
Context-Sensitive Fusion Grammars
Are Universal

Aaron Lye(B)

Department of Mathematics, University of Bremen,
P.O.Box 33 04 40, 28334 Bremen, Germany

lye@math.uni-bremen.de

Abstract. Context-sensitive fusion grammars are a special case of
context-dependent fusion grammars where a rule has only a single posi-
tive context condition instead of finite sets of positive and negative con-
text conditions. They generate hypergraph languages from start hyper-
graphs via successive applications of context-sensitive fusion rules and
multiplications of connected components, as well as a filtering mecha-
nism to extract terminal hypergraphs from derived hypergraphs in a cer-
tain way. The application of a context-sensitive fusion rule consumes two
complementarily labeled hyperedges and identifies corresponding attach-
ment vertices provided that the context condition holds. In this paper,
we show that the Post correspondence problem can be formulated very
intuitively by such a grammar. Furthermore, we prove that these gram-
mars can generate all recursively enumerable string languages (up to
representation of strings as graphs) and are universal in this respect.

Keywords: Graph transformation · Context-sensitive fusion
grammars · Recursively enumerable languages · Chomsky grammar ·
Post correspondence problem

1 Introduction

In 2017 we introduced fusion grammars as generative devices on hypergraphs
(cf. [2]). They are motivated by the observation, that one encounters various
fusion processes in various scientific fields like DNA computing, chemistry, tiling,
fractal geometry, visual modeling and others. The common principle is that a
few small entities may be copied and fused to produce more complicated enti-
ties. Besides hypergraph language generation they can be used to model and
solve interesting decision problems, e.g., in [3] it is shown that the Hamiltonian
path problem can be solved efficiently by a respective fusion grammar due to
the massive parallelism in a way that mimics Adleman’s famous experiment in
DNA computing (cf. [1]). In this paper, we show that the Post correspondence
problem (PCP, cf. [6]), which is well-known to be undecidable, can be expressed
very intuitively by means of fusion and its solvability by using context-sensitive
fusion rules. Hence, undeciability results carry over to context-sensitive fusion
grammars. Recently, we showed that context-dependent fusion grammars (intro-
duced in [4]) are powerful enough to simulate Turing machines (cf. [5]). In this
c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 275–286, 2020.
https://doi.org/10.1007/978-3-030-40608-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_19&domain=pdf
https://doi.org/10.1007/978-3-030-40608-0_19

276 A. Lye

paper, we show that one can do much better. We show that rules with a single
positive context condition are sufficient. To prove this, a known result of formal
language theory is used, which is, that each recursively enumerable string lan-
guage is a (left) quotient of two linear languages. In our construction we employ
the same recognition mechanism as the one for PCP. Throughout in the proofs
we are actually operating on graphs. As graphs are a subclass of hypergraphs
the results hold for the general case.

The paper is organized as follows. In Sect. 2, basic notions and notations of
hypergraphs are recalled. Section 3 introduces the notions of context-sensitive
fusion grammars. In Sect. 4 we present a reduction of the Post correspondence
problem to the membership and emptiness problem for context-sensitive fusion
grammars. Afterwards, we prove that context-sensitive fusion grammars can
generate all recursively enumerable string languages (up to representation) in
Sect. 5. Section 6 concludes the paper pointing out some open problems.

2 Preliminaries

A hypergraph over a given label alphabet Σ is a system H = (V,E, s, t, lab)
where V is a finite set of vertices, E is a finite set of hyperedges, s, t : E → V ∗

are two functions assigning to each hyperedge a sequence of sources and targets,
respectively, and lab : E → Σ is a function, called labeling. The components
of H = (V,E, s, t, lab) may also be denoted by VH , EH , sH , tH , and labH

respectively. The class of all hypergraphs over Σ is denoted by HΣ .
Let H ∈ HΣ , and let ≡ be an equivalence relation on VH . Then the fusion

of the vertices in H with respect to ≡ yields the (quotient) hypergraph H/≡ =
(VH/≡, EH , sH/≡, tH/≡, labH) with the set of equivalence classes VH/≡ = {[v] |
v ∈ VH} and sH/≡(e) = [v1] · · · [vk1], tH/≡(e) = [w1] · · · [wk2] for each e ∈ EH

with sH(e) = v1 · · · vk1 , tH(e) = w1 · · · wk2 .
Given H,H ′ ∈ HΣ , a hypergraph morphism g : H → H ′ consists of two

mappings gV : VH → VH′ and gE : EH → EH′ such that sH′(gE(e)) = g∗
V (sH(e)),

tH′(gE(e)) = g∗
V (tH(e)) and labH′(gE(e)) = labH(e) for all e ∈ EH , where

g∗
V : V ∗

H → V ∗
H′ is the canonical extension of gV , given by g∗

V (v1 · · · vn) = gV (v1)
· · · gV (vn) for all v1 · · · vn ∈ V ∗

H .
Given H,H ′ ∈ HΣ , H is a subhypergraph of H ′, denoted by H ⊆ H ′, if

VH ⊆ VH′ , EH ⊆ EH′ , sH(e) = sH′(e), tH(e) = tH′(e), and labH(e) = labH′(e)
for all e ∈ EH .

