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Abstract. Functional principal component analysis (FPCA) is a natu-
ral tool for investigating the functional pattern of functional data. Clus-
tering functional data using FPCA can be an important area in machine
learning for signal processing, in particular, for signals that contain a
deterministic component. Also, FPCA can be useful for analysis of ran-
dom signals if an appropriate transformation is applied. In this work, we
propose a novel approach by extracting key features of EEG signals in the
Fourier spectral domain using FPCA. By first transforming EEG signals
into their Fourier power spectra, the functionality of signals is greatly
enhanced. Due to this improvement, the application of FPCA becomes
much more meaningful in signal feature extraction. Our study shows a
great potential of using spectral domain FPCA as a feature extractor for
processing EEG signals in both epilepsy diagnosis and epileptic seizure
detection.

Keywords: Fourier power spectrum · Functional principal component
analysis EEG · Epilepsy diagnosis

1 Introduction

Feature extraction of high-dimensional data has been an important research area
in machine learning [2,7,8,27]. The traditional problem of feature extraction of
high-dimensional data focuses on the study of multivariate data with a goal of
reducing the dimensionality from the original observation domain to a feature
domain. This problem is typically encountered in two machine learning tasks,
clustering and classification, depending on whether the data labelling is available
or not. Clustering is an unsupervised learning technique that aims at group-
ing the multivariate data into a selected number of clusters, while classification
focuses on predicting the group membership of test data by first learning a math-
ematical model based on the training data and then using this model to make
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a prediction. The performance of clustering or classification is often affected by
the dimension of multivariate data. This is why the reduction of data dimension
is firstly considered in any given problem. Random signals such as EEG or finan-
cial time series are special type of high- dimensional data that often contain no
deterministic patterns. Instead, the pattern may appear to be stochastic, which
is often time dependent if the random signals are observations over time. More-
over, in real-world problems, most of the signals are non-stationary, which makes
the time dependency difficult to measure because of the instability or containing
too much uncertainty. Due to the fact of lacking a stable pattern that can be
modelled by some mathematical equations, the clustering or classification of ran-
dom signals directly within the original time domain is challenging. Therefore,
feature extraction of random signals is usually the most important step to meet
the success of classification or clustering [1,4,18,22,23], and the development of
new methodology for this type of problem becomes highly desirable.

In real-world applications of biomedical signal classification [5,9,13,14,17],
a low-dimensional and linearly or non-linearly separable feature vector is highly
desirable for both, the ease of data visualization in medical devices and the
possibility of using simple classification methods, such as a linear classifier or
the k-nearest neighbour (k-NN) method. To meet this goal, there is a lot of
current research focusing on feature extraction of signals in the time domain
using sparse representation of signals [28]. The idea of sparse representation is to
approximate a given signal using a set of basis functions and to obtain a number
of coefficients related to the approximation. The obtained coefficients of basis
functions are used as signal features. The further study of signal characteristics
is then based on these extracted features. However, a set of time domain basis
functions used for approximating a given signal may not be a good choice for
another signal, thus the extracted features may appear to be extremely volatile.
This may lead to a low performance when using these extracted features in
applications. To overcome this, the focus of sparse representation of signals has
been moved from the time domain to other single or multiple domains. Among
many published research works, the time-frequency domain decomposition is
the most popular one within this type of approach. It decomposes the signal
in terms of time and frequency domain components. By extending the analysis
from a single domain to multiple domains, the separability of signal features is
often significantly improved and the classification based on extracted features
in both time and frequency domains will outperform a single domain approach
[6,12].

