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Abstract. The problem of matching a query string to a directed graph,
whose vertices are labeled by strings, has application in different fields,
from data mining to computational biology. Several variants of the prob-
lem have been considered, depending on the fact that the match is exact
or approximate and, in this latter case, which edit operations are con-
sidered and where are allowed. In this paper we present results on the
complexity of the approximate matching problem, where edit operations
are symbol substitutions and are allowed only on the graph labels or
both on the graph labels and the query string. We introduce a variant
of the problem that asks whether there exists a path in a graph that
represents a query string with any number of edit operations and we
show that is NP-complete, even when labels have length one and in the
case the alphabet is binary. Moreover, when it is parameterized by the
length of the input string and graph labels have length one, we show
that the problem is fixed-parameter tractable and it is unlikely to admit
a polynomial kernel. The NP-completeness of this problem leads to the
inapproximability (within any factor) of the approximate matching when
edit operations are allowed only on the graph labels. Moreover, we show
that the variants of approximate string matching to graph we consider
are not fixed-parameter tractable, when the parameter is the number of
edit operations, even for graphs that have distance one from a DAG. The
reduction for this latter result allows us to prove the inapproximability
of the variant where edit operations can be applied both on the query
string and on graph labels.

Keywords: Algorithms on strings · Computational complexity ·
Graph query · Parameterized complexity · Patterns · String to graph
matching

1 Introduction

Given a query string s and a directed graph G whose vertices are labeled with
strings (referred as labeled graph), the matching and the approximate matching
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of s to G ask for a path (not necessarily simple) in G that represents s, that
is by concatenating the labels of the vertices on the path we obtain s or an
approximate occurrence of s.

The matching and the approximate matching of a query string to a labeled
graph have applications in different areas, from graph databases and data mining
to genome research. The problems have been introduced in the context of pattern
matching in hypertext [1,3,10,15], but have found recently new applications.
Indeed in computational biology a representation of variants of related sequences
is often provided by a labeled graph [11,17] and the query of a string in a labeled
graph has found application in computational pan-genomics [13,18].

The exact matching problem is known to be in P [1,3,15]. Furthermore,
conditional lower bounds for this problem has been recently given in [7].

The approximate string to graph matching problem, referred to String to
Graph Approximate Matching, has the goal of minimizing the number of edit
operations (of the query string or of the labels of the graph) such that there exists
a path p in G whose labels match the query string. String to Graph Restricted
Approximate Matching denotes the variant where edit operations are allowed
only on the graph labels. String to Graph Approximate Matching and String to
Graph Restricted Approximate Matching are known to be NP-hard [12], even for
binary alphabet [9]. When the edit operations are allowed only on the query
string, then String to Graph Approximate Matching is polynomial-time solvable
[9]. Moreover, when the input graph is a Directed Acyclic Graph (DAG), String to
Graph Approximate Matching and String to Graph Restricted Approximate Matching
are polynomial-time solvable [10].

In this contribution, we consider the String to Graph Approximate Matching
problem and the String to Graph Restricted Approximate Matching problem, with
the goal of deepening the understanding of their complexity. Notice that the edit
operations we consider are symbol substitutions of the graph labels or of the
query string. Other variants with different edit operations have been considered
in literature [3,9].

We introduce a variant of String to Graph Restricted Approximate Matching,
called String to Graph Compatibility Matching, that asks whether it is possible
to find an occurrence of a query string in a graph with any number of edit
operations of the graph labels. This decision problem is helpful to characterize
whether a feasible solution of String to Graph Restricted Approximate Matching
exists or not. We show in Sect. 3 that String to Graph Compatibility Matching is
NP-complete, even when the labels of the graph have length one or when the
alphabet is binary. The reduction shows also that String to Graph Compatibility
Matching when parameterized by the length of the query string is unlikely to
have a polynomial kernel1 (for details on kernelization we refer to [6,14]). A
consequence of the intractability of String to Graph Compatibility Matching is
that String to Graph Restricted Approximate Matching cannot be approximated

1 A problem parameterized by parameter t admits a polynomial kernel if there exists
a polynomial-time algorithm that reduces the instance of the problem so that it has
a size which is a polynomial in t.
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within any factor in polynomial time. Notice that if we allow edit operations of
the query string, then the existence of a path that represents an approximate
matching of the query string can be decided in polynomial time. Indeed, it is
enough to check whether the input graph contains a (non necessarily simple)
path p in G that represents a string of length |s|.

