
Intersection and Union Hierarchies
of Deterministic Context-Free Languages

and Pumping Lemmas

Tomoyuki Yamakami(B)

Faculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
TomoyukiYamakami@gmail.com

Abstract. We study the computational complexity of finite inter-
sections and unions of deterministic context-free languages. Earlier,
Wotschke (1978) demonstrated that intersections of (d+1) deterministic
context-free languages are in general more powerful than intersections of
d deterministic context-free languages for any positive integer d based
on the hierarchy separation of Liu and Weiner (1973). The argument of
Liu and Weiner, however, works only on bounded languages of particular
forms, and therefore Wotschke’s result cannot be extended to disprove
any other language to be written in the form of an intersection of d deter-
ministic context-free languages. To deal with the non-membership of a
wide range of languages, we circumvent their proof argument and instead
devise a new, practical technical tool: a pumping lemma for finite unions
of deterministic context-free languages. Since the family of deterministic
context-free languages is closed under complementation, this pumping
lemma enables us to show a non-membership relation of languages made
up with finite intersections of even non-bounded languages as well. We
also refer to a relationship to Hibbard’s limited automata.

Keywords: Deterministic pushdown automata · Intersection and
union hierarchies · Pumping lemma · Limited automata

1 A Historical Account and an Overview of Contributions

1.1 Intersection and Union Hierarchies and Historical Background

In formal language theory, context-free languages constitute a fundamental fam-
ily CFL, which is situated in between the family REG of regular languages
and that of context-sensitive languages. It has been well known that this family
CFL is closed under an operation of union but not closed under intersection.
As a quick example, the language Labc = {anbncn | n ≥ 0} is not context-free
but it can be expressed as an intersection of two context-free languages. This
non-closure property can be further generalized to any intersection of d (≥ 1)
context-free languages. For later notational convenience, we here write CFL(d)
for the family of such languages, namely, the d intersection closure of CFL (see,
c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 341–353, 2020.
https://doi.org/10.1007/978-3-030-40608-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_24&domain=pdf
https://doi.org/10.1007/978-3-030-40608-0_24


342 T. Yamakami

e.g., [13]). With this notation, the above language Labc belongs to CFL(2)−CFL.
Similarly, the language Ld = {an1

1 an2
2 · · · and

d bn1
1 bn2

2 · · · bnd

d | n1, n2, . . . , nd ≥ 0}
over an alphabet {a1, a2, . . . , ad, b1, b2, . . . , bd} falls into CFL(d) because Ld

can be expressed as an intersection of d context-free languages of the form
{an1

1 an2
2 · · · and

d bm1
1 bm2

2 · · · bmd

d | n1, n2, . . . , nd,m1,m2, . . . ,md ≥ 0, nk = mk}
(1 ≤ k ≤ d). In 1973, Liu and Weiner [8] gave a contrived proof to their key
statement that (*) Ld is outside of CFL(d − 1) for any index d ≥ 2. Therefore,
the collection {CFL(d) | d ≥ 1} truly forms an infinite hierarchy.

Deterministic context-free (dcf) languages have been a focal point in CFL
since a systematic study of Ginsburg and Greibach [1]. The importance of such
languages can be exemplified by the facts that dcf languages are easy to parse
and that every context-free language is simply the homomorphic image of a dcf
language. Unlike CFL, the family DCFL of dcf languages is closed under neither
union nor intersection. We use the terms of d-intersection deterministic context-
free (dcf) languages and d-union deterministic context-free (dcf) languages to
express intersections of d dcf languages and unions of d dcf languages, respec-
tively. For brevity, we write DCFL(d) and DCFL[d] respectively for the family
of all d-intersection dcf languages and that of all d-union dcf languages, while
Wotschke [11,12] earlier referred DCFL(d) to the d-intersection closure of DCFL.
In particular, we obtain DCFL(1) = DCFL[1] = DCFL. Since DCFL is closed
under complementation, it follows that the complement of DCFL(d) coincides
with DCFL[d]. For our convenience, we call two hierarchies {DCFL(d) | d ≥ 1}
and {DCFL[d] | d ≥ 1} the intersection and union hierarchies of dcf languages,
respectively. Concerning these hierarchies, we set DCFL(ω) to be the intersection
closure of DCFL, which is

⋃
d≥1 DCFL(d). In a similar way, we write DCFL[ω]

for the union closure of DCFL, that is,
⋃

d≥1 DCFL[d].
Wotschke [11,12] noted that the aforementioned result (*) of Liu and Weiner

leads to the conclusion that {DCFL[d] | d ≥ 1} truly forms an infinite hierarchy.
To be more precise, since the language Ld belongs to DCFL(d), the statement (*)
implies DCFL(d) � CFL(d−1), which instantly yields DCFL(d−1) �= DCFL(d).
Wotschke’s argument, nonetheless, heavily relies on the separation result of Liu
and Weiner, who employed a notion of stratified semi-linear set to prove the
statement (*). Notice that the proof technique of Liu and Weiner was developed
only for a particular form of bounded languages1 and it is therefore applicable
to specific languages, such as Ld. In fact, the key idea of the proof of Liu and
Weiner for Ld is to focus on the number of the occurrences of each base symbol in
{a1, . . . , ad, b1, . . . , bd} appearing in each given string w and to translate Ld into
a set Ψ(Ld) of Parikh images (#a1(w),#a2(w), . . . ,#ad

(w),#b1 , . . . ,#bd(w)) in
order to exploit the semi-linearity of Ψ(Ld), where #σ(w) expresses the total
number of symbols σ in a string w.

