Skip to main content

Bio-based Polymeric Nanocomposites for Stimuli-Responsive Membranes

  • Reference work entry
  • First Online:
Handbook of Polymer and Ceramic Nanotechnology
  • 2408 Accesses

Abstract

Bio-based polymers are basically produced from renewable resources. The terms bio-based and biodegradable polymers are very much used nowadays for various applications in our daily life. The major difference between them is that biodegradable polymers undergo physicochemical deterioration and degrade completely when exposed to atmospheric conditions, whereas bio-based polymers can be of dual nature, i.e., biodegradable (e.g., polylactic acid) or nondegradable (e.g., biopolyethylene). During the past few years, in order to find an alternative toward nonfossil fuel-based polymers, bio-based polymers have attracted researchers intensively. Bio-based polymers have great positive impacts on the environment since they reduce the dependency on fossil fuels which further contributed toward reduced carbon dioxide emissions. Bio-based polymers of first generation are derived from agricultural products like corn as well as other carbohydrate products. In recent times, due to progress of biotechnology field, the generation of biopolymers from food-based resources has been set back. Presently, natural bio-based polymers have shown enormous interest among researchers. Such kind of bio-based polymers is naturally occurring like proteins, nucleic acids, and polysaccharides (collagen, chitosan, etc.), and they have found wide acceptance for membrane-based applications.

The chapter includes an overview of various nanocomposites synthesized from such bio-based polymers such as renewable resources and natural polymers (plant as well as animal origins). The chapter deals with the fabrication of various bio-based polymer nanocomposite membranes along with their physical and chemical properties. Techniques as well as applications of such prepared nanocomposite-based membranes have been discussed elaborately. The paper also deals with the unique idea of transforming such bio-based polymeric nanocomposites into membrane with stimuli-responsive behavior. Since stimuli-responsive polymeric membranes have been in limelight during the past few years, this chapter deals with the unique modifications within bio-based polymeric nanocomposite membranes which will make them respond to various stimuli. The concluding section consists of the future prospective of such bio-based nanocomposite materials and its application in stimuli-responsive membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ageishi K, Endo T, Okawara M (1983) Electron transport across polymeric membranes containing the viologen structure. Macromolecules 16:884–887

    Article  CAS  Google Scholar 

  • Almasi H, Ghanbarzadeh B, Entezami AA (2010) Physicochemical properties of starch- CMC-nanoclay biodegradable films. Int J Biol Macromol 46:1–5

    Article  CAS  Google Scholar 

  • Anzai J, Ueno A, Sasaki H, Shimokawa K, Osa T (1983) Photocontrolled permeation of alkali cations through poly(vinyl chloride)/crown ether membrane. Macromol Rapid Commun 4:731–734

    Article  CAS  Google Scholar 

  • Aoyama M, Watanabe J, Inoue S (1990) Photoregulation of permeability across a membrane from graft copolymer containing a photoresponsive polypeptide branch. J Am Chem Soc 112:5542–5545

    Article  CAS  Google Scholar 

  • Babu RP, Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomat 2:1–16

    Google Scholar 

  • Bio-Polym blog. https://web.archive.org/web/20081206000249/http://biopol.free.fr/. Retrieved 2 Nov 2020

  • Chang HC, Sun T, Sultana N, Lim MM, Khan TH, Ismail AF (2016) Conductive PEDOT:PSS coated polylactide (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) electrospun membranes: fabrication and characterization. Mater Sci Eng C 61:396–410

    Article  CAS  Google Scholar 

  • Chen H, Palmese GR, Elabd YA (2007) Electrosensitive permeability of membranes with oriented poly electrolyte nano-domains. Macromolecules 40:781–782

    Article  CAS  Google Scholar 

  • Chitrattha S, Phaechamud T (2013) Modifying poly(l-lactic acid) matrix film properties with high loaded poly(ethylene glycol). Key Eng Mater 545:57–62

    Article  CAS  Google Scholar 

  • Cocenza DS, De Moraes MA, Beppu MM, Fraceto LF (2012) Use of biopolymeric membranes for adsorption of paraquat herbicide from water. Water Air Soil Pollut 223:3093–3104

    Article  CAS  Google Scholar 

  • Csetneki I, Filipcsei G, Zrinyi M (2006) Smart nanocomposite polymer membranes with on/off switching control. Macromolecules 39:1939–1942