We consider in Sect. 4 the parameterized complexity of String to Graph
Restricted Approximate Matching and of String to Graph Approximate Matching
and we show that they are W[2]-hard when parameterized by the number of
edit operations, even for a labeled graph having distance one from a DAG. This
result shows that, while String to Graph Restricted Approximate Matching and
String to Graph Approximate Matching are solvable in polynomial time when the
labeled graph is a DAG [10], even for graphs that are very close to DAG they
become hard. The reduction designed to prove this latter result allows us to
show that String to Graph Approximate Matching is not approximable within fac-
tor Ω(log(|V |)) and Ω(log(|s|)), for a labeled graph G = (V,E) and a query
string s.

In Sect. 5, we provide a fixed-parameter tractable algorithm for String to
Graph Compatibility Matching, when parameterized by size of the query string
and when the graph labels have length one. We conclude the paper in Sect. 6
with some open problems, while in Sect. 2 we introduce some definitions and the
problems we are interested in. Some of the proofs are not included due to page
limit.

2 Definitions

Given an alphabet Σ and a string s over Σ, we denote by |s| the length of s, by
s[i], with 1 ≤ i ≤ |s|, the i-th symbol of s and by s[i, j], with 1 ≤ i ≤ j ≤ |s|,
the substring of s that starts at position i and ends at position j.

Every graph we consider in this paper is directed. Given a graph G = (V,E)
and a vertex v ∈ V , we define N+(v) = {u ∈ V : (v, u) ∈ E} and N−(v) = {w ∈
V : (w, v) ∈ E}.

A labeled graph G = (V,E, σ) is a graph whose vertices are labeled with
strings, formally assigned by a labeled function σ : V → Σ∗, where Σ is an
alphabet of symbols. Notice that σ(v), with v ∈ V , denotes the string associated
by σ to vertex v. Let p = v1v2 . . . vz be a path (non necessarily simple) in G,
the set of vertices that induces p is denoted by V (p) and the string associated
with p is defined as σ(p) = σ(v1)σ(v2) . . . σ(vz), that is σ(p) is obtained by
concatenating the strings that label the vertices of path p.

Consider a string s on alphabet Σ and a labeled graph G = (V,E, σ). We
say that a path p in G is an occurrence of s if σ(p) = s; in this case we call σ(p)
an exact matching of s and we say that p matches s.

An edit operation of a string s is a substitution of the symbol in a position
i, with 1 ≤ i ≤ |s|, of s with a different symbol in Σ. An edit operation of
G = (V,E, σ) is an edit operation of a string σ(v), with v ∈ V . A path p in G
is an approximate matching of s if, after k1 ≥ 0 edit operations of labels of G,
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σ(p) = s′, where s′ is a string obtained with k2 ≥ 0 edit operations of s. In this
case, we say that the approximate matching requires k = k1+k2 edit operations.
We say that p in G is a restricted approximate matching of s, if, after after k ≥ 0
edit operations to labels of G, s = σ(p) (that is the edit operations are allowed
only on the labels of G).

Consider a path p that matches (exactly, approximately or restricted approx-
imately) the query string s. If position i, 1 ≤ i ≤ |s|, in s and the j-th position,
1 ≤ j ≤ |σ(u)|, of the label of vertex u in p match (possibly after an edit oper-
ation), we say that position i is mapped in σ(u)[j]; if |σ(u)| = 1, by slightly
abusing the notation, we say that position i is mapped in u.

Next, we define the first combinatorial problem we are interested in.

Problem 1. String to Graph Approximate Matching
Input: A labeled graph G = (V,E, σ) and a query string s, both on alphabet Σ.
Output: An approximate matching p of s that requires the minimum number
of edit operations.

We define now the variant of the problem, called String to Graph Restricted
Approximate Matching, where edit operations are allowed only on the labels of
the labeled graph.