Because of the aforementioned limitation of Liu and Weiner’s proof tech-
nique, the scope of their proof cannot be extended to other forms of languages.
Simple examples of such languages include L

(≤)
d = {an1

1 · · · and

d bm1
1 · · · bmd

d |
∀i ∈ [d](ni ≤ mi)}, where [d] denotes the set {1, 2, . . . , d}. This is a bounded

1 A bounded language satisfies L ⊆ w∗
1w

∗
2 · · ·w∗

k for fixed strings w1, w2, . . . , wk.



Intersection and Union Hierarchies and Pumping Lemmas 343

language expanding Ld but its Parikh images do not have semi-linearity. As
another example, let us take a look at a “non-palindrome” language NPal#d =
{w1#w2# · · · #wd#v1#v2# · · · #vd | ∀i ∈ [d](wi, vi ∈ {0, 1}∗∧vi �= wR

i )}, where
wR

i expresses the reversal of wi. This NPal#d is not even a bounded language.
Therefore, Liu and Weiner’s argument is not directly applicable to verify that
neither L

(≤)
d nor NPal#d belongs to CFL(d− 1) unless we dextrously pick up its

core strings that form a certain bounded language. With no such contrived argu-
ment, how can we prove L

(≤)
d and NPal#d to be outside of DCFL(d)? Moreover,

given a language, how can we verify that it is not in DCFL(ω)? We can ask simi-
lar questions for d-union dcf languages and the union hierarchy of dcf languages.
Ginsburg and Greibach [1] remarked with no proof that the context-free lan-
guage Pal = {wwR | w ∈ Σ∗} for any non-unary alphabet Σ is not in DCFL[ω].
It is natural to call for a formal proof of the remark of Ginsburg and Greibach.
Using a quite different language Lwot = {wcx | w, x ∈ {a, b}∗, w �= x}, however,
Wotschke [11,12] actually proved that Lwot does not belong to DCFL(ω) (more
strongly, the Boolean closure of DCFL) by employing the closure property of
DCFL(d) under inverse gsm mappings as well as complementation and intersec-
tion with regular languages. Wotschke’s proof relies on the following two facts.
(i) The language Ld+1 can be expressed as the inverse gsm map of the language
Dupc = {wcw | w ∈ {a, b}∗}, restricted to a+

1 a+
2 · · · a+

d+1a
+
1 a+

2 · · · a+
d+1. (ii) Dupc

is expressed as the complement of Lwot, restricted to a certain regular language.
Together with these facts, the final conclusion comes from the aforementioned
result (*) of Liu and Weiner because Dupc ∈ DCFL(d) implies Ld+1 ∈ DCFL(d)
by (i) and (ii). To our surprise, the fundamental results on DCFL(d) that we
have discussed so far are merely “corollaries” of the main result (*) of Liu and
Weiner!

For further study on DCFL(d) and answering more general non-membership
questions to DCFL(d), we need to divert from Liu and Weiner’s contrived argu-
ment targeting the statement (*) and to develop a completely different, new,
more practical technical tool. The sole purpose of this exposition is, therefore,
set to (i) develop a new proof technique, which can be applicable to many other
languages, (ii) present an alternative proof for the fact that the intersection and
union hierarchies of DCFL are infinite hierarchies, and (iii) present other lan-
guages in CFL that do not belong to DCFL(ω) (in part, verifying Ginsburg and
Greibach’s remark for the first time).

In relevance to the union hierarchy of dcf languages, there is another known
extension of DCFL using a different machine model called limited automata,2

which are originally invented by Hibbard [3] and later discussed extensively in,
e.g., [9,14]. Of all such machines, a d-limited deterministic automaton (or a d-
lda, for short) is a deterministic Turing machine that can rewrite each tape cell
in between two endmarkers only during the first d visits (except that making a

2 Hibbard [3] actually defined a rewriting system, called “scan-limited automata.”
Later, Pighizzini and Pisoni [9] re-formulated Hibbard’s system as restricted linear
automata.



344 T. Yamakami

turn of a tape head counts as double visits). We can raise a question of whether
there is any relationship between the union hierarchy and d-lda’s.

1.2 Overview of Main Contributions

In Sect. 1.1, we have noted that fundamental properties associated with DCFL(d)
heavily rely on the single separation result (*) of Liu and Weiner. However, Liu
and Weiner’s technical tool that leads to their main result does not seem to
withstand a wide variety of direct applications. It is thus desirable to develop a
new, simple, and practical technical tool that can find numerous applications for
a future study on DCFL(d) and DCFL[d]. Thus, our main contribution of this
exposition is to present a simple but powerful, practical technical tool, called
the pumping lemma of languages in DCFL[d] with d ≥ 1, which also enriches
our understanding of DCFL[d] as well as DCFL(d). Notice that there have been
numerous forms of so-called pumping lemmas (or iteration theorems) for variants
of context-free languages in the past literature, e.g., [2,4–7,10,15]. Our pumping
lemma is a crucial addition to the list of such lemmas.

For a string x of length n and any number i ∈ [n], x[i] stands for the ith
symbol of x and xi for the i repetitions of x.

Lemma 1 (Pumping Lemma for DCFL[d]). Let d be any positive integer
and let L be any d-union dcf language over an alphabet Σ. There exist a constant
c > 0 such that, for any d + 1 strings w1, w2, . . . , wd+1 ∈ L, if wi has the form
xy(i) for strings x, y(i) ∈ Σ∗ with |x| > c and y(i)[1] = y(j)[1] for any pair
i, j ∈ [d + 1], then there exists two distinct indices j1, j2 ∈ [d + 1] for which the
following conditions (1)–(2) hold. Let k ∈ [d + 1].