    Article  CAS  Google Scholar 

  • de Moraes MA, Cocenza DS, Vasconcellos F, Cruz, Fraceto LF, Beppu MM (2013) Chitosan and alginate biopolymer membranes for remediation of contaminated water with herbicides. J Environ Manag 131:222–227

    Google Scholar 

  • Egusa M, Iwamoto R, Izawa H, Morimoto M, Saimoto H, Kaminaka H, Ifuku S (2015) Characterization of chitosan nanofiber sheets for antifungal application. Int J Mol Sci 16:26202–26210

    Article  CAS  Google Scholar 

  • El-Azzami LA, Grulke EA (2009) Carbon dioxide separation from hydrogen and nitrogen facilitated transport in arginine salt-chitosan membranes. J Membr Sci 328:15–22

    Article  CAS  Google Scholar 

  • Galiano F, Briceno K, Marino T, Molino A, Christensen KV, Figoli A (2018) Advances in biopolymer-based membrane preparation and applications. J Membr Sci 564:562–586

    Google Scholar 

  • Gao ZR, Hao ZQ, Li Y, Im MJ, Spence RJ (1992) Porcine dermal collagen as a wound dressing for skin donor sites and deep partial skin thickness burns. Burns 18:492–496

    Article  CAS  Google Scholar 

  • Ghaffarian V, Mousavi SM, Bahreini M, Jalaei H (2014) Polyethersulfone/poly (butylene succinate) membrane: effect of preparation conditions on properties and performance. J Ind Eng Chem 20:1359–1366

    Article  CAS  Google Scholar 

  • Gimenes ML, Liu L, Feng X (2007) Sericin/poly(vinyl alcohol) blend membranes for pervaporation separation of ethanol/water mixtures. J Membr Sci 295:71–79

    Article  CAS  Google Scholar 

  • Gogolewski S, Pineda L, Michael Büsing C (2000) Bone regeneration in segmental defects with resorbable polymeric membranes: IV. Does the polymer chemical composition affect the healing process? Biomaterials 21:2513–2520

    Article  CAS  Google Scholar 

  • Guangwen C, Shulian L, Fengjun J, Quan Y (2007) Catalytic dehydration of bioethanol to ethylene over TiO2/γ-Al2O3 catalyst in microchannel reactors. Catal Today 125:111–119

    Article  CAS  Google Scholar 

  • Gudeman LF, Peppas NA (1995) Preparation and characterization of pH-sensitive interpenetrating networks of poly(vinyl alcohol) and poly(acrylic acid). J Appl Polym Sci 55:919–928

    Article  CAS  Google Scholar 

  • Guilherme MR, Campese GM, Radovanovic E, Rubira AF, Tam-bourgi EB, Muniz EC (2006) Thermo-responsive sandwiched-like membranes of IPN-PNIPAAm/PAAm hydrogels. J Membr Sci 275:187–194

    Article  CAS  Google Scholar 

  • Gutowska A, Bae YH, Jacobs H, Feijen J, Kim SW (1994) Thermosensitive interpenetrating polymer networks: synthesis, characterization, and macromolecular release. Macromolecules 27:4167–4175

    Article  CAS  Google Scholar 

  • Herrero-Herrero M, Gómez-Tejedor JA, Vallés-Lluch A (2018) PLA/PCL electrospun membranes of tailored fibres diameter as drug delivery systems. Eur Polym J 99:445–455

    Article  CAS  Google Scholar 

  • Ishihara K, Hamada N, Kato S, Shinohara I (1984) Photoinduced swelling control of amphiphilic azoaromatic polymer membrane. J Polym Sci Polym Chem Ed 22:121–128

    Article  CAS  Google Scholar 

  • Keawsupsak K, Jaiyu A, Pannoi J, Somwongsa P, Wanthausk N, Sueprasita P, Eamchotchawalit C (2014) Poly(lactic acid)/biodegradable polymer blend for the preparation of flat-sheet membrane. J Teknol (Sci Eng) 69:99–102

    Google Scholar 

  • Kim CH, Choi KS (2002) Synthesis and antibacterial activity of quaternized chitosan derivatives having different methylene spacers. J Ind Eng Chem 8:71–76

    CAS  Google Scholar 

  • Kinoshita T, Sato M, Takizawa A, Tsujita Y (1986) Photocontrol of polypeptide membrane functions by cis–trans isomerization in side-chain azobenzene groups. Macromolecules 19:51–55

