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Abstract. Secret sharing splits a secret s into � shares in such a way
that k ≤ � shares suffice to reconstruct s. Let ρi,j be the probability that
shareholder i disclose their share to shareholder j, with 0 ≤ i, j < n.

Given k ≤ � ≤ n, to whom � individuals should we hand shares, if we
wish to minimize the probability that one of them reconstitutes s?

1 Introduction

Queen Elizabeth I stated “Do not tell secrets to those whose faith and silence
you have not already tested”. Given the relative faith in the audience, how can
we calculate the overall disclosure risk? This paper provides an answer to this
question.

Secret sharing splits a secret s into “shares”, distributed among n partici-
pants. Under certain conditions – the sharing scheme’s access structure – this
secret s can be reconstructed (e.g. from enough shares). In the simplest case,
we may require all shares to be combined [Sha79,Mig82,Bla79]. A more inter-
esting access structure requires that at least k shares among n are required.
Constructions for different access structures are known [DD94].

In this paper we are given a table:

ρ = {ρi,j}0≤i,j<n

where ρi,j is the probability that shareholder i will leak their share to shareholder
j. Because of this leakage mechanism, it is possible that eventually one of the
shareholders gets enough shares to reconstruct s. Our goal is to evaluate the
probability pcol that any third party’s reconstructs s, an event called “collapse”.

The most general setting, where we can produce exactly � shares, is motivated
by a real-life data escrow scenario: given n data centers we wish to select � of
them to hold shares of a k-out-of-� secret sharing, so that collapse probability is
minimal. However, as we will discuss below this is a challenging problem, that
is best approached in several steps. We therefore discuss two simplified versions
of the problem first:
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• � = k = n and 0 ≤ ρi,j ≤ 1: Given n,ρ, compute pcol.

The optimal strategy resides in the access structure. To see why, consider the
simplest n-out-of-n setting in which all shares are necessary recover s.

The optimal choice in this situation (assuming 0 < ρi,j < 1) is to give a share
to everyone. The proof is immediate: adding a share to the game multiplies
collapse probability by a factor < 1; pcol can be computed with the tools of
Sect. 2.

• ρi,j ∈ {0, 1}: Given n,ρ, compute pcol and potentially avoid giving shares to
participants not affecting pcol.

The case ρi,j ∈ {0, 1} allows a more parsimonious distribution of shares: we
distribute a share per strongly-connected component of the graph defined by
ρi,j . Thus the general problem can be solved by condensing the graph (this is
done in linear time) and handing a share to each representative of a strongly-
connected component. If there are fewer shares than connected components, we
have pcol = 0. If there are more, then depending on k we can have pcol = 0 or 1.
This process is detailed in Sect. 3.

1.1 Notations and Hypotheses

Let n > 2 be the number of possible shareholders. Let [n] denote the set
{0, . . . , n − 1}. The cardinality of a set X is denoted |X|. If p is a probabil-
ity, we write p = 1 − p. Ui will denote shareholder i.

For any i, j ∈ [n] we denote by ρi,j the probability that Ui shares all he knows
with Uj . We say in that case that Ui and Uj collude. Collusion is transitive: Ui

can send its share xi to Uj , who then transmits it (along with xj) to U� — even
if Ui and U� abstain from direct interactions. Note that ρi,j may differ from ρj,i.

2 Collapse Probability

In this section we explain how to compute the collapse probability, defined as
the probability that at least one shareholder can reconstruct the secret (e.g. by
gathering enough shares).

Definition 1 (Saturation, G±). A labeled directed graph G is saturated if all
labels are equal to 1. Saturated graphs are in one-to-one correspondence with
unlabeled directed graphs. We say that an edge is saturated if it is labeled 1, and
is unsaturated otherwise. Unsaturated edges of G can be ordered (e.g. by lexico-
graphic order), and we denote by G+(i→j) (resp. G−(i→j)) the graph obtained by
saturating (resp. removing) the first unsaturated edge of G, denoted i → j.

Definition 2 (Evaluation at a Random Graph). Let f be a function taking
as input a directed graph and returning an element in some (fixed) vector space.
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Let G be a labeled directed graph, with edges labels in [0, 1]. We define

̂f(G) =

⎧

⎪

⎪
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⎪

⎨

⎪
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f(G)
if G is saturated

�i,j
̂f
(

G+(i→j)
)

+ �i,j
̂f
(

G−(i→j)
)

for the unsaturated edge i → j labeled �i,j

which we call the evaluation of f at G.