Let H ′ ∈ HΣ as well as V ⊆ VH′ and E ⊆ EH′ . Then the removal of (V,E)
from H ′ given by H = H ′ − (V,E) = (VH′ − V,EH′ − E, sH , tH , labH) with
sH(e) = sH′(e), tH(e) = tH′(e) and labH(e) = labH′(e) for all e ∈ EH′ − E
defines a subgraph H ⊆ H ′ if sH′(e), tH′(e) ∈ (VH′ − V)∗ for all e ∈ EH′ − E.
We will use removals of the form (∅, E) below.

Let H ∈ HΣ and let att(e) be the set of source and target vertices for
e ∈ EH . H is connected if for each v, v′ ∈ VH , there exists a sequence of triples
(v1, e1, w1) . . . (vn, en, wn) ∈ (VH × EH × VH)∗ such that v = v1, v

′ = wn and
vi, wi ∈ att(ei) for i = 1, . . . , n and wi = vi+1 for i = 1, . . . , n − 1. A subgraph

Context-Sensitive Fusion Grammars Are Universal 277

C of H is a connected component of H if it is connected and there is no larger
connected subgraph, i.e., C ⊆ C ′ ⊆ H and C ′ connected implies C = C ′. The
set of connected components of H is denoted by C(H).

Given H,H ′ ∈ HΣ , the disjoint union of H and H ′ is denoted by H + H ′.
It is defined by the disjoint union of the underlying sets (also denoted by +).
The disjoint union of H with itself k times is denoted by k · H. We use the
multiplication of H defined by means of C(H) as follows. Let m : C(H) → N be
a mapping, called multiplicity, then m · H =

∑

C∈C(H)

m(C) · C.

A string is represented by a simple path where the sequence of labels along
the path equals the given string. Let Σ be a label alphabet. Let w = x1 . . . xn ∈
Σ∗ for n ≥ 1 and xi ∈ Σ for i = 1, . . . , n. Then the string graph of w is
defined by sg(w) = ({0} ∪ [n], [n], sw, tw, labw) with sw(i) = i − 1, tw(i) = i and
lab(i) = xi for i = 1, . . . , n. The string graph of the empty string λ, denoted by
sg(λ), is the discrete graph with a single node 0. Obviously, there is a one-to-
one correspondence between Σ∗ and sg(Σ∗) = {sg(w) | w ∈ Σ∗}. For technical
reasons, we need the extension of a string graph sg(w) for some w ∈ Σ∗ by a
s-labeled edge bending from the begin node 0 to the end node n, where n is the
length of w. The resulting graph is denoted by sg(w)s.

3 Context-Sensitive Fusion Grammars

In this section, we introduce context-sensitive fusion grammars. These grammars
generate hypergraph languages from start hypergraphs via successive applica-
tions of context-sensitive fusion rules, multiplications of connected components,
and a filtering mechanism. Such a rule is applicable if the positive context-
condition holds. Its application consumes the two hyperedges and fuses the
sources of the one hyperedge with the sources of the other as well as the targets
of the one with the targets of the other.

Definition 1. F ⊆ Σ is a fusion alphabet if it is accompanied by a comple-
mentary fusion alphabet F = {A | A ∈ F} ⊆ Σ, where F ∩ F = ∅ and A
= B
for A,B ∈ F with A
= B and a type function type : F ∪ F → (N × N) with
type(A) = type(A) for each A ∈ F .

For each A ∈ F , the fusion rule fr(A) is the hypergraph with Vfr(A) =
{vi, v

′
i | i = 1, . . . , k1} ∪ {wj , w

′
j | j = 1, . . . , k2}, Efr(A) = {e, e}, sfr(A)(e) =

v1 · · · vk1 , sfr(A)(e) = v′
1 · · · v′

k1
, tfr(A)(e) = w1 · · · wk2 , tfr(A)(e) = w′

1 · · · w′
k2
,

and labfr(A)(e) = A and labfr(A)(e) = A.
The application of fr(A) to a hypergraph H ∈ HΣ proceeds according to

the following steps: (1) Choose a matching hypergraph morphism g : fr(A) →
H. (2) Remove the images of the two hyperedges of fr(A) yielding X = H −
(∅, {g(e), g(e)}). (3) Fuse the corresponding source and target vertices of the
removed hyperedges yielding the hypergraph H ′ = X/≡ where ≡ is generated by
the relation {(g(vi), g(v′

i)) | i = 1, . . . , k1} ∪ {(g(wj), g(w′
j)) | j = 1, . . . , k2}. The

application of fr(A) to H is denoted by H =⇒
fr(A)

H ′ and called a direct derivation.