Problem 2. String to Graph Restricted Approximate Matching
Input: A labeled graph G = (V,E, σ) and a query string s, both on alphabet Σ.
Output: A restricted approximate matching p of s that requires the minimum
number of edit operations.

Consider a labeled graph G = (V,E, σ) and a query string s over Σ. If there
exists a path p in G which is a restricted approximate matching of s, we say
that p is compatible with s. Notice that the definition of compatibility does
not put any bound on the number of edit operations of graph labels and that
no edit operation is allowed on the query string. In this paper, we introduce a
decision problem, called String to Graph Compatibility Matching, related to String
to Graph Restricted Approximate Matching, that asks whether there exists a path
in G = (V,E, σ) compatible with s.

Problem 3. String to Graph Compatibility Matching
Input: A labeled graph G = (V,E, σ), a query string s, both on alphabet Σ.
Output: Does there exist a path in G that is compatible with s?

3 Hardness of String to Graph Compatibility Matching

In this section we consider the computational complexity of String to Graph
Compatibility Matching and we prove that the problem is indeed NP-complete
and it is unlikely to admit a polynomial kernel. This result, as discussed in
Theorem 3, is not only interesting to characterize the complexity of String to
Graph Compatibility Matching, but also to give insights into the approximation
complexity of String to Graph Restricted Approximate Matching.
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We start by proving that String to Graph Compatibility Matching is NP-
complete when the labels of the graph have length one, via a reduction from
the h-Path problem. The reduction is inspired by that in [3] to prove the NP-
hardness of String to Graph Restricted Approximate Matching. Then we modify
the reduction so that it holds also for binary alphabet. We recall the definition
of h-Path, which is known to be NP-complete [8].

Problem 4. h-Path
Input: A directed graph G = (VL, EL).
Output: Does there exist a simple path in GL of length h?

3.1 Graph Labels of Length One

Consider a graph GL = (VL, EL), with VL = {vl
1, . . . , v

l
n}, which is an instance of

h-Path, we define an instance of String to Graph Compatibility Matching consisting
of a labeled graph G = (V,E, σ) and a query string s.

First, define the alphabet Σ as follows: Σ = {xi : 1 ≤ i ≤ n}∪{yi : 1 ≤ i ≤ h}.
The labeled graph G = (V,E, σ) is defined as follows:

V = {vi : vl
i ∈ V, 1 ≤ i ≤ n}, E = {(vi, vj) : (vl

i, v
l
j) ∈ EL}.

The labelling function σ : V → Σ∗ of the graph vertices is defined as follows:
σ(vi) = xi, for each i with 1 ≤ i ≤ n.

Finally, we define the query string s = y1y2 . . . yh.
The following lemma allows us to prove the hardness of String to Graph

Compatibility Matching.

Lemma 1. Let GL = (VL, EL) be a graph instance of h-Path and let (G =
(V,E, σ), s) be the corresponding instance of String to Graph Compatibility Match-
ing. There exists a simple path of length h in GL if and only if there exists a
path in G compatible with s.

Proof. Consider a simple path vl
i1

vl
i2

. . . vl
ih

in GL. Then consider the corre-
sponding path vi1vi2 . . . vih in G and edit the symbol of each vertex vij , with
1 ≤ j ≤ h, so that it is associated with symbol yi. It follows that p matches s.
Then vi1vi2 . . . vih is a path of G compatible with s.

Consider a path p = vi1vi2 . . . vih in GL compatible with s. Notice that p
must be a simple path, since s consists of h distinct symbols. As a consequence,
the corresponding path vl

i1
vl
i2

. . . vl
ih

in GL is a simple path of length h. ��
Lemma 1 and the NP-completeness of h-Path [8] allow to prove the following
result.

Theorem 1. String to Graph Compatibility Matching is NP-complete even when
the labels of the graph have length one.
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Notice that the reduction we have described is also a Polynomial Parameter
Transformation [5] from h-Path parameterized by h to String to Graph Compatibil-
ity Matching parameterized by |s|, as |s| = h. Since h-Path when parameterized
by h does not admit a polynomial kernel unless NP ⊆ coNP/Poly [4], the
reduction leads to the following result.