Definition 3 (Root-Directed Spanning Tree). Let G be a directed graph.
G has a Root-Directed Spanning Tree (RDST) if there is a vertex R such that,
for every other vertex S, G has a directed path from S vertex to R.

Remark 1. Note that if G has an RDST, then G is connected, so that connectiv-
ity is a necessary condition. Note also that if G is strongly connected, then it has
an RDST, so that strong-connectivity is a sufficient condition. Both properties
can be established in linear time.

Note that G has this property if and only if G• has it, so that without loss of
generality we may assume we are working on a condensed graph. Such a graph is
acyclic which makes it possible to logarithmically check efficiently the presence
of an RDST.

Example 1 ((n, n)-secret sharing). The (n, n)-collapse function L(n,n) takes a
directed acyclic graph G as input, and returns 1 if G has a root-directed
spanning tree, and 0 otherwise. Therefore, collapse probability for this access
structure only depends on the graph ρ defined by the values of ρi,j , and is
p
(n,n)
col = ̂L(n,n)(G).

Example 2 ((n, n)-secret sharing, n = 3). Consider n = 3 and write a = ρ0,1,
b = ρ1,2, c = ρ2,0 all other probabilities being 0. The collapse probability is
pcol = ab + bc + ca − 2abc. Note that the expression is symmetric in a, b, c, and
0 ≤ pcol ≤ 1. A worked-out computation is given in AppendixA.

The following remark gives a computer-friendly representation of pcol:

Remark 2. Let e1, e2, . . . , e� be the edges’ labels in G, and for any �-bit string
x = (x1, . . . , x�), let ui(xi) = (1 − xi)ei + (1 − ei)xi and u(x) =

∏

i ui(ei). Then
any collapse probability is of the form

pcol =
∑

x∈X

u(x)

where X is a set of �-bit strings, corresponding to edge saturations asso-
ciated with an RDST graph. In Eq. 2, with ei = (a, b, c), we have X =
{011, 101, 110, 111}.

Example 3 ((n, n)-secret sharing, n = 4). (Same as above, but with an
additional edge in the reverse direction). X = {1111, 1101, 1011, 1010, 1001,
0111, 0101, 0011}.
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3 Optimal Solution When ρ ∈ {0, 1}
The minimal collapse probability is achieved when every participant has a share.
It is possible to be slightly more efficient using the following notion:

Definition 4 (Condensation). Let G be a directed graph. A strongly con-
nected component of G is a sub-graph in which there is a path in each direction
between each pair of vertices. The condensation of G is the directed acyclic graph
G• obtained by contracting strongly connected components.

We apply condensation to the graph G whose vertices are [n] and whose edges
are those edges (i → j) such that ρi,j = 1. Tarjan’s algorithm [Tar72] computes
the condensation of a graph in O(n + e), where n is the number of vertices and
e the number of edges, i.e. e = |{i, j ∈ [n] | i �= j, ρi,j = 1}|. By design, all
elements in an equivalence class have exactly the same knowledge (they share
their knowledge with probability 1).

Thus it suffices to give a share per representative of each equivalence class,
and the optimal solution is attained by giving a share to every vertex in G•

(which is at most n). Henceforth, we denote by n the number of vertices in the
condensed graph, unless stated otherwise.

If there are fewer shares than connected components, we have pcol = 0. If
there are more, then we attempt to distribute them uniformly. Let g denote
the number of strongly-connected components in G•, then if �/g < k we have
pcol = 0. Otherwise pcol = 1.

4 Optimal Solution for Monotone Secret Sharing

In threshold secret sharing, the secret is recovered as soon as any k shares among
n are known. Recent work [BDIR18] shows that high-threshold instances of
Shamir’s secret sharing scheme are secure against local leakage when the under-
lying field is of a large prime order and the number of parties is sufficiently
large.1

As mentioned in the introduction, the minimal collapse probability is
achieved when k = n; in some settings there exists a value k < n with the
same leakage probability.

Definition 5 (Access Structure). An access structure on [n] is a predicate
on subsets of [n].