    Article  CAS  Google Scholar 

  • Kokufuta E, Yamauchi T, Osada Y (1995) Electrically controlled separation of maleic acid and fumaric acid through a poly(vinyl alcohol)/poly(acrylic acid) composite membrane. Polym Gels Netw 3:397–406

    Article  CAS  Google Scholar 

  • Liu F, Qin B, He L, Song R (2009) Novel starch/chitosan blending membrane: antibacterial, permeable and mechanical properties. Carbohydr Polym 78:146–150

    Article  CAS  Google Scholar 

  • Loeb S, Sourirajan S (1963) Sea water demineralization by means of an osmotic membrane. Adv Chem 38:117–132

    Article  CAS  Google Scholar 

  • Maser F, Ströher-Glowienka C, Kimmerle K, Gudernatsch W (1991) Collagen film as a new pervaporation membrane. J Membr Sci 61:269–278

    Article  CAS  Google Scholar 

  • Maurizio A, Jan JDV, Maria EE, Sabine F, Paolo V, Maria GV (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93(3):467–474

    Article  CAS  Google Scholar 

  • Medina-Gonzalez Y, Aimar P, Lahitte JF, Remigy JC (2011) Towards green membranes: preparation of cellulose acetate ultrafiltration membranes using methyl lactate as a biosolvent. Int J Sustain Eng 4:75–83

    Article  Google Scholar 

  • Mi FL, Shyu SS, Wu YB, Lee ST, Shyong JY, Huang RN (2001) Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials 22:165–173

    Article  CAS  Google Scholar 

  • Miguel O, Fernandez-Berridi MJ, Iruin JJ (1997) Survey on transport properties of liquids, vapors, and gases in biodegradable poly(3-hydroxybutyrate) (PHB). J Appl Polym Sci 64:1849–1859

    Article  CAS  Google Scholar 

  • Mondal P, Purkait MK (2017) Effect of Polyethylene glycol methyl ether blend Humic acid on poly (vinylidene fluoride-co-hexafluropropylene) PVDF-HFP membranes: pH responsiveness and antifouling behavior with optimization approach. Polym Test 61:162–176

    Article  CAS  Google Scholar 

  • Mondal P, Purkait MK (2018) Green synthesized iron nanoparticles supported on pH responsive polymeric membrane for nitrobenzene reduction and fluoride rejection study: optimization approach. J Clean Prod 170:1111–1123

    Article  CAS  Google Scholar 

  • Mondal P, Samanta NS, Meghnani V, Purkait MK (2019) Selective glucose permeability in presence of various salts through tunable pore size of pH responsive PVDF-co-HFP membrane. Sep Purif Technol 221:249–260

    Article  CAS  Google Scholar 

  • Muniz EC, Geuskens G (2000) Influence of temperature on the permeability of polyacrylamide hydrogels and semi-IPNs with poly(N-isopropylacrylamide). J Membr Sci 172:287–293

    Article  CAS  Google Scholar 

  • Nanda MR, Misra M, Mohanty AK (2011) The effects of process engineering on the performance of PLA and PHBV blends. Macromol Mater Eng 296:719–728

    Article  CAS  Google Scholar 

  • Oak MS, Kobayashi T, Wang HY, Fukaya T, Fujii N (1997) pH effect on molecular size exclusion of polyacrylonitrile ultrafiltration membranes having carboxylic acid groups. J Membr Sci 123:185–195

    Google Scholar 

  • Park SB, You JO, Park HY, Haam SJ, Kim WS (2001) A novel pH-sensitive membrane from chitosan-TEOS IPN; preparation and its drug permeation characteristics. Biomaterials 22:323–330

    Article  CAS  Google Scholar 

  • Peter WD, Vicki S, Richardson JC (2011) The key role alginates play in health. Food Hydrocoll 25:263–266

    Article  CAS  Google Scholar 

  • Phaechamud T, Chitrattha S (2016) Pore formation mechanism of porous poly(dl-lactic acid) matrix membrane. Mater Sci Eng C 61:744–752

    Article  CAS  Google Scholar 

  • Prasad NS, Moulik S, Bohra S, Rani KY, Sridhar S (2016) Solvent resistant chitosan/poly(ether-block-amide) composite membranes for pervaporation of n-methyl-2-pyrrolidone/water mixtures. Carbohydr Polym 136:1170–1181