278 A. Lye

A context-sensitive fusion rule is a tuple csfr = (fr(A), c : fr(A) → C) for
some A ∈ F where c is a hypergraph morphism with domain fr(A) mapping into
a finite context C.

The rule csfr is applicable to some hypergraph H via a matching morphism
g : fr(A) → H if there exists a hypergraph morphism h : C → H such that h is
injective on the set of hyperedges and h ◦ c = g.

If csfr is applicable to H via g, then the direct derivation H =⇒
csfr

H ′ is the

direct derivation H =⇒
fr(A)

H ′.

Remark 1. 1. In this paper, we only make use of the case where every hyperedge
has one source and one target vertex. Hence, fusion rules are of the form

A A . The type is therefore omitted throughout the paper.
2. The applications of fr(A) and (fr(A), id) are equivalent. We use the first as

an abbreviation for the latter. We call these rules context-free fusion rules.

Example 1. Let F = {a1, a2, a3}. Define reduce(x) = (fr(x), fr(x) →
c1

c2

c3

x

x)
for each x ∈ F where the morphism is uniquely defined by the labels and maps
the vertices as follows: v1 → c1, v2 → c1, w

′
1 → c2, w1 → c3. Consider the

graph G =
g1

g2

g3

g4

g5

g6

g7
a1 a2 a3

a1 a3 a2 . Only reduce(a1) is applicable because
the other complementarily labeled edges do not share a common source ver-
tex. The matching morphism g maps the edges labeled a1, a1, resp. in fr(a1) to
the a1-labeled (resp, a1-labeled) edges in G; vertices are mapped respectively:
v1 → g1, v2 → g1, w

′
1 → g2, w1 → g3. The morphism h : C → G exists (inclusion

morphism). Then G =⇒
reduce(a1)

[g1] [g2]
[g4]

[g5]

[g6]

[g7]
a2 a3

a3 a2 where g2 ≡ g3. After-

wards, no further context-sensitive fusion rule is applicable.

Given a finite hypergraph, the set of all possible successive fusions is finite as
fusion rules never create anything. To overcome this limitation, arbitrary multi-
plications of disjoint components within derivations are allowed. The generated
language consists of the terminal part of all resulting connected components
that contain no fusion symbols and at least one marker symbol, where marker
symbols are removed in the end. These marker symbols allow us to distinguish
between wanted and unwanted terminal components.

Definition 2. A context-sensitive fusion grammar is a system CSFG =
(Z,F,M, T, P) where Z ∈ HF∪F∪T∪M is a start hypergraph consisting of a
finite number of connected components, F is a finite fusion alphabet, M with
M ∩ (F ∪ F) = ∅ is a finite set of markers, T with T ∩ (F ∪ F) = ∅ = T ∩ M
is a finite set of terminal labels, and P is a finite set of context-sensitive fusion
rules.

Context-Sensitive Fusion Grammars Are Universal 279

A direct derivation H =⇒H ′ is either a context-sensitive fusion rule appli-
cation H =⇒

csfr
H ′ for some csfr ∈ P or a multiplication H =⇒

m
m · H for some

multiplicity m : C(H) → N. A derivation H
n=⇒H ′ of length n ≥ 0 is a sequence

of direct derivations H0 =⇒H1 =⇒ . . . =⇒Hn with H = H0 and H ′ = Hn. If
the length does not matter, we may write H

∗=⇒H ′.
L(CSFG) = {remM (Y) | Z

∗=⇒H,Y ∈ C(H) ∩ (HT∪M \ HT)} is the gener-
ated language where remM (Y) is the terminal hypergraph obtained by removing
all hyperedges with labels in M from Y .

Remark 2. Let CSFG = (Z,F,M, T, P) be a context-sensitive fusion grammar.
If for every A ∈ F a rule in P exists and every rule is context-free, then all rules
are specified F and CSFG is a fusion grammar as defined in [2]. P is obsolete.

4 A Context-Sensitive Fusion Grammar for the Post
Correspondence Problem

In this section, we model Post correspondence problems (PCPs) by means of
context-sensitive fusion grammars in such a way that a PCP is solvable if the
generated language of the corresponding grammar consists of a single vertex and
that a PCP is not solvable if the language is empty. Therefore, it turns out that
the emptiness problem and the membership problem for context-sensitive fusion
grammars are undecidable.

The Post correspondence problem is defined as follow. Given a finite set of
pairs {(u1, v1), (u2, v2), . . . , (uk, vk)} with ui, vi ∈ Σ∗ for some finite alphabet Σ.
Does there exist a sequence of indices i1 · · · in with n > 0 such that ui1 · · · uin =
vi1 · · · vin? In terms of fusion, the pairs may be copied and fused in order to
concatenate the strings. However, one needs a recognition mechanism to decide
whether ui1 · · · uin = vi1 · · · vin or not. This recognition procedure is expressible
by means of context-sensitive fusion.