Corollary 1. The String to Graph Compatibility Matching problem parameterized
by |s| does not admit a polynomial kernel unless NP ⊆ coNP/Poly even when
the labels of the graph have length one.

3.2 Binary Alphabet

Next, we show that the String to Graph Compatibility Matching problem is NP-
complete even on binary alphabet. The reduction is similar to the reduction of
the Sect. 3.1, except for the definition of the query string s and the labeling
σ : V → Σ∗ of the labeled graph.

Consider a graph GL = (VL, EL), with VL = {vl
1, . . . , v

l
n}, that is an instance

of h-Path, we define a corresponding instance (G = (V,E, σ), s) of String to
Graph Compatibility Matching. The alphabet is binary, hence Σ = {0, 1}. Next,
we define the labeled graph G = (V,E, σ). The sets V of vertices and E of edges
are defined as in Sect. 3.1. For each vi ∈ V , with 1 ≤ i ≤ h, σ(vi) = 0h, namely
it is a string consisting of h occurrences of symbol 0.

The construction of the query string s requires the introduction of strings si,
with 1 ≤ i ≤ h, having length h and defined as follows:

si[i] = 1; si[j] = 0, with 1 ≤ j ≤ h and j 
= i.

Finally, s is defined as the concatenation of s1, s2, . . . sn, that is s =
s1 s2 . . . sn.

Next, we prove the correctness of the reduction.

Lemma 2. Let GL = (VL, EL) be a graph instance of h-Path and let (G =
(V,E, σ), s) be the corresponding instance of String to Graph Compatibility Match-
ing on binary alphabet. There exists a simple path of length h in GL if and only
if there exists a path compatible with s in G.

Proof. Consider a simple path vl
i1

vl
i2

. . . vl
ih

in GL. Then consider the correspond-
ing path vi1vi2 . . . vih in G and edit the label of each vertex vij , with 1 ≤ j ≤ h,
such that is associated with string sj . Then the resulting string is an exact match
of s, hence vi1vi2 . . . vih is a path compatible with s.

Consider a path p = vi1vi2 . . . vih in G that is compatible with s. Since σ(p)
must match s after some symbol substitutions and, by construction, |σ(vj)| =
|sl|, for each 1 ≤ j ≤ n and 1 ≤ l ≤ h, it follows that the positions of sl,
1 ≤ l ≤ h, are mapped to the positions of σ(vit), for some t with 1 ≤ t ≤ h.
Moreover, since sl 
= sq, with t 
= q, all the vertices in p are distinct and p
is a simple path in G of length h. As a consequence the corresponding path
vl
i1

vl
i2

. . . vl
ih

in GL is a simple path of length h, thus concluding the proof. ��
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Thus, based on Lemma 2, we can prove the following result.

Theorem 2. String to Graph Compatibility Matching is NP-complete even on
binary alphabet.

The results of Theorems 1 and 2 have a consequence not only on the com-
plexity of String to Graph Compatibility Matching, but also on the approximation
of String to Graph Restricted Approximate Matching.

Theorem 3. The String to Graph Restricted Approximate Matching problem can-
not be approximated within any factor in polynomial time, unless P = NP, even
when the labels of the graph have length one or when the alphabet is binary.

Proof. The NP-completeness of String to Graph Compatibility Matching implies
that, given an instance (G = (V,E, σ), s), even deciding whether there exists
a feasible solution of String to Graph Restricted Approximate Matching, with
any number of edit operations in G, is NP-complete. Hence if there exists
a polynomial-time approximation algorithm A for String to Graph Restricted
Approximate Matching, with some approximation factor α, it follows that A can
be used to decide the String to Graph Compatibility Matching problem: if A returns
an approximated solution for String to Graph Restricted Approximate Matching
with input (G, s), then it follows that there exists a path in G compatible with
s, if A does not return an approximated solution for String to Graph Restricted
Approximate Matching with input (G, s), then there is no path in G compatible
with s. Since String to Graph Compatibility Matching is NP-complete, when the
labels of the graph have length one (by Theorem 1) and on binary alphabet (by
Theorem 2), then there does not exist a polynomial-time approximation algo-
rithm with any approximation factor for String to Graph Restricted Approximate
Matching when the graph labels have length one or when the alphabet is binary,
unless P = NP. ��

4 Hardness of Parameterization

In this section, we consider the parameterized complexity of String to Graph
Restricted Approximate Matching and String to Graph Approximate Matching. The
reduction we present allows us to prove that String to Graph Restricted Approx-
imate Matching and String to Graph Approximate Matching, when parameterized
by the number of edit operations, are W[2]-hard for a labeled graph having dis-
tance one from a DAG. Moreover, the same reduction will allow us to prove
that String to Graph Approximate Matching is not approximable within factor
Ω(log(|V |)) and Ω(log(|s|)).

We prove these results by presenting a reduction, that is parameterized [6,14]
and approximate preserving [19], from the Minimum Set Cover problem. We recall
here the definition of Minimum Set Cover.

Problem 5. Minimum Set Cover
Input: A collection C = {S1, . . . , Sm} of sets over a universe U = {u1, . . . , un}.
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Output: A subcollection C ′ of C of minimum cardinality such that for each
ui ∈ U , with 1 ≤ i ≤ n, there exists a set in C ′ containing ui.

First, we focus on String to Graph Restricted Approximate Matching, then we
show that the same reduction can be applied to String to Graph Approximate
Matching.

Given an instance (U,C) of Minimum Set Cover, in the following we define
an instance (G = (V,E, σ), s) of String to Graph Restricted Approximate Matching
(see Fig. 1 for an example). We start by defining the alphabet Σ:

Σ = {xi : 0 ≤ i ≤ m} ∪ {yi : 1 ≤ i ≤ n} ∪ {z}.

Then, we define the labeled graph G = (V,E, σ):

V = {vi : 0 ≤ i ≤ m} ∪ {vi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ |Si|}

E = {(v0, vi) : 1 ≤ i ≤ m} ∪ {(vi, vi,j) : 1 ≤ i ≤ m, 1 ≤ j ≤ |Si|}
∪ {(vi,j , v0) : 1 ≤ i ≤ m, 1 ≤ j ≤ |Si|}.

Now, we define the labeling σ of the vertices of G:

– σ(vi) = xi, 0 ≤ i ≤ m
– σ(vi,l) = yj , 1 ≤ i ≤ m, 1 ≤ l ≤ |Si| and 1 ≤ j ≤ n, where the l-th element

of Si is uj (based on some ordering of the elements in Si)

The query string s is defined as follows: s = x0 z y1 x0 z y2 . . . x0 z yn.

x0

x1

x2

y4y1 y3

y2 y3

x3 y2 y4

v0

v1

v2

v3

v1,1 v1,2
v1,3

v2,1 v2,2

v3,1 v3,2

s = x0 z y1 x0 z y2 x0 z y3 x0 z y4

Fig. 1. A labeled graph G and a query string s associated with the following instance
of Minimum Set Cover: U = {u1, u2, u3, u4}; S1 = {u1, u3, u4}, S2 = {u2, u3}, S3 =
{u2, u4}. Inside each vertex we represent its label.

First, we prove that the labeled graph G, has distance one from a DAG, that
is by removing a vertex of G (namely, v0), we obtain a DAG.
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Lemma 3. Let (C,U) be an instance of Minimum Set Cover and let (G =
(V,E, σ), s) be the corresponding instance of String to Graph Restricted Approxi-
mate Matching. Then, G has distance one from a DAG.

Next, we present the main result to prove the correctness of the reduction.

Lemma 4. Let (C,U) be an instance of Minimum Set Cover and let (G =
(V,E, σ), s) be the corresponding instance of String to Graph Restricted Approxi-
mate Matching. There exists a cover C ′ of U of cardinality h < n if and only if
there exists a solution of String to Graph Restricted Approximate Matching that
requires h edit operations.