    Article  CAS  Google Scholar 

  • Purkait MK, Sinha MK, Mondal P, Singh R (2018) Stimuli responsive smart polymeric membranes: smart polymeric membranes, vol 25, 1st edn. Academic Press, Boca Raton. ISBN: 9780128139615

    Google Scholar 

  • Raval HD, Rana PS, Maiti S (2015) A novel high-flux, thin-film composite reverse osmosis membrane modified by chitosan for advanced water treatment. RSC Adv 5:6687–6694

    Article  CAS  Google Scholar 

  • Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27

    Article  Google Scholar 

  • Rubin AL, Stenzel KH, Miyata T, White MJ, Dune M (1973) Collagen as a vehicle for drug delivery: preliminary report. J Clin Pharmacol 13:309–312

    CAS  Google Scholar 

  • Sata T (1996) Anion exchange membrane with viologen moiety as anion exchange groups and generation of photo-induced electrical potential from the membrane. J Membr Sci 118:121–126

    Article  CAS  Google Scholar 

  • Sata T, Emori S, Matsusaki K (1998) Thermally responsive novel anion exchange membranes for electrodialysis. Chem Commun 12:1303–1304

    Article  Google Scholar 

  • Shen P, Moriya A, Rajabzadeh S, Maruyama T, Matsuyama H (2013) Improvement of the antifouling properties of poly (lactic acid) hollow fiber membranes with poly (lactic acid)-polyethylene glycol-poly (lactic acid) copolymers. Desal 325:37–39

    Google Scholar 

  • Shi J, Liu X, Shang Y, Cao S (2010) Biomineralized polysaccharide alginate membrane for multi-responsive controlled drug delivery. J Membr Sci 352:262–270

    Article  CAS  Google Scholar 

  • Siddhesh NP, Edgar KJ (2012) Alginate derivatization: a review chemistry, properties and applications. Biomaterials 33:3279–3305

    Article  CAS  Google Scholar 

  • Sinha MK, Purkait MK (2014) Preparation and characterization of stimuli-responsive hydrophilic polysulfone membrane modified with poly (N-vinylcaprolactam-co-acrylic acid). Desalination 348:16–25

    Article  CAS  Google Scholar 

  • Su J, Yang Q, Teo JF, Chung TS (2010) Cellulose acetate nanofiltration hollow fiber membranes for forward osmosis processes. J Membr Sci 355:36–44

    Article  CAS  Google Scholar 

  • Sun Y-M, Huang T-L (1996) Pervaporation of ethanol–water mixtures through temperature- sensitive poly (vinyl alcohol-g-N-isopropylacrylamide) membranes. J Membr Sci 110:211–218

    Article  CAS  Google Scholar 

  • Suzuki F, Kimura H, Shibue T (2000) Formation having a tanning gradient structure of collagen membrane by the pervaporation technique. J Membr Sci 165(2000):169–175

    Article  CAS  Google Scholar 

  • Taguchi Y, Amizuka N, Nakadate M, Ohnishi H, Fujii N, Oda K, Nomura S, Maeda T (2005) A histological evaluation for guided bone regeneration induced by a collagenous membrane. Biomaterials 26:6158–6166

    Article  CAS  Google Scholar 

  • Tanaka T, Tsuchiya T, Takahashi H, Taniguchi M, Lloyd DR (2006) Microfiltration membrane of polymer blend of poly(l-lactic acid) and poly(ε-caprolactone). Desalination 193:367–374

    Article  CAS  Google Scholar 

  • Tchemtchoua VT, Atanasova G, Aqil A, Filée P, Garbacki N, Vanhooteghem O, Deroanne C, Noël A, Jérome C, Nusgens B, Poumay Y, Colige A (2011) Development of a chitosan nanofibrillar scaffold for skin repair and regeneration. Biomacromolecules 12:3194–3204

    Article  CAS  Google Scholar 

  • Thacharodi D, Rao KP (1995) Development and in vitro evaluation of chitosan-based transdermal drug delivery systems for the controlled delivery of propranolol hydrochloride. Biomaterials 16:145–148

    Article  CAS  Google Scholar 

  • Villegas M, Castro Vidaurre EF, Gottifredi JC (2015) Sorption and pervaporation of methanol/water mixtures with poly(3-hydroxybutyrate) membranes. Chem Eng Res Des 94:254–265

    Article  CAS  Google Scholar 

  • Weingand R (1932) Apparatus for manufacturing seamless flexible tubes from cellulose solution. US Patent: 1 864 006A. Granted 21 June 1932