Construction 1. Let S = {(u1, v1), (u2, v2), . . . , (uk, vk)} with k ∈ N, ui, vi ∈
Σ∗ be an instance of PCP. Let F = Σ + {A} be a fusion alphabet with A /∈ Σ.
Let P = {fr(A)}∪{reduce(x) | x ∈ Σ} where reduce(x) be as in Example 1. For
each (a, b) ∈ Σ∗ × Σ∗ where a = a1 · · · an and b = b1 · · · bm define init(a, b) =

a1 . . . an

b1 . . . bm
A

and cont(a, b) =
A

a1 . . . an

b1 . . . bm
A

. Let

Aμ = A
µ

and ZS =
∑

(a,b)∈S

init(a, b) + cont(a, b) + Aμ. Then CSFG(S) =

(ZS , F, {μ}, ∅, P) is the to S corresponding context-sensitive fusion grammar.

Theorem 1. 1. • ∈ L(CSFG(S)) if and only if there exists a solution to S.
2. L(CSFG(S)) is either {•} or ∅.
Corollary 1. The membership and the emptiness problem for context-sensitive
fusion grammars are undecidable.

280 A. Lye

The proof of the theorem is based on the following lemmata.

Lemma 1. Let G = dsg(u1 · · · un, u1 · · · un) be the hypergraph consisting of two
string graphs sg(u1 · · · un) and sg(u1 · · · un) with u1, . . . , un ∈ Σ where the first

vertex of both string graphs is the same. i.e.,

u1 . . . un

u1 . . . un . Then
G

n=⇒[n + 1] by applying reduce(u1), . . . , reduce(un), where [n + 1] denotes the
discrete graph with n + 1 vertices and no edges.

Proof. Induction base: n = 0. dsg(λ, λ) = [1] because by definition sg(λ) is the
discrete graph [1] by construction of dsg these two vertices are identified yielding
the discrete graph [1]. Hence, dsg(λ, λ) 0=⇒[1].

Induction step: Given G = dsg(u1 · · · un+1, u1 · · · un+1). Then reduce(u1) can
be applied because by construction of dsg(u1 · · · un+1, u1 · · · un+1) the two com-
plementary u1- and u1-labeled hyperedges share a common source vertex yielding

G′ =
u2 . . . un+1

u2 . . . un+1
= [1] + dsg(u2 · · ·un+1, u2 · · ·un+1)

. Then
by induction hypothesis G′ n=⇒[1] + [n + 1] = [n + 2]. ��
Lemma 2. Let X1 =⇒

reduce(x)
X2 =⇒

fr(A)
X3 be a derivation in CSFG(S). Then the

two direct derivations can be interchanged yielding X1 =⇒
fr(A)

X ′
2 =⇒

reduce(x)
X3 for

some X ′
2.

Proof. The statement follows directly from the fact that the two rules do not
share fusion symbols such that they matches are hyperedge disjoint and that the
context conditions of reduce(x) only requires a commonly shared source for the
two hyperedges. ��
Proof (of Theorem 1). Let S = {(u1, v1), (u2, v2), . . . , (uk, vk)}. Let i1 · · · in be a
solution to S, i.e., ui1 · · · uin = vi1 · · · vin . Let m1, . . . ,mk be the number of occur-
rences of (uj , vj) in the sequence except the first. Then there exists a derivation
ZS =⇒

m
init(ui1 , vi1) + cont(ui2 , vi2) + . . .+ cont(uin , vin) +Aµ

n−1=⇒
fr(A)

init(ui1ui2 · · ·uin , vi1vi2 · · · vin) +Aµ =⇒
fr(A)

x1 . . . xw

x1 . . . xw

µ

=⇒
reduce(x1)

. . . =⇒
reduce(xw)

[w] + µ

where (1) m(c) = 1 for c ∈ {init(ui1 , vi1), Aμ},m(cont(uj , vj)) = mj for
1 ≤ j ≤ k and m(c) = 0 otherwise; (2) the order in which the connected
components are fused by applications of fr(A) does not matter; (3) x1 · · · xw =
ui1 · · · uin = vi1 · · · vin with xj ∈ Σ because i1 . . . in is a solution to S; and (4) the
two connected complementary strings graphs can be erased by successive appli-
cations of reduce(x) for suitable x due to Lemma 1. Hence, • ∈ L(CSFG(S)).