1. If k /∈ {j1, j2}, then either (a) or (b) holds.
(a) There is a factorization x = u1u2u3u4u5 with |u2u4| ≥ 1 and |u2u3u4| ≤ c

such that u1u
i
2u3u

i
4u5y

(k) is in L for any number i ≥ 0.
(b) There are two factorizations x = u1u2u3 and y(k) = y1y2y3 with |u2| ≥ 1

and |u2u3| ≤ c such that u1u
i
2u3y1y

i
2y3 is in L for any number i ≥ 0.

2. In the case of k ∈ {j1, j2}, either (a) or (b) holds.
(a) There is a factorization x = u1u2u3u4u5 with |u2u4| ≥ 1 and |u2u3u4| ≤ c

such that, for each z ∈ {y(j1), y(j2)}, u1u
i
2u3u

i
4u5z is in L for any i ≥ 0.

(b) Let x′y = xy(j1) and x′ŷ = xy(j2). There are three factorizations x′ =
u1u2u3, y = y1y2y3, and ŷ = z1z2z3 with |u2| ≥ 1 and |u2u3| ≤ c such
that u1u

i
2u3y1y

i
2y3 and u1u

i
2u3z1z

i
2z3 are in L for any number i ≥ 0.

As a special case of d = 1, we obtain Yu’s pumping lemma [15, Lemma
1] from Lemma 1. Since there have been few machine-based analyses to prove
various pumping lemmas in the past literature, one of the important aspects
of this exposition is a clear demonstration of the first alternative proof to Yu’s
pumping lemma, which is solely founded on an analysis of behaviors of 1dpda’s
instead of derivation trees of LR(k) grammars as in [15]. The proof of Lemma 1,
in fact, exploits early results of [14] on an ideal shape form (Sect. 2.3) together



Intersection and Union Hierarchies and Pumping Lemmas 345

with a new approach of ε-enhanced machines by analyzing transitions of crossing
state-stack pairs (Sect. 2.4). These notions will be explained in Sect. 2 and their
basic properties will be explored therein.

Using our pumping lemma (Lemma 1), we can expand the scope of the state-
ment (*) of Liu and Weiner [8] targeting specific bounded languages to other
types of languages, including L

(≤)
d and NPal#d for each index d ≥ 2.

Theorem 1. Let d ≥ 2 be any index.

1. The language L
(≤)
d is not in DCFL(d − 1).

2. The language NPal#d is not in DCFL(d − 1).

Since Lemma 1 concerns with DCFL[d], in our proof of Theorem 1, we first
take the complements of the above languages, restricted to suitable regular lan-
guages, and we then apply Lemma 1 appropriately to them. The proof sketch of
this theorem will be given in Sect. 3. From Theorem 1, we instantly obtain the
following consequences of Wotschke [11,12].

Corollary 1. [11,12] The intersection hierarchy of dcf languages and the union
hierarchy of dcf languages are both infinite hierarchies.

Concerning the limitation of DCFL(ω) and DCFL[ω] in recognition power,
since all unary context-free languages are also regular languages and the fam-
ily REG of regular languages is closed under intersection, all unary languages
in DCFL(ω) are regular as well. It is thus easy to find languages that are not
in DCFL(ω). Such languages, nevertheless, cannot serve themselves to separate
CFL from DCFL(ω) ∪ DCFL[ω]. As noted in Sect. 1.1, Ginsburg and Greibach
[1] remarked with no proof that the context-free language Pal = {wwR | w ∈
{0, 1}∗} does not belong to DCFL(ω) (as well as DCFL[ω]). As another direct
application of our pumping lemma, we give a formal written proof of their
remark.

Theorem 2. The context-free language Pal is not in DCFL(ω) ∪ DCFL[ω].

As an immediate consequence of the above theorem, we obtain Wotschke’s
separation of DCFL(ω) from CFL. Here, we stress that, unlike the work of
Wotschke [11,12], our proof does not depend on the main result (*) of Liu and
Weiner.

Corollary 2. [11,12] CFL � DCFL(ω) and DCFL[ω] � CFL.

We turn our interest to limited automata. Let us write d-LDA for the family
of all languages recognized by d-limited deterministic automata, in which their
tape heads are allowed to rewrite tape symbols only during the first d accesses
(except that, in the case of tape heads making a turn, we treat each turn as double
visits). Hibbard [3] demonstrated that d-LDA �= (d − 1)-LDA for any d ≥ 3. A
slightly modified language of his, which separates d-LDA from (d−1)-LDA, also
belongs to the 2d−2-th level of the union hierarchy of dcf languages but not in
the (2d−2 − 1)-th level. We thus obtain the following separation.



346 T. Yamakami

Proposition 1. For any d ≥ 3, d-LDA ∩ DCFL[2d−2] � (d − 1)-LDA ∪
DCFL[2d−2 − 1].

The proofs of all the above assertions will be given after introducing necessary
notions and notation in the subsequent section.

2 Preparations: Notions and Notation

2.1 Fundamental Notions and Notation

The set of all natural numbers (including 0) is denoted by N. An integer interval
[m,n]Z for two integers m,n with m ≤ n is the set {m,m + 1,m + 2, . . . , n}.
In particular, for any integer n ≥ 1, [1, n]Z is abbreviated as [n]. For any string
x, |x| indicates the total number of symbols in x. The special symbol ε is used
to denote the empty string of length 0. For a language L over alphabet Σ, L
denotes Σ∗ − L, the complement of L. Given a family F of languages, co-F
expresses the complement family, which consists of languages L for any L ∈ F .