    Google Scholar 

  • Wu J, Yuan Q (2002) Gas permeability of a novel cellulose membrane. J Membr Sci 204:185–194

    Article  CAS  Google Scholar 

  • www.sciencedirect.com. https://www.sciencedirect.com/topics/materials-science/biopolymers#:~:text=There%20are%20three%20main%20classes,amino%20acids%3B%20and%20polysaccharides%2C%20which. Retrieved 2 Nov 2020

  • Xiao S, Feng X, Huang RYM (2007) Trimesoyl chloride crosslinked chitosan membranes for CO2/N2 separation and pervaporation dehydration of isopropanol. J Membr Sci 306:36–46

    Article  CAS  Google Scholar 

  • Yaffe A, Shoshan S (1987) Re-attachment of periodontal ligament by collagen in experimentally- induced alveolar bone dehiscence in dogs. Arch Oral Biol 32:69–73

    Article  CAS  Google Scholar 

  • Yamakawa T, Ishida S, Higa M (2005) Transport properties of ions through temperature-responsive charged membranes prepared using poly(vinyl alcohol)/poly(N-isopropylacrylamide)/poly(vinyl alcohol-co-2-acrylamido-2-methylpropane sulfonic acid). J Membr Sci 250:61–68

    Article  CAS  Google Scholar 

  • Yamauchi T, Kokufuta E, Osada Y (1993) Electrically controlled protein permeation through a poly(vinyl alcohol)/poly(acrylic acid) composite membrane. Polym Gels Netw 1:247–255

    Article  CAS  Google Scholar 

  • Yang W, Xie R, Pang X, Ju X, Chu L (2008) Preparation and characterization of dual-stimuli-responsive microcapsules with a superparamagnetic porous membrane and thermo-responsive gates. J Membr Sci 321:324–330

    Article  CAS  Google Scholar 

  • Yang D, Li J, Jiang Z, Lu L, Chen X (2009) Chitosan/TiO2 nanocomposite pervaporation membranes for ethanol dehydration. Chem Eng Sci 64:3130–3137

    Article  CAS  Google Scholar 

  • Ying L, Kang ET, Neoh KG (2003) Characterization of membranes prepared from blends of poly(acrylic acid)-graft-poly(vinylidene fluoride) with poly(N-isopropylacrylamide) and their temperature- and pH-sensitive microfiltration. J Membr Sci 224:93–106

    Article  CAS  Google Scholar 

  • Ying L, Kang ET, Neoh KG, Kato K, Iwata H (2004) Drug permeation through temperature sensitive membranes prepared from poly(vinylidene fluoride) with grafted poly(N isopropylacrylamide) chains. J Membr Sci 243:253–262

    Article  CAS  Google Scholar 

  • Zarei A, Ghaffarian V (2013) Preparation and characterization of biodegradable cellulose acetate-starch membrane. Polym Plast Technol Eng 52:387–392

    Article  CAS  Google Scholar 

  • Zhang Q, Cui L, Wang P, Deng C, Wang Q, Fan X (2017) Improving properties of silk sericin membranes via enzymatic oxidation with laccase and TEMPO. Biotechnol Appl Biochem 65(3):372–380

    Article  CAS  Google Scholar 

  • Zhao Q, Qian J, An Q, Gao C, Gui Z, Jin H (2009) Synthesis and characterization of soluble chitosan/sodium carboxymethyl cellulose polyelectrolyte complexes and the pervaporation dehydration of their homogeneous membranes. J Membr Sci 333:68–78

    Article  CAS  Google Scholar 

  • Zhou H, Chen Y, Fan H, Shi H, Luo Z, Shi B (2008) The polyurethane/SiO2 nano-hybrid membrane with temperature sensitivity for water vapor permeation. J Membr Sci 318:71–78

    Article  CAS  Google Scholar 

  • Zhu Y, Wang Z, Zhang C, Wang J, Wang S (2013) A novel membrane prepared from sodium alginate cross-linked with sodium tartrate for CO2 capture. Chin J Chem Eng 21:1098–1105

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihir Kumar Purkait .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mondal, P., Purkait, M.K. (2021). Bio-based Polymeric Nanocomposites for Stimuli-Responsive Membranes. In: Hussain, C.M., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-40513-7_79

Download citation

Publish with us

Policies and ethics