Context-Sensitive Fusion Grammars Are Universal 281

Now let • ∈ L(CSFG(S)). Then there exists a derivation ZS
∗= X + µ

for some hypergraph X. Aμ is the only connected component with marker in the
start hypergraph, therefore, µ must stem from Aμ. The only possibility to get
rid of the A-hyperedge without attaching a new one is the application of fr(A)
to Aμ and some init(x1x2 · · · xw1 , y1y2 · · · yw2) with xj , yj ∈ Σ where the latter
connected component is obtained from respective multiplications and the suc-
cessive fusion wrt fr(A) to some init(ui1 , vi1)+cont(ui2 , vi2)+. . .+cont(uin , vin)
for some n and possibly applications of reduce(x) for suitable x. Due to Lemma 2
all the applications of reduce(x) can be shifted behind the applications of fr(A)
and due to [2, Corollary 1] all the multiplications can be done as initial deriva-
tion step. To obtain µ the two connected complementary strings graphs
must be erased by successive applications of reduce(x1), . . . , reduce(xw1). If
x1 · · · xw1 is a proper prefix of y1 · · · yw2 , i.e., y1 · · · yw2 = x1 · · · xw1yw1+1 · · · yw2 ,
then one gets µ yw1+1 . . . yw2 , and analogously if y1 · · · yw2 is
a proper prefix of x1 · · · xw1 , then one gets µxw2+1 . . . xw1 .
This implies w1 = w2 and yi = xi for 1 ≤ i ≤ w1 must hold. Because
x1 · · · xw1 = ui1 · · · uin = vi1 · · · vin and n > 0, i1 · · · in is a solution to S.

The second statement is a direct consequence of the first. Other con-
nected components do not contribute to the language due to the lack of
μ-hyperedges. ��

5 Transformation of Chomsky Grammars into
Context-Sensitive Fusion Grammars

In this section, we prove that context-sensitive fusion grammars can generate all
recursively enumerable string languages. For every Chomsky grammar one can
construct a corresponding context-sensitive fusion grammar such that the gen-
erated languages of the corresponding grammars coincide up to representation.

Construction 2. Let G = (N,T, P, S) be a Chomsky grammar. Let T ′ = {t′ |
t ∈ T}. Then CSFG(G) = (Z, {Y0, Y1,X0,X1,X2,X3, c} + N + T ′, {μ}, T,R) is
the corresponding context-sensitive fusion grammar where

Z = dsg(X0, Y0)µ + Z= + ZP , dsg(X0, Y0)µ = µX0Y0 ,
Z= = sg(Y1ccc)Y0

+ sg(cScc)Y1
+

∑

x∈N∪T∪{c}
sg(xY1x)Y1

,

ZP =
1∑

i=0

∑

x∈T

sg(x′Xix)Xi
+

∑

u::=v∈P,v∈T∗
u=u1···un
v=v1···vm

sg(u1 · · ·unX1vm · · · v1)X0

+ sg(cX2ccc)X1
+

3∑

i=2

∑

x∈N∪T

sg(xXix)Xi
+

∑

u::=v∈P
u=u1···un
v=v1···vm

sg(u1 · · ·unX3vm · · · v1)X2

+ sg(cX3c)X2
+ sg(cc)X3

and
R = fr(A) A Y0, Y1, X0, X1, X2, X3 reduce(x) x N T ′ c .

282 A. Lye

Y0

Y1 c c c

(a) sg(Y1ccc)Y0

Y1

x Y1 x

(b) sg(xY1x)Y1

Y1

c S c c

(c) sg(cScc)Y1

Xi

x′ Xi

x

(d) sg(x′Xix)Xi

X0

u1 . . . un X1 vm
. . .

v1

(e) sg(u1 · · ·unX1vm · · · v1)X0

X2

u1 . . . un X3 vm . . . v1

(f) sg(u1 · · ·unX3vm · · · v1)X2

X3

c X2 c

(g) sg(cX3c)X2

Fig. 1. Schematic drawings of some connected components of the start hypergraph of
CSFG(G)

Schematic drawings of some connected components of the start hypergraph
are depicted in Fig. 1.

Theorem 2. L(CSFG(G)) = {sg(w) | w ∈ L(G)}.
The proof is based on the following fact. We recall some details of the proof

because we will refer to them in the proof of Theorem2.

Fact 1. Any recursively enumerable string language L0 is left quotient of two
linear languages LP , L=, i.e., L0 = LP \L= = {x | y ∈ LP ∧ yx ∈ L=} (cf. [7,
Theorem 3.13.]).

Remark 3. L0 = rev(rev(L0)) = rev(L(G)) = L=\LP , where rev(L0) = {r(w) |
w ∈ L0} where r(w) = xn · · · x1 for w = x1 · · · xn and G = (N,T, P, S) is a
Chomsky grammar with L(G) = rev(L0).

L= = {zmc . . . cz1cSccr(z1)c . . . cr(zm)ccc | m ≥ 1, zi ∈ (N ∪ T)∗, i = 1, . . . , m}
LP = {xnunync . . . cx1u1y1ccr(y1)r(v1)r(x1)c . . .