A secret sharing scheme has access structure P if it allows reconstructing s
for any subset of [n] satisfying P , and does not allow reconstruction for any
subset not satisfying P . This generalizes the threshold construction discussed
previously, which corresponds to P : S �→ (|S| ≤ k).

1 Contrast this with the fact that for some protocols full recovery of a multi-bit secret
is possible by leaking only one bit from each share [GW17].
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Definition 6 (Monotone Access Structure). An access structure P is
monotone [Toc15] if ∀A ≥ B, P (A) = 1 ⇒ P (B) = 1.

In particular, threshold access structures are monotone; the argument made that
a minimal leakage probability is achieved by handing shares to all participants
applies immediately to monotone access structures.

5 Finding Optimal Strategies

Exact computation of pcol. The algorithmic complexity of computing ̂L on a
graph with n vertices is O

(

2n2
)

using a direct implementation of the recursive
algorithm corresponding to Definition 2. Indeed there are n(n − 1)/2 edges to
consider and each of them leads to a twofold branch in the evaluation of ̂L.
Using classical memorization techniques is it possible to reduce this cost. This
is illustrated in the explicit computation of AppendixA.

Optimal Strategy. The previous algorithm gives a computable (if inefficient) way
to find optimal strategies for small graphs, by exhausting subsets of {1, . . . , n} of
size � and computing the collapse probability for each of them. In the simplest
case, k = � = n, there are n such subsets to be tested, whereas in the worst
case, k ≈ n/2 there are of the order of 22n. As a result, in practice it becomes
intractable to compute general solutions for n > 6.

6 Heuristic Solutions

Sampling heuristic. One heuristic argument consists in replacing all probabilities
in ρ by the nearest integer (0 or 1), so that the efficient algorithm in that case
can be used. We propose a slightly more refined approach: let 0 < η < 1 and hη

the function that sends x to 0 if x ≤ η and 1 otherwise. Applying hη entrywise
to ρ with η = 0.5 we fall back on the previous heuristic. For every value of
η, we get a certain partition of the resulting graph G into strongly connected
components. We are then interested in those components that are stable as we
vary η. Indeed, any chose of η corresponds to an over- or an underestimation of
the true leakage probabilities. We may assume η ∈ {i/m | i = 1, 2, . . . ,m − 1}
for some integer m, consider the graphs Gη resulting from applying hη to ρ,
and rank the vertices in G by the number of strongly-connected components that
they belong to as we vary η. A vertex that remained in a single component all
along (“stable”) will be given many shares, whereas a vertex that often switched
components (“unstable”) will be given fewer shares, if any.

Furthermore, for every value of η, we get a collapse probability pη ∈ {0, 1}:
by averaging these values we can hope to obtain an approximation p≈ = Eη[pη]
of the true collapse probability pcol.
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7 Numerical Example

Consider the following (completely arbitrary) leakage matrix:

ρi,j =

{

1 if i = j
∣

∣cos(1 − 2i + 3j2) sin(−4 + 5i2 − 6j3)
∣

∣ otherwise

We can compute optimal strategies exactly for n = � = 4 and k = 1, 2, 3, 4 shares.
The results are given in Table 1 and confirm that the scenario minimizing pcol
corresponds to k = � = n. The heuristic algorithm finds that U3 is the most
stable vertex, followed by U1, U2, and U0 in that order. It therefore produces the
same strategy on this example.

Table 1. Optimal strategies, given as a list of i such that Ui gets a share, for n = � = 4
as a function of k.

k Winning strategy pcol p≈ Number of strategies

1 None 1.0 1.0 4

2 [1, 3] 0.79695 0.79695 10

3 [1, 2, 3] 0.73182 0.73182 20

4 [0, 1, 2, 3] 0.71852 0.71852 35

However, it seems out of reach to perform exact computations for graphs
larger than n = 6. Instead, we turn to the heuristic algorithm discussed in the
previous section to address larger scenarios. Note that for small values of n, the
exact and heuristic algorithms produce identical results.

Taking n = 1000, � = 100, k = 15 and the same ρ as above, we get
p≈ = 0.9859. Using k = � = 100 instead, we get p≈ = 0.9839. The heuristic
algorithm’s running time grows roughly quadratically with respect to n, so we
expect instances of size n ≈ 100,000 to be within reach.