Proof. We present only one direction of the proof. Consider a path p in G such
that p is a restricted approximate matching of s requiring at most h edit oper-
ations of the labels of vertices in p. First, we prove some properties of G. If v0
is removed from G, then the resulting graph G′ contains paths consisting of at
most 2 vertices. Since |s| = 3n, there is no path in G′ that can be a restricted
approximate matching of s. This implies that at least one position of s is mapped
in v0.

Now, assume that the first vertex of p is not v0. Assume that the first
position of s is mapped in vi, for some i with 1 ≤ i ≤ m. By construction,
p = vi vi,j v0 vl vl,t v0 . . . , since N+(vi) = {vi,j : 1 ≤ j ≤ |Sj |}, N+(vi,j) = {v0}
and N+(v0) = {vi : 1 ≤ i ≤ m}. Then each occurrence of a symbol yq, 1 ≤ q ≤ n,
in s is mapped in v0, while the symbol associated with v0 can be at most one of
y1, . . . , yn, thus there is no path in G that starts with a vertex vi and that is a
restricted approximate matching of s.

Assume that the first vertex of p is some vertex vi,j , with 1 ≤ i ≤ m and
1 ≤ j ≤ |Si|. By construction, p = vi,j v0 vl vl,t v0 . . . . Hence each position of
s containing z is mapped in vertex v0, while each position of s containing yt,
1 ≤ t ≤ n, is mapped in a vertex vq, with 1 ≤ q ≤ m. This last mapping requires
n > h edit operations of labels of vertices of G, violating the hypothesis that at
most h < n edit operations are applied.

We can conclude that if p is a restricted approximate matching of s requiring
h < n edit operations, then v0 must be the first vertex of p. It follows that each
label of a vertex vi, 1 ≤ i ≤ n, in path p must be edited to z. Consider the case
that position t of s, 1 ≤ t ≤ |s|, where s[t] = yq, 1 ≤ q ≤ n, is mapped to some
vertex vi,j , with 1 ≤ i ≤ m and 1 ≤ j ≤ |Si|, such that σ(vi,j) 
= yq, and that
hence the label of vi,j is edited to yq. Let va, with 1 ≤ a ≤ m, be the vertex that
precedes vi,j in p. Then, we can modify p, so that the number of edit operations
are not increased, by replacing va with a vertex vb, with 1 ≤ b ≤ m, and vi,j
with vb,l, with 1 ≤ l ≤ |Sb|, so that σ(vb,l) = yq, and by editing the label of vb
(if it is no already edited) to z. This implies that the only vertices of p whose
labels are edited are vertices vi, 1 ≤ i ≤ m.

Now, we can define a solution C ′ of Minimum Set Cover consisting of h sets as
follows: C ′ = {Si : the label of vertex vi in p is edited to z, 1 ≤ i ≤ m}. Since
at most h labels of vertices of p are edited (to z), it follows that at most h
sets belong to C ′. Furthermore, since each vertex with label yj , 1 ≤ j ≤ n, is



Complexity Issues of String to Graph Approximate Matching 257

connected to a vertex vi in p, 1 ≤ i ≤ m, by construction it follows that each
element of U belongs to some set in C ′. ��

Based on Lemma 3 and on Lemma 4, we can prove the following result.

Theorem 4. The String to Graph Restricted Approximate Matching problem is
W[2]-hard when parameterized by the number of edit operations, even when the
input graph has distance one from a DAG.

Proof. Notice that, by Lemma 3, G has distance one from a DAG. The W[2]-
hardness of String to Graph Approximate Matching follows from Lemma 4 and
from the W[2]-hardness of Minimum Set Cover [16]. ��

Next, we show that the same reduction allows us to prove the W[2]-hardness
and the inapproximability of String to Graph Approximate Matching. Essentially,
we will prove that we can avoid edit operations of the query string.

Theorem 5. The String to Graph Approximate Matching problem is W[2]-hard
when parameterized by the number of edit operations, even when the input graph
has distance one from a DAG. Moreover, String to Graph Approximate Matching
cannot be approximated within factor Ω(log(|V |)) and Ω(log(|s|)), unless P =
NP , even when the input graph has distance one from a DAG.