. . . cr(yn−1)r(vn−1)r(xn−1)cccr(yn)r(vn)r(xn) |
n ≥ 2, xi, yi ∈ (N ∪ T)∗, ui:: = vi ∈ P, i = 1, . . . , n − 1, xnvnyn ∈ T ∗}

where c /∈ N ∪ T . The basic idea is that for each w ∈ L(G) exists a deriva-
tion S = w1 → w2 → · · · →wn−1 →wn →wn+1 = w with wi = xiuiyi and

Context-Sensitive Fusion Grammars Are Universal 283

wi+1 = xiviyi where ui:: = vi ∈ P for i = 1, . . . , n , i.e., S = x1u1y1 → x1v1y1 =
x2u2y2 → · · · →xn−1vn−1yn−1 = xnunyn → xnvnyn = w. L= captures the rela-
tion xiviyi = xi+1ui+1yi+1 and LP captures the relation xiuiyi → xiviyi.1

L= and LP are linear. The following grammars generate them.

G= = ({Y0, Y1}, N ∪ T ∪ {c}, P=, Y0) with
P= = {Y0:: = Y1ccc, Y1:: = cScc} ∪ {Y1:: = xY1x | x ∈ N ∪ T ∪ {c}}
GP = ({X0,X1.X2,X3}, N ∪ T ∪ {c}, PP ,X0) with
PP = {X0:: = xX0x | x ∈ T} ∪ {X0:: = uX1r(v) | u:: = v ∈ P, v ∈ T ∗}

∪ {X1:: = xX1x | x ∈ T} ∪ {X1:: = cX2ccc}
∪ {X2:: = xX2x | x ∈ N ∪ T} ∪ {X2:: = uX3r(v) | u:: = v ∈ P}
∪ {X3:: = xX3x | x ∈ N ∪ T} ∪ {X3:: = cX2c,X3:: = cc}.

Example 2. Let G = ({A}, {a.b}, {(A:: = aAb), (A:: = ab)}, A). Then

G= = ({Y0, Y1}, {A, a, b, c}, P=, Y0)
P= = {Y0:: = Y1ccc, Y1:: = cAcc | aY1a | bY1b | AY1A | cY1c}
GP = ({X0,X1.X2,X3}, {A, a, b, c}, PP ,X0)
PP = {X0:: = aX0a | bX0b | AX1ba}

∪ {X1:: = aX1a | bX0b | cX2ccc}
∪ {X2:: = aX2a | bX2b | AX2A | AX3bAa | AX3ba}
∪ {X3:: = aX3a | bX3b | AX3A | cX2c | cc}

Two derivations may be X0 =⇒ aX0a=⇒ aAX1baa=⇒ aAbX1bbaa=⇒
aAbcX2cccbbaa=⇒ aAbcAX3bAacccbbaa=⇒ aAbcAccbAacccbbaa = d and
Y0 =⇒Y1ccc=⇒ aY1accc=⇒ aAY1Aaccc=⇒ aAbY1bAaccc=⇒ aAbcAccbAaccc =
z. Removing the prefix z from d yields bbaa.

Every context-free string grammars can be transformed into fusion grammars
generating the same language up to representation of strings as graphs as the
following construction shows.

Construction 3. Let G = (N,T, P, S) be a context-free string grammar.
Then FG(G) = (sgμ(S) +

∑

r∈P

hgr(r), N, {μ}, T) with sgμ(S) =µ S ,

hgr(r) = sg(u)A for r = (A:: = u) ∈ P and μ /∈ N ∪ T is the corresponding
fusion grammar.
1 1. W.l.o.g. assume (S:: = S) ∈ P such that each derivation is of length ≥ 2.
2. For technical reasons each word contains the derivation twice, the middle is sepa-
rated by cc, wn+1 is separated by ccc, the first is in reverse order and the second is re-
versed. This yields wncwn−1c . . . cw2cw1ccr(w2)cr(w3)c . . . cr(wn)cccr(wn+1). String
in LP are of the form d = (wncwn−1c . . . cw2cw1ccr(w2)c . . . cr(wn)cccr(wn+1)),
where n ≥ 2, wi →wi+1 in G and wn+1 ∈ T ∗; and strings in L= are of the form
z = (zmc . . . cz2cSccr(z2)c . . . cr(zm)ccc), where zi ∈ (N∪T)∗. Therefore, d = zz′ for
some z′ if and only if n = m+1, S = w1, zi = wi for i = 1, . . . ,m and z′ = r(wn+1).
Consequently, r(w) = r(wn+1) = r(yn)r(vn)r(xn) ∈ L=\LP .

284 A. Lye

Example 3. Let G = ({A}, {a.b}, {r1, r2}, A) with r1 = (A:: = aAb) and
r2 = (A:: = ab). Then the rules are represented by hgr(r1) = sg(aAb)A and
(Z, {A}, {μ}, {a, b}) with Z = sgμ(A)+ sg(aAb)A + sg(ab)A is the corresponding
fusion grammar.