8 Conclusion

The problem of distributing a secret amongst leaking shareholders is defined,
along with the “collapse probability” which measures how likely it is that at least
one shareholder reconstructs the secret. We show that this probability measures
the likelihood of having a root-directed spanning tree (RDST) in a realisation
of the underlying graph’s condensation, and provide an algorithm to compute
this probability. Unfortunately a direct implementation of this exact algorithm
is computationally expensive; we therefore provide an efficient (but unproven)
heuristic to find optimal distribution strategies (i.e. that minimises the collapse
probability).

Given n potential shareholders, a leakage matrix ρ, and � shares of which k
suffice for reconstruction, these algorithm tell us whom to hand the shares.
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Future Work. The problem as stated is motivated by a distributed storage sce-
nario; a “non-monotone” access structure [LMC15] may allow for a thriftier
distribution of shares, assuming it is computationally difficult for the adversary
to test all subsets of the shares they have collected.

Complementary to our work, but beyond the scope considered here, is the
question of obtaining a reasonable estimate for the matrix ρ — what does this
matrix look like in the real world? — as well as the consequences of having
imperfect knowledge of this matrix on the predicted results. For instance, in the
explicit computation of AppendixA, an uncertainty δ in the values of (a, b, c)
results in an uncertainty O(δ2) in pcol. Can this be treated in more generality?

There are also several interesting directions in which it would make sense to
extend our model, which may lead to simplifications. For instance, restrictions to
some families of structured graphs (e.g. grids) may allow for more efficient algo-
rithms (or even closed-form expressions, although that seems unlikely). Alterna-
tively, rather than minimising secret reconstruction, we may wish to maximise
it, maybe only for a selected subset of shareholders.

Finally, precise bounds on the heuristic algorithm’s errors (or maybe, better
approximation algorithms) are needed.

A Detailed Computation For (3, 3)

We denote [XYZ] = ̂L(graph[XYZ]) for the following graphs:

= 000 = V01 = 1VV

= 00V = 101 = 11V

= 001 = VVV = VV1

= V0V = V1V = V11

= 10V = 111 = 1V1
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The collapse probability is:

p = ̂L(ρ) = [000] = a[00V] + a[001]

= a(b[V0V] + b[10V]) + a(b[V01] + b[101])

= a(b(c[VVV] + c[V1V]) + b[10V]) + a(b[V01] + b[101])

= ab[10V] + ab[V01] + ab[101])

= ab(c[1VV] + c[11V]) + ab[V01] + ab[101]

= abc + ab(c[VV1] + c[V11])) + ab[101]

= abc + abc + ab[101]

= abc + abc + ab(c[1V1] + c[111])

= abc + abc + ab

= ab + bc + ca − 2abc

B Detailed Computation With The Heuristic Algorithm

We apply the heuristic algorithm to the same graph as in the previous section.
The collapse probability is 1 whenever any two edges are saturated, and 0

otherwise. In other terms, using that Pr[A∨B] = Pr[A]+Pr[B]−Pr[A∧B] and
Pr[A ∧ B] = Pr[A] Pr[B | A], we have:

pη = Pr[(a < η ∧ b < η) ∨ (a < η ∧ c < η) ∨ (c < η ∧ b < η)]
= Pr[a < η] Pr[b < η] + Pr[a < η] Pr[c < η] + Pr[c < η] Pr[b < η]

− Pr[a < η] Pr[b < η] Pr[c < η]
− Pr[(a < η ∧ b < η) ∧ ((a < η ∧ c < η) ∨ (c < η ∧ b < η))]

= Pr[a < η] Pr[b < η] + Pr[a < η] Pr[c < η] + Pr[c < η] Pr[b < η]
− Pr[a < η] Pr[b < η] Pr[c < η]
− Pr[a < η ∧ b < η] Pr[(a < η ∧ c < η) ∨ (c < η ∧ b < η) | a < η ∧ b < η]

= Pr[a < η] Pr[b < η] + Pr[a < η] Pr[c < η] + Pr[c < η] Pr[b < η]
− 2Pr[a < η] Pr[b < η] Pr[c < η]

Sampling over η this gives:

p≈ = Eη[pη] = ab + ac + bc − 2abc

matching the result obtained in the previous section.
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