2.2 Deterministic Pushdown Automata

A one-way deterministic pushdown automaton (or a 1dpda, for short) M is a
tuple (Q,Σ, {|c, $}, Γ, δ, q0, Z0, Qacc, Qrej), where Q is a finite set of inner states,
Σ is an input alphabet with Σ̌ = Σ ∪ {ε, |c, $}, Γ is a stack alphabet, δ is a
deterministic transition function from Q × Σ̌ × Γ to Q × Γ ∗, q0 is the initial
state in Q, Z0 is the bottom marker in Γ , and Qacc and Qrej are subsets of Q. The
symbols |c and $ respectively express the left-endmarker and the right-endmarker.
Let Γ (−) = Γ − {Z0}. We assume that, if δ(p, ε, a) is defined, then δ(p, σ, a) is
undefined for all symbols σ ∈ Σ̌ − {ε}. Moreover, we require δ(q, σ, Z0) �= (p, ε)
for any p, q ∈ Q and σ ∈ Σ̌. Each content of a stack is expressed as a1a2 · · · ak

in which a1 is the topmost stack symbol, ak is the bottom marker Z0, and all
others are placed in order from the top to the bottom of the stack.

Given d ∈ N+, a d-intersection deterministic context-free (dcf) language is an
intersection of d deterministic context-free (dcf) languages. Let DCFL(d) denote
the family of all d-intersection dcf languages. Similarly, we define d-union dcf
languages and DCFL[d] by substituting “union” for “intersection” in the above
definitions. Note that DCFL[d] = co-(DCFL(d)) because DCFL = co-DCFL.

For two language families F1 and F2, the notation F1 ∧ F2 (resp., F1 ∨ F2)
denotes the family of all languages L for which there are two languages L1 ∈ F1

and L2 ∈ F2 over the same alphabet satisfying L = L1 ∩ L2 (resp., L = L1 ∪ L2).

Lemma 2. [11,12] DCFL(d) is closed under union, intersection with REG. In
other words, DCFL(d) ∧ REG ⊆ DCFL(d) and DCFL(d) ∨ REG ⊆ DCFL(d).
A similar statement holds for DCFL[d].

Lemma 3. Let d ≥ 1 be any natural number.

1. DCFL(d) = DCFL(d + 1) iff DCFL[d] = DCFL[d + 1].
2. If L ∈ DCFL(d), then it follows that A ∩ L ∈ DCFL[d] for any A ∈ REG.



Intersection and Union Hierarchies and Pumping Lemmas 347

From Lemma 3(1) follows Corollary 1, provided that Theorem 1 is true. The-
orem 1 itself will be proven in Sect. 3.

2.3 Ideal Shape

Let us recall from [14] a special “pop-controlled form” (called an ideal shape),
in which the pop operations always take place by first reading an input symbol
and then making a series (one or more) of the pop operations without reading
any further input symbol. This notion was originally introduced for one-way
probabilistic pushdown automata (or 1ppda’s); however, in this exposition, we
apply this notion only to 1dpda’s. To be more formal, a 1dpda in an ideal shape
is a 1dpda restricted to take only the following transitions. (1) Scanning σ ∈ Σ,
preserve the topmost stack symbol (called a stationary operation). (2) Scanning
σ ∈ Σ, push a new symbol u (∈ Γ (−)) without changing any other symbol in the
stack. (3) Scanning σ ∈ Σ, pop the topmost stack symbol. (4) Without scanning
an input symbol (i.e., ε-move), pop the topmost stack symbol. (5) The stack
operations (4) comes only after either (3) or (4).

It was shown in [14] that any 1ppda can be converted into its “error-
equivalent” 1ppda in an ideal shape. In Lemma 4, we restate this result for
1dpda’s. We say that two 1dpda’s are (computationally) equivalent if, for any
input x, their acceptance/rejection coincide. The push size of a 1ppda is the
maximum length of any string pushed into a stack by any single move.

Lemma 4 (Ideal Shape Lemma for 1dpda’s). (cf. [14]) Let n ∈ N+.
Any n-state 1dpda M with stack alphabet size m and push size e can be con-
verted into another (computationally) equivalent 1dpda N in an ideal shape with
O(en2m2(2m)2enm) states and stack alphabet size O(enm(2m)2enm).

2.4 Boundaries and Crossing State-Stack Pairs

We want to define two basic notions of boundaries and crossing state-stacks.
For this purpose, we visualize a single move of a 1dpda M as three consecutive
actions: (i) firstly replacing the topmost stack symbol, (ii) updating an inner
state, and (iii) thirdly either moving a tape head or staying still.

A boundary is a borderline between two consecutive tape cells. We index all
such boundaries from 0 to ||cx$| as follows. The boundary 0 is located at the left of
cell 0 and boundary i+1 is in between cell i and i+1 for every index i ≥ 0. When
a string xy is written in |xy| consecutive cells, the (x, y)-boundary indicates the
boundary |x| + 1, which separates between x and y. A boundary block between
boundaries t1 and t2 with t1 ≤ t2 is a consecutive series of boundaries between
t1 and t2 (including t1 and t2). These t1 and t2 are called ends of this boundary
block. For brevity, we write [t1, t2] to denote a boundary block between t1 and t2.
For two boundaries t1, t2 with t1 < t2, the (t1, t2)-region refers to the consecutive
cells located in the boundary block [t1, t2]. When an input string x is written in
the (t1, t2)-region, we conveniently call this region the x-region unless the region
is unclear from the context.