Lemma 3. 1. L(FG(G)) = L(G).
2. A derivation w1 →

r1
. . . →

rn−1
wn in G exists if and only if a derivation Z =⇒

m
m ·

Z = sgμ(w1) + hgr(r1) + . . . + hgr(rn−1)=⇒ sgμ(w2) + hgr(r2) + . . . +
hgr(rn−1)=⇒ . . . =⇒ sgμ(wn) in FG(G) exists.

Proof. 1. Each context-free string grammar G can be transformed into a hyper-
edge replacement grammar with connected right hand sides. Hence, the trans-
formation of hyperedge replacement grammars into fusion grammars (cf. [2])
can be applied yielding FG(G).

2. Proof by induction on the length of the derivation. ��
Remark 4. The connected components in the start hypergraphs of the context-
sensitive fusion grammar in Construction 2 are hypergraph representation of the
rules of the two linear string grammars (cf. Construction 3) slightly modified.
The connected components in Z= are constructed for the linear rules in G=

such that each symbol in N ∪ T ∪ {c} is complemented and for each T -symbol
the primed copy is used instead. The connected components for the linear rules
in GP containing X0 and X1 are constructed such that they contain fusion
symbols left and terminal symbols right of the Xi-labeled hyperedge. Again for
each terminal symbol the primed copy is used instead. The other connected
components use the standard construction and are therefore only fusion symbol
labeled (replacing also terminal symbols by their primed copy).

Proof (of Theorem 2). Let w ∈ L(G). Then w ∈ L=\LP by Fact 1 and there are
derivations in G= and GP with Y0

∗→u and X0
∗→ uw with u = u1 · · · un and w =

w1 · · · wm. For each of these derivations exists byLemma 3 a derivation in the corre-
sponding fusion grammar (FG(G=),FG(GP), resp. where G= and GP are defined
in Remark 3). Because the nonterminal alphabets of G= and GP are disjoint
and the connected component dsg(X0, Y0)μ contains two hyperedges one labeled
with each start symbol of the two linear string grammars there is a derivation

Z
∗=⇒

u1 . . . un

X0 µ
+ZP

∗=⇒
. . .

u1 . . . un

u1 . . . un
w1 wm

µ
=H

applying context-free fusion rules2. Then the two complementary strings graphs
canbe erasedby successive applications of reduce(x) for suitablexdue toLemma 1,

i.e., H =⇒
reduce(u1)

. . . =⇒
reduce(un)

. . .
w1 wm

µ +[n].. Consequently, sg(w1 · · · wm) ∈
L(CSFG(G)).

2 Applying first fr(A) with A ∈ {Y0, Y1} and then A ∈ {X0, X1, X2, X3} is arbitrary.
The rules may be applied in any order.

Context-Sensitive Fusion Grammars Are Universal 285

Now, let X ∈ L(CSFG(G)). Then there is a derivation Z
∗=⇒H with

X = remM (Y), Y ∈ C(H) ∩ (HT∪M \ HT)}. Because only dsg(X0, Y0)μ con-
tains a μ-hyperedge this connected component is substantial for some derived
connected component contributing to the generated language. W.l.o.g. one can
assume that dsg(X0, Y0)μ is never multiplied due to the following reasoning. Let
C be a connected component derivable from Z. Let #μ : HΣ → N be a mapping
of hypergraphs over Σ to the number of μ-labeled hyperedges in the respective
hypergraph. Then #μ(C) ≤ 1, i.e., no two or more copies of dsg(X0, Y0)μ con-
tribute to C as the following reasoning indicates. For each C ∈ C(Z) #μ(C) ≤ 1
by construction. For each C /∈ C(Z) assume Z

∗=⇒C1+C2+[k] =⇒
r

C+[l] for some

k, l ∈ N where C1 and C2 are two connected components and #μ(Ci) ≥ 1 for
i = 1, 2. #μ(Ci) ≥ 1 implies Ci
= [1]. Hence, Z

∗=⇒Ci, i = 1, 2. Further, r must
be a context-free fusion rule because the positive context conditions of reduce(x)
restrict that both hyperedges must be attached to a common source vertex which
is not possible if C1 and C2 are two connected components. Let fr(A) be the
applied context-free fusion rule, A ∈ {Y0, Y1,X1,X2,X3,X4}. W.l.o.g. let A be
the label of the hyperedge in C1 and let A be the label of the hyperedge in C2.
Furthermore, it is sufficient to analyze the case #μ(Ci) = 1 for i = 1, 2. However,
#μ(Ci) = 1 implies that dsg(X0, Y0)μ contributes to Ci but because the linear
structure of the rules in P= and PP carries over to the connected components
C2 cannot contain both a μ- and a A-labeled hyperedge. Hence, the assumption
must be false.