5 String to Graph Compatibility Matching Parameterized by |s|
We present a fixed-parameter algorithm for String to Graph Compatibility Match-
ing when parameterized by |s|. We consider the case where each vertex of G is
labeled with exactly one symbol (notice that in this case, by Theorem 1, String
to Graph Compatibility Matching is NP-complete and, by Corollary 1, String to
Graph Compatibility Matching parameterized by |s| does not admit a polynomial
kernel unless NP ⊆ coNP/Poly).

We start by proving an easy property of an instance of String to Graph Com-
patibility Matching.

Lemma 5. |Σ| ≤ |s|.
The fixed-parameter algorithm is based on the color-coding technique [2] and

on dynamic programming. Consider a path p in G that is compatible with s and
the set V (p) of vertices that induces p, where |V (p)| = k. It holds k ≤ |s|, since
each position of s is mapped in at least one vertex of p.

We consider a coloring of V with a set of colors {c1, . . . , ck}, where, given a
vertex v ∈ V , we denote by c(v) the color assigned to v. Based on color-coding
(see Definition 1), we assume that the coloring is colorful, that is each vertex of
V (p) is assigned a distinct color in {c1, . . . , ck}.

Now, each color ci, with 1 ≤ i ≤ k, is associated by a function r:
{c1, . . . , ck} → Σ, with a symbol in Σ, that represents the fact that the ver-
tices of p that are colored by ci, with 1 ≤ i ≤ k, must match a position of s
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containing symbol r(ci). In this case we say that p satisfies r. The algorithm
iterates over the possible colorings of graph G based on a family of perfect hash
functions and over the possible functions r.

Now, given a coloring of G and a function r, define a function Mr[i, v], with
1 ≤ i ≤ |s| and v ∈ V , as follows. Mr[i, v] is equal to 1 if there exists a path p
of G that is compatible with s[1, i] and such that (1) position i of s is mapped
in v, and (2) p satisfies r; else Mr[i, v] = 0. Notice that, since s[1, i] is mapped
in v, it follows that v is the last vertex of p. Next, we describe the recurrence to
compute Mr[i, v]. For i ≥ 2, if r(c(v)) 
= s[i], then Mr[i, v] = 0; if r(c(v)) = s[i],
then:

Mr[i, v] =
∨

u∈V :(u,v)∈E

Mr[i − 1, u]

In the base case, it holds Mr[1, v] = 1 if and only if r(c(v)) = s[1], else
Mr[1, v] = 0. Next, we prove the correctness of the recurrence.

Lemma 6. Mr[i, v] is equal to 1 if and only if there exists a path p of G that is
compatible with s[1, i] and such that (1) position i of s is mapped in v, and (2)
p satisfies r.

In order to compute a colorful coloring of G, we consider a perfect family of
hash functions for the set of vertices of G.

Definition 1. Let G = (V,E, σ) be a labeled graph and let C = {c1, . . . , ck} be
a set of colors. A family F of hash functions from V to C is called perfect if for
each subset V ′ ⊆ V , with |V ′| = k, there exists a function f ∈ F such that for
each x, y ∈ V ′, with x 
= y, f(x) = ci, f(y) = cj, with 1 ≤ i, j ≤ k and i 
= j.

It has been shown in [2] that a perfect family F of hash functions from V
to C, having size 2O(k)O(log |V |), can be computed in time 2O(k)O(|V | log |V |).
From Lemma 6 and by using a perfect family of hash functions to color the
vertices in G, we can prove the main result of this section.

Theorem 6. The String to Graph Compatibility Matching problem can be decided
in time 2O(|s|)O(|s||s|+1|V |2 log |V |).

6 Conclusion

In this contribution we have presented results on the tractability of the approx-
imate matching of a query string to a labeled graph. There are several open
questions related to variants of this problem. It will be interesting to further
investigate the approximability of String to Graph Approximate Matching, since
it can be trivially approximated within factor |s| in polynomial time, while it
cannot be approximated within factor Ω(log(|s|)), unless P = NP. Another inter-
esting open question is to investigate the parameterized complexity of String to
Graph Approximate Matching when the edit operations are not restricted to sym-
bol substitutions, but include symbol insertions and deletions.
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