348 T. Yamakami

The stack height of M at boundary t is the length of the stack content while
passing the boundary t. E.g., a stack content a1a2 · · · ak has stack height k.

A boundary block [t1, t2] is called convex if there is a boundary s between
t1 and t2 (namely, s ∈ [t1, t2]) such that there is no pop operation in the (t1, s)-
region and there is no push operation in the (s, t2)-region. A boundary block
[t1, t2] is flat if the stack height does not change in the (t1, t2)-region. A boundary
block [t1, t2] with t1 < t2 is pseudo-convex if the stack height at every boundary
s ∈ [t1, t2] does not go below h2 − h1−h2

t2−t1
(s − t1), where hi is the stack height

at boundary ti for any i ∈ {1, 2}. By their definitions, either convex or flat
boundary blocks are also pseudo-convex.

A peak is a boundary t such that the stack heights at the boundaries t−1 and
t+1 are smaller than the stack height at the boundary t. A plateau is a boundary
block [t, t′] such that any stack height at a boundary i ∈ [t, t′] is the same. A hill
is a boundary block [t, t′] such that (i) the stack height at the boundary t and
the stack height at the boundary t′ coincide, (ii) there is at least one peak at a
certain boundary i ∈ [t, t′], and (iii) both [t, i] and [i, t′] are convex. The height
of a hill is the difference between the topmost stack height and the lowest stack
height.

Given strings over alphabet Σ, ε-enhanced strings are strings over the
extended alphabet Σε = Σ ∪ {ε}, where ε is treated as a special input sym-
bol expressing the absence of symbols in Σ. An ε-enhanced 1dpda (or an ε-1dpa,
for short) is a 1dpda that takes ε-enhanced strings and works as a standard
1dpda except that a tape head always moves to the right without stopping. This
tape head movement is sometimes called “real time”.

Lemma 5. For any 1dpda M , there exists an ε-1dpda N such that, for any
input string x, there is an appropriate ε-enhanced string x̂ for which M accepts
(resp., rejects) x iff N accepts (resp., rejects) x̂. Moreover, x̂ is identical to x
except for the ε symbol and is uniquely determined from x and M .

Let M be either a 1dpda or an ε-1dpda, and assume that M is in an ideal
shape. A crossing state-stack pair at boundary i is a pair (q, γ) of inner state q
and stack content γ. In a computation of M on input x, a crossing state-stack
pair (q, γ) at boundary i refers to the machine’s current status where (1) M is
reading an input symbol, say, σ at cell i − 1 in a certain state, say, p with the
stack content aγ′ and then M changes its inner state to q, changing a by either
pushing another symbol b satisfying γ = baγ′ or popping a with γ = γ′. Any
computation of M on x can be expressed as a series of crossing state-stack pairs
at every boundary in the |cx$-region.

Two boundaries t1 and t2 with t1 < t2 are mutually correlated if there are
two crossing state-stack pairs (q, γ) and (p, γ) at the boundaries t1 and t2, respec-
tively, for which the boundary block [t1, t2] is pseudo-convex. Moreover, assume
that t1 < t2 < t3 < t4. Two boundary blocks [t1, t2] and [t3, t4] are mutually corre-
lated if (i) [t1, t2], [t2, t3], and [t3, t4] are all pseudo-convex, (ii) (q, γ) and (p, αγ) are
crossing state-stack pairs at the boundaries t1 and t2, respectively, and (iii) (s, αγ)
and (r, γ) are also crossing state-stack pairs at the boundaries t3 and t4, respec-
tively, for certain p, q, r, s ∈ Q, γ ∈ (Γ (−))∗Z0, and α ∈ (Γ (−))∗.



Intersection and Union Hierarchies and Pumping Lemmas 349

If an ε-1dpda is in an ideal shape, then it pops exactly one stack symbol
whenever it reads a single symbol of a given ε-enhanced input string.

Lemma 6. Let w be any string.

1. Let t1, t2 ∈ N with 1 ≤ t1 < t2 ≤ |w| + 1. Let w = x1x2x3 be a factorization
such that t1 is the (x1, x2)-boundary and t2 is the (x2, x3)-boundary. If the
boundaries t1 and t2 are mutually correlated and inner states at the boundaries
t1 and t2 coincide, then it follows that w ∈ L iff x1x

i
2x3 ∈ L for any i ∈ N.

2. Let t1, t2, t3, t4 ∈ N with 1 ≤ t1 < t2 < t3 < t4 ≤ |w|+1. Let w = x1x2x3x4x5

such that each ti is (xi, xi+1)-boundary for each i ∈ [4]. If two boundary blocks
[t1, t2] and [t3, t4] are mutually correlated, inner states at the boundaries t1
and t2 coincide, and inner states at the boundaries t3 and t4 coincide, then
it follows that w ∈ L iff x1x

i
2x3x

i
4x5 ∈ L for any number i ∈ N.

3 Proof Sketches of Three Separation Claims

We intend to present the proof sketches of three separation claims (Theorems 1
and 2 and Proposition 1) before verifying the pumping lemma. To understand
our proofs better, we demonstrate a simple and easy example of how to apply
Lemma 1 to obtain a separation between DCFL[d] and DCFL[d − 1].