The fusion rules wrt Y0, Y1,X0,X1,X2,X3 are context free and thus one
connected component or two connected components with two complementarily
labeled hyperedges from this subset can be fused arbitrarily. This may produce
connected components without markers where all the hyperedges labeled with
Y0, Y0, Y1, . . . , X3,X3 are fused. E.g. sg(xY1x)Y1

may be multiplied several times
and all the complementary Y1- and Y1-hyperedges can be fused yielding two circles.
However this connected component is not fusible to some other connected compo-
nent because now it is only labeled with fusion symbols {N ∪ T ∪ {c}} but for
these symbols the fusion is restricted to take only place if the two complementary
hyperedges are attached to the same vertex. A similar argument can be applied to
other cases wrt connected components with Xi-hyperedges.

The direct derivations steps can be interchanged3 in such a way that one gets
a derivation of the following form:
Z =⇒

m
dsg(X0, Y0)µ +m′ · Z= +m′′ · ZP for some multiplicities m′,m′′

∗=⇒
fr(A) . . .

u1 . . . un

u1 . . . un
w1 wm

µ
with A ∈ {Y0, Y1, X0, X1, X2, X3}

=⇒
reduce(u1)

. . . =⇒
reduce(un)

. . .
w1 wm

µ + [n] = H.

3 For the case of two context-free fusion rules see [2]; for the case involving reduce
see Lemma 2. All multiplications can be done initially (using the same argument as
in [2]).

286 A. Lye

Hence, Y = sg(w1 · · · wm)μ. The linear structure of the connected components
gives us w1 · · · wm ∈ L(G). ��

6 Conclusion

In this paper, we have continued the research on context-dependent fusion gram-
mars. We have introduced context-sensitive fusion grammars and have showed
that the Post correspondence problem can be formulated very intuitively by
such a grammar. Afterwards, we have showed that every Chomsky grammar
can be simulated by a corresponding context-sensitive fusion grammar. Hence,
they can generate all recursively enumerable string languages (up to represen-
tation of strings as graphs). This improves the previous result presented in [5]
showing that context-dependent fusion grammars (with positive and negative
context-conditions) are another universal computing model. However, further
research is needed including the following open question. Is it true, that fusion
grammars without context-conditions are not universal? Are also only negative
context conditions powerful enough to simulate Chomsky grammars? If so is also
a single negative context-condition sufficient? One may also investigate fusion
grammar with other regulations like priorities or regular expressions.

Acknowledgment. We are grateful to Hans-Jörg Kreowski and Sabine Kuske for
valuable discussions. We also thank the reviewers for their valuable comments.

References

1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Sci-
ence 266, 1021–1024 (1994)

2. Kreowski, H.-J., Kuske, S., Lye, A.: Fusion grammars: a novel approach to the
generation of graph languages. In: de Lara, J., Plump, D. (eds.) ICGT 2017. LNCS,
vol. 10373, pp. 90–105. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
61470-0 6

3. Kreowski, H.-J., Kuske, S., Lye, A.: Relating DNA computing and splitting/fusion
grammars. In: Guerra, E., Orejas, F. (eds.) ICGT 2019. LNCS, vol. 11629, pp.
159–174. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23611-3 10

4. Kreowski, H.-J., Kuske, S., Lye, A.: Transformation of petri nets into context-
dependent fusion grammars. In: Mart́ın-Vide, C., Okhotin, A., Shapira, D. (eds.)
LATA 2019. LNCS, vol. 11417, pp. 246–258. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-13435-8 18

5. Lye, A.: Transformation of turing machines into context-dependent fusion gram-
mars. In: Post-Proceedings of 10th International Workshop on Graph Computa-
tion Models, (GCM 2019). Electronic Proceedings in Theoretical Computer Science
(EPTCS) (2019). https://doi.org/10.4204/EPTCS

6. Post, E.L.: A variant of a recursively unsolvable problem. Bull. Am. Math. Soc. 52,
264–269 (1946). https://doi.org/10.1090/s0002-9904-1946-08555-9

7. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing – New Computing Para-
digms. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-662-03563-4

https://doi.org/10.1007/978-3-319-61470-0_6
https://doi.org/10.1007/978-3-319-61470-0_6
https://doi.org/10.1007/978-3-030-23611-3_10
https://doi.org/10.1007/978-3-030-13435-8_18
https://doi.org/10.1007/978-3-030-13435-8_18
https://doi.org/10.4204/EPTCS
https://doi.org/10.1090/s0002-9904-1946-08555-9
https://doi.org/10.1007/978-3-662-03563-4

	Context-Sensitive Fusion Grammars Are Universal
	1 Introduction
	2 Preliminaries
	3 Context-Sensitive Fusion Grammars
	4 A Context-Sensitive Fusion Grammar for the Post Correspondence Problem
	5 Transformation of Chomsky Grammars into Context-Sensitive Fusion Grammars
	6 Conclusion
	References

