and significantFigures. The latter defines a SpecifiedDecimalType with two additional
optional attributes: combinedUncertainty andmeanError. While this approach may pro-
vide flexibility, it also means that different implementations of QIF are possible, which
at the end may turn into interoperability problems among different organizations.

4.3 Uncertainty Representation and Engineering Data Fusion

Data fusion deals with integrating multiple data streams into one single consistent infor-
mation stream. The Intl. Soc. of Information Fusion has created an ontology named
URREF (Uncertainty Representation and Reasoning Evaluation Framework) to facili-
tate the communication and data processing in the context of complex, distributed, and
operational information fusion systems [35]. It distinguishes between low-level infor-
mation fusion, e.g. physical-based parameters, and high-level information fusion, e.g.
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the World Wide Web. The ontology comprises the classes: UncertaintyNature, Uncer-
taintyType, UncertaintyDerivation, and UncertaintyModel. The uncertainty nature dis-
tinguishes between epistemic and aleatory. The uncertainty type refers to what makes
information uncertain: ambiguity, incompleteness, vagueness, randomness, and incon-
sistency. The uncertainty derivation refers to how the uncertainty can be assessed, sub-
jectively or objectively. The uncertainty model class refers to mathematical theories for
representing and reasoning with the uncertainty types.

As previouslymentioned, different devices are used tomonitor andmeasure physical
magnitudes. Both complex products and CPPS can be seen as large-scale measurement
platforms were multiple data streams need to be integrated [23].

In this context, we may consider two possible data inducted conflict scenarios. One
scenario, where different devices provide different values for the same magnitude. And
a second one, where different data sources use different semantics for the same magni-
tude. The first scenario could be addressed by introducing two parameters. The reliability
degree of the source, which expresses its level of trust for delivering true data over time.
And the credibility degree of the data, which depends on its confirmation by other
sources and its conflict with other data [36]. The second scenario refers to industrial
interoperability and it can be addressed mainly in two ways. By harmonizing and imple-
menting standards to transfer data, both from the cyber domain to the physical domain
and from the physical domain to the cyber domain. And by automating the mapping and
integration of different semantic definitions, e.g. ontologies.

An example of the need to harmonize standards can be illustrated by the previously
commented ways to represent uncertainty. When considering the data transfer from the
physical domain to the cyber domain, additional standards, to the ones commented in the
two prior subsections, have to be considered. The standard IEC 62541, known as OPC
UA, is a service-oriented framework that supports a client-server architecture to model
and transport data that will be exchanged between industrial applications [37]. It pro-
vides the basis to define companion information models that specify the data content to
exchange. MTConnect, although developed separately, has been harmonized with OPC
UA and it can be considered as an example of such companion information models [38].
In itself, MTConnect is a standard to transfer data from the manufacturing equipment
to the cyber domain and it is used as part of the digital thread implementation [34]. By
means of anMTConnect Agent, a piece ofmanufacturing equipment can report data, e.g.
an axis position.Data to be reported ismodeled bymeans of theDataItem element, which
has mandatory attributes: id, type and category; and optional attributes: name, subtype,
statistic, units, nativeUnits, nativeScale, coordinateSystem, compositionId, sampleRate,
representation, and significantDigits. The optional statistic attribute allows describing
any type of statistical calculation that has been performed to provide the reported data
value [39]. However, how to represent the uncertainty of the reported data is still unclear.

The automated integration of different semantic definitions obtained from different
sources may lead to issues of incomplete and contradictory concepts. The resolution
of these issues could be addressed by combining deductive and inductive reasoning
mechanisms. In deductive reasoning, the truth of the conclusion is based on the truth of
the data. In inductive reasoning, the truth of the conclusion cannot be asserted because of
the uncertainty of the data. In this case, a certainty or truthfulness level of the conclusion
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could be provided. This approach is currently under research in the SFB 805 for Control
of Uncertainty in Load-bearing Syst. of Mech. Eng. [40].

4.4 Uncertainty Representation in the Context of the SFB 805

Within theSFB805, oneof themain objectives is tomanageuncertainty along the product
lifecycle, from development to usage. The quantification of uncertainty is considered
from three perspectives: data, model, and structural [41].

Data uncertainty relates to the values of parameters and measured magnitudes.
Stochastic or aleatoric uncertainty is quantified by means of statistical methods using a
probability distribution. When a probability distribution is unknown and only a nominal
value is provided, then it is the case of unobserved uncertainty.

Model uncertainty derives from the input data and from the way it was created.
Models can be deductive, empirical and hybrid. Empirical models can be derived from
observed or measured data and or based on the experience of an expert. In any case, an
evidence should be available to support the creation of the model. In empirical models
it is necessary to identify the relationship between the different parameters, which may
lead to three different situations: (1) the relationship is suspected, verified and validated,
(2) the relationship is only suspected, (3) the relationship is unknown or ignored. It is a
typical situation where epistemic and aleatoric uncertainties need to be quantified and
integrated.

Structural uncertainty is originated during the product development phase. It derives
from the typical multiplicity of functional decompositions and design solutions. The
generation of design solutions from requirements involves executing tasks related to
requirements formalization, functional decomposition, selection of physical principles,
and structural decomposition. In general, the process is iterative and results in a combi-
natorial explosion of the solution space that cannot be fully identified. The part of the
solution space that remains unknown constitutes ignorance. The structural uncertainty
comprises epistemic, ambiguity and interaction uncertainties.

5 Conclusions

Abidirectional semantic harmonization of the uncertainty representation in the standards
used to transfer data, both from the cyber domain to the physical domain and vice versa,
could facilitate the attainment of the digital twin or the CPPS. It demands to consider also
the data to accomplish the measurement traceability. This approach requires a deeper
analysis of the modeling capabilities and the existing data transfer mechanisms provided
by: STEP, QIF, MTConnect, and UPC-UA.

In addition to the already ongoing work on automated integration of different seman-
tic definitions by combining deductive and inductive reasoning, the SFB 805 data fusion
context provides a platform, where part of the standard harmonization approach could
be tested.
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