Proposition 2. Let d ≥ 2 and let L(d) = {anbkn | k ∈ [d], n ≥ 0}. It then
follows that L(d) ∈ DCFL[d] − DCFL[d − 1].

Proof. Let d ≥ 2. Clearly, L(d) belongs to DCFL[d]. Assuming L(d) ∈ DCFL[d−
1], we apply the pumping lemma (Lemma 1) to L(d). There is a constant c > 0
that satisfies the lemma. Let n = c + 1 and consider wi = anbin for each index
i ∈ [d]. Since each wi belongs to L(d), we can take an index pair j, k ∈ [d] with
j < k such that wj and wk satisfy the conditions of the lemma.

Since Condition (1) of the lemma is immediate, we hereafter consider Con-
dition (2). Let x′ = anbjn−1, y = b, and ŷ = b(k−j)n+1. Firstly, we consider
Case (a) with a factorization x′ = x1x2x3x4x5 with |x2x4| ≥ 1 and |x2x3x4| ≤ c.
Since x1x

i
2x3x

i
4x5y ∈ L(d) for any number i ∈ N, we conclude that x2 ∈ {a}∗ and

x4 ∈ {b}∗. Let x2 = am and x4 = br for certain numbers m, r ∈ [c]. Note that
x1x

i
2x3x

i
4x5y equals an+(i−1)mbjn+(i−1)r. Hence, n + (i − 1)m = g(jn + (i − 1)r)

for a certain g ∈ [d]. This implies that (jg−1)n = (m−gr)(i−1). We then obtain
jg − 1 = m − gr = 0, which further implies that j = g = 1 and m = r. Similarly,
from x1x

i
2x3x

i
4x5ŷ ∈ L(d), it follows that n + (i − 1)m = g′(kn + (i − 1)r). Thus,

(kg′ − 1)n = (m − g′r)(i − 1). This implies k = g′ = 1 and m = r. Since j �= k,
we obtain a contradiction.

Next, we consider Case (b) with appropriate factorizations x′ = x1x2x3, y =
y1y2y3, and ŷ = z1z2z3 with |x2| ≥ 1 and |x2x3| ≤ c such that x1x

i
2x3y1y

i
2y3 ∈

L(d) and x1x
i
2x3z1z

i
2z3 ∈ L(d) for any number i ∈ N. Since |x2x3| ≤ c, we obtain

x2 ∈ {b}∗. Assume that x2 = bm for a certain number m ∈ [c]. This is impossible
because x1x

i
2x3y1y

i
2y3 has the form anbjn+(i−1)m and the exponent of b is not

of the form rn for any number r ∈ [d].



350 T. Yamakami

Proof Sketch of Theorem 1(1). Let d ≥ 2 be any integer and consider L
(≤)
d

over Σd = {a1, a2, . . . , ad,1 , b2, . . . , bd}. It is not difficult to check that L
(≤)
d ∈

DCFL(d). Our goal is, therefore, to show that L
(≤)
d is not in DCFL(d − 1). To

lead to a contradiction, we assume that L
(≤)
d ∈ DCFL(d − 1).

Take A = a∗
1a

∗
2 · · · a∗

db
∗
1b

∗
2 · · · b∗

d in REG and consider L′ = A∩(Σ∗
d −L

(≤)
d ), that

is, L′ = {an1
1 · · · and

d bm1
1 · · · bmd

d | ∃i ∈ [d](ni > mi)}. Note by Lemma 3(2) that,
since L

(≤)
d ∈ DCFL(d − 1), we obtain L′ ∈ DCFL[d − 1]. Take a pumping-lemma

constant c > 0 that satisfies Lemma 1.We set n = c+1and consider the set {xy(k) |
k ∈ [d]}, where x = an

1a2n
2 · · · adn

d and y(k) = bn
1 b2n

2 · · · b(k−1)n
k−1 bkn−1

k b
(k+1)n
k+1 · · · bdn

d

for each index k ∈ [d]. Lemma 1 guarantees the existence of a specific distinct pair
{j1, j2} with 1 ≤ j1 < j2 ≤ d.

By Lemma 1, since |x′| > c, there are two conditions to consider separately.
Condition (1) is not difficult. Next, we consider Condition (2).
Let x′ = an

1 · · · adn
d bn

1 · · · b(j1−1)n
j1−1 bj1n−1

j1
, y = bj1b

(j1+1)n
j1+1 · · · bdn

d , and ŷ =

b
(j1+1)n
j1+1 · · · b(j2−1)n

j2−1 bj2n−1
j2

b
(j2+1)n
j2+1 · · · bdn

d . Note that x′y = xy(j1) and x′ŷ = xy(j2).
There are three factorizations x′ = u1u2u3 with |u2| ≥ 1 and |u2u3| ≤ c, y =
y1y2y3, and ŷ = z1z2z3 satisfying both u1u

i
2u3y1y

i
2y3 ∈ L′ and u1u

i
2u3z1z

i
2z3 ∈ L′

for any number i ∈ N. From |u2u3| ≤ c follows u2 ∈ {bj1}+. Let u2 = be
j1

for a
certain e ≥ 1. In particular, take i = 2. Note that u1u

2
2u3y1y

2
2y3 has factors aj1n

j1

and bj1n−1+2e
j1

. Thus, we obtain j1n = j1n + 2e − 1, a clear contradiction. �
We omit from this exposition the proofs of Theorems 1(2), 2, and Proposition 1.

These proofs will be included in its complete version.

4 Proof Sketch of the Pumping Lemma for DCFL[d]

We are now ready to provide the proof of the pumping lemma for DCFL[d]
(Lemma 1). Our proof has two different parts depending on the value of d. The
first part of the proof targets the basis case of d = 1. This special case directly
corresponds to Yu’s pumping lemma [15, Lemma 1]. To prove his lemma, Yu
utilized a so-called left-part theorem of his for LR(k) grammars. We intend to
re-prove Yu’s lemma using only 1dpda’s with no reference to LR(k) grammars.
Our proof argument is easily extendable to one-way nondeterministic pushdown
automata (or 1npda’s) and thus to the pumping lemma for CFL. The second
part of the proof deals with the general case of d ≥ 2. Hereafter, we give the
sketches of these two parts.

Basis Case of d = 1: Let Σ be any alphabet and take any infinite
dcf language L over Σ. Let us consider an appropriate ε-1dpda M =
(Q,Σ, {|c, $}, Γ, δ, q0, Z0, Qacc, Qrej) in an ideal shape that recognizes L by Lem-
mas 4–5. For the desired constant c, we set c = 2|Q|. Firstly, we take two arbitrary
strings xy and xŷ over Σ with y[1] = ŷ[1] = a and |x| > c.

Our goal is to show that Condition (2) in the basis case of d = 1 holds.
There are four distinct cases to deal with. Hereafter, we intend to discuss them



Intersection and Union Hierarchies and Pumping Lemmas 351

separately. Note that, since M is one-way, every crossing state-stack pair at any
boundary in the x-region does not depend on the choice of y and ŷ.

Case 1: Consider the case where there are two boundaries t1, t2 with 1 ≤ t1 <
t2 ≤ |xa| and |t2 − t1| ≤ c such that (i) the boundaries t1 and t2 are mutually
correlated and (ii) inner states at the boundaries t1 and t2 coincide. In this case,
we factorize x into x1x2x3 so that t1 = |x1| and t2 = |x1x2|. By Lemma 6(1), it
then follows that, for any number i ∈ N, x1x

i
2x3y ∈ L and x1x

i
2x3ŷ ∈ L.

Case 2: Consider the case where there are four boundaries t1, t2, t3, t4 with 1 ≤
t1 < t2 < t3 < t4 ≤ |xa| and |t4 − t1| ≤ c and there are p, q ∈ Q, γ ∈ (Γ (−))∗Z0,
and α ∈ (Γ (−))∗ for which (i) (q, γ) and (q, αγ) are the crossing state-stack pairs
respectively at the boundaries t1 and t2, (ii) (p, αγ) and (p, γ) are the crossing state-
stack pairs respectively at the boundaries t3 and t4, and (iii) the boundary block
[ti, ti+1] for each index i ∈ [3] is pseudo-convex. We then take a factorization x =
x1x2x3x4x5 such that ti = |x1x2 · · · xi| for each i ∈ [4]. Note that |x2x4| ≥ 2
because of t1 < t2 and t3 < t4. By an application of Lemma 6(2), we conclude that,
for any z ∈ {y, ŷ}, x1x

i
2x3x

i
4x5z ∈ L for all i ∈ N.

Case 3: Assume that Cases 1–2 fail. For brevity, we set R = (|xa| − c, |xa|).
Consider the case where there is no pop operation in the R-region. Since R-
region contains more than |Q|3 boundaries, the R-region includes a certain
series of boundaries s1, s2, . . . , sm such that, for certain q ∈ Q, γ ∈ (Γ (−))∗Z0,
and α′

1, . . . , α
′
m−1 ∈ (Γ (−))∗, there are crossing state-stack pairs of the form

(q, γ), (q, α′
1γ), . . . , (q, α′

m−1 · · · α1γ) at the boundaries s1, s2 . . . , sm, respectively.
Note that the boundary blocks [s1, s2], [s2, s3], . . . , [sm−1, sm] are all convex.
Clearly, m > |Q|2. We choose {ti}i∈[m] and {ri}i∈[m] so that (i) for each index
i ∈ [m], ti and ri are boundaries in the y-region and in the ŷ-region, respectively,
satisfying that t1 < t2 < · · · < tm and r1 < r2 < · · · < rm, and (ii) for each index
i ∈ [m − 1], [si, si+1] is mutually correlated to [ti, ti+1] in the y-region and also
to [ri, ri+1] in the ŷ-region. Note that the boundary blocks [t1, t2], . . . , [tm−1, tm],
[r1, r2], . . . , [rm−1, rm] are all pseudo-convex. Since m > |Q|2, it follows that
there is a pair j1, j2 ∈ [m] with j1 < j2 such that inner states at the boundaries
rj1 and rj2 coincide. Using Lemma 6(2), we can obtain the desired conclusion.

Case 4: Assume that Cases 1–3 fail. In this case, we define a notion of “true
gain” in the R-region and estimate its value. Choose s1 and s2 so that |xa|−c ≤
s1, s2 ≤ |xa|, and the boundary block [s1, s2] is pseudo-convex. Let G(s1, s2)
denote the set of boundary blocks [t1, t′1], [t2, t

′
2], . . . , [tm, t′m] with s1 ≤ t1, t′m ≤

s2, ti < t′i for every i ∈ [m], and t′j < tj+1 for every j ∈ [m−1] such that (i) [ti, t′i]
is pseudo-convex but cannot be flat, (ii) [t′j , tj+1] is pseudo-convex (and could
be flat), (iii) there are crossing state-stack pairs (qi, γ), (q′

i, γ) at the boundaries
ti, t

′
i for every i ∈ [m], (iv) the stack height at the boundary t′i is higher than the

stack height at the boundary ti, (v) the boundary ti is a pit (i.e., the lowest point
within its small vicinity). Define the true gain tg(s1, s2) to be

∑m
i=1 |t′i − ti|. It

is possible to prove that tg(s1, s2) > |Q|3. Using this inequality, we can employ
an argument similar to Case 3 to obtain the lemma.



352 T. Yamakami

General Case of d ≥ 2: We begin with proving this case by considering
d 1dpda’s M1,M2, . . . ,Md. The language recognized by each machine Mi is
denoted by L(Mi). Let us assume that L =

⋃d
i=1 L(Mi). Take d + 1 strings

w1, w2, . . . , wd+1 in L and assume that each wk has the form xy(k) with |x| > c.
Since all wk’s are in L, define a function f as follows. Let f(k) denote the minimal
index ik satisfying that wk ∈ L(Mik) but wk /∈ L(Mj) for all j �= ik. Since there
are at most d different languages, there are two distinct indices j1, j2 ∈ [d + 1]
such that f(j1) = f(j2). In what follows, we fix such a pair (j1, j2).

Consider the case of w = xy(j1) and w′ = xy(j2). Take arbitrary factorizations
w = x′y and w′ = x′ŷ. We apply the basis case of d = 1 again and obtain
one of the following (a)–(b). (a) There is a factorization x = x1x2x3x4x5 with
|x2x4| ≥ 1 and |x2x3x4| ≤ c such that x1x

i
2x3x

i
4x5y ∈ L and x1x

i
2x3x

i
4x5y ∈ L

for any number i ∈ N. (b) There are factorizations x′ = x1x2x3, y = y1y2y3, and
ŷ = z1z2z3 such that |x2| ≥ 1, |x2x3| ≤ c, x1x

i
2x3y1y

i
2y3 ∈ L, and x1x

i
2x3z1z

i
2z3 ∈

L for any number i ∈ N.

References

1. Ginsburg, S., Greibach, S.: Deterministic context free languages. Inf. Control 9,
620–648 (1966)

2. Harrison, M.A.: Iteration theorems for deterministic families of languages. Funda-
menta Informaticae 9, 481–508 (1986)

3. Hibbard, T.N.: A generalization of context-free determinism. Inf. Control 11, 196–
238 (1967)

4. Igarashi, Y.: A pumping lemma for real-time deterministic context-free languages.
Theor. Comput. Sci. 36, 89–97 (1985)

5. King, K.N.: Iteration theorems for families of strict deterministic languages. Theor.
Comput. Sci. 10, 317–333 (1980)

6. Kutrib, M., Malcher, A., Wotschke, D.: The Boolean closure of linear context-free
languages. Acta Inform. 45, 177–191 (2008)

7. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions. Springer, New York (1994)

8. Liu, L.Y., Weiner, P.: An infinite hierarchy of intersections of context-free lan-
guages. Math. Syst. Theory 7, 185–192 (1973)

9. Pighizzini, G., Pisoni, A.: Limited automata and regular languages. Int. J. Found.
Comput. Sci. 25, 897–916 (2014)

10. Wise, D.S.: A strong pumping lemma for context-free languages. Theor. Comput.
Sci. 3, 359–369 (1976)

11. Wotschke, D.: The Boolean closures of the deterministic and nondeterministic
context-free languages. In: Brauer, W. (ed.) GI Gesellschaft für Informatik e. V.
LNCS, pp. 113–121. Springer, Heidelberg (1973). https://doi.org/10.1007/978-3-
662-41148-3 11

12. Wotschke, D.: Nondeterminism and Boolean operations in pda’s. J. Comput. Syst.
Sci. 16, 456–461 (1978)

13. Yamakami, T.: Oracle pushdown automata, nondeterministic reducibilities, and
the hierarchy over the family of context-free languages. In: Geffert, V., Preneel, B.,
Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp.
514–525. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04298-5 45.
A complete version is found at arXiv:1303.1717 under a slightly different title

https://doi.org/10.1007/978-3-662-41148-3_11
https://doi.org/10.1007/978-3-662-41148-3_11
https://doi.org/10.1007/978-3-319-04298-5_45
http://arxiv.org/abs/1303.1717


Intersection and Union Hierarchies and Pumping Lemmas 353

14. Yamakami, T.: Behavioral Strengths and weaknesses of various models of limited
automata. In: Catania, B., Královič, R., Nawrocki, J., Pighizzini, G. (eds.) SOF-
SEM 2019. LNCS, vol. 11376, pp. 519–530. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-10801-4 40

15. Yu, S.: A pumping lemma for deterministic context-free languages. Inf. Process.
Lett. 31, 47–51 (1989)

https://doi.org/10.1007/978-3-030-10801-4_40
https://doi.org/10.1007/978-3-030-10801-4_40

	Intersection and Union Hierarchies of Deterministic Context-Free Languages and Pumping Lemmas
	1 A Historical Account and an Overview of Contributions
	1.1 Intersection and Union Hierarchies and Historical Background
	1.2 Overview of Main Contributions

	2 Preparations: Notions and Notation
	2.1 Fundamental Notions and Notation
	2.2 Deterministic Pushdown Automata
	2.3 Ideal Shape
	2.4 Boundaries and Crossing State-Stack Pairs

	3 Proof Sketches of Three Separation Claims
	4 Proof Sketch of the Pumping Lemma for DCFL[d]
	References