For sparse representation of signals, either in time domain or time-frequency
domain, the objective is to achieve an explainable or low-dimensional feature
vector, so that classification or clustering of signals becomes easier in feature
domain [24]. When these signals contain deterministic patterns and the signal to
noise ratio is high, they are typically referred to functional data. The functional
data can be in spatial domain, temporal domain or both. Some examples of
functional data include, but are not limited to images, temperature data, and
growth curves [15,16,20]. To study functional data, functional data analysis
(FDA) is a natural tool, due to its capability of capturing stable, and observable
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deterministic patterns contained in the data. In [25], we have used functional
data analysis and applied functional summary statistics, functional probes and
functional principal components to both epileptic EEG signals without seizure
and non-epileptic signals. We have demonstrated that feature extraction through
the functional data analysis is able to produce low-dimensional and explainable
features so that signals of different types can be discriminated. In this extended
work, we will further present the results using the epileptic EEG signals with
seizure onset. We will focus on the study of using functional principle component
analysis by providing more technical details. In particular, we will provide on
discussion of the effect of number of basis functions retained in functional PCA
for clustering. Also, we will demonstrate the application of the proposed method
for both the epilepsy diagnosis and epileptic seizure detection [10,11,21,26].

This paper is organized as follows. In Sect. 2, we discuss the proposed methods
including Fourier power spectra and functional principal component analysis. In
Sect. 3, the analysis of publicly available EEG data and summary of main results
are presented. Finally, we conclude our findings and provide further remarks in
Sect. 4.

2 Methods

2.1 Fourier Power Spectra

To define the Fourier power spectra of signals, we have to first apply the Fourier
transformation. For a given signal Xt of length n, sampled at discrete times, the
discrete Fourier transform (DFT) is defined as

d(ωj) = n−1/2
n∑

t=1

Xte
−2πiωjt, (1)

for j = 0, 1, . . . , n − 1, and the frequency ωj = j/n. Transforming the signal
by discrete Fourier transform allows to obtain a concentration of signal powers
using a small set of more dominant frequencies. This means that one is able to
focus on a selected ωj and its transformed values d(ωj) only. The signal powers
that correspond to the selected frequencies provide us a first layer of feature
extraction, and due to the focus on the selected frequencies, the feature sparsity
is achieved. However, direct use of Fourier transformed values for the given signal
is very inconvenient, because they are complex numbers. A signal periodogram
is then created to avoid this difficulty. The periodogram for each frequency ωj

is defined as



6 S. Xie and A. T. Lawniczak

I(ωj) = | d(ωj) |2 =
1
n

n∑

t=1

n∑

s=1

(Xt − X̄)(Xs − X̄)e−2πiωj(t−s)

=
1
n

n−1∑

h=−(n−1)

n−|h|∑

t=1

(Xt+|h| − X̄)(Xs − X̄)e−2πiωjh

=
n−1∑

h=−(n−1)

γ̂(h)e−2πiωjh, (2)

where γ̂(h) is the auto-covariance function of time lag h. From the statistical
point of view, auto-covariance function plays a role of capturing the stochastic
pattern of a given signal, which refers to the time dependence structure. There-
fore, our approach is not on extracting deterministic pattern in original time
domain. This makes our approach to be significantly different from the sparse
representation of signals or time frequency decomposition methods. Instead, we
aim at first extracting the key signal features, by transforming them to an auto-
covariance function, so that the periodogram can be obtained. Notice that the
periodogram I(ωj) is just the Fourier transform of the auto-covariance function,
which captures the quadratic covariation of the lagged signals in the spectral
domain. I(ωj) is also called a power spectrum of a signal Xt. Because of its defi-
nition, the periodogram captures the distribution of covariation of a signal in the
spectral domain. The larger is a value of the periodogram, the more dominant
is its corresponding frequency. Thus, the dominant values determine the signal
power spectra. Often these more dominant frequencies correspond to smaller
frequency values, which implies that local patterns are more significant than the
global one, after the signal is transformed into the spectral domain. Because of
this, in this work, we will only focus on the analysis of the power spectrum in a
sub-interval, i.e. we will analyze only the first 200 frequency values for the given
signals.

To illustrate the points stated above, we present a set of results of the power
spectra for selected different types of EEG signals in Fig. 1. One can clearly see
that the power spectra of the first 200 frequency values behave similarly within
each set of data, but their patterns look differently over different frequency val-
ues. In particular, we observe that the signal powers for high frequency values
are still high for both the signals from the set D and the set E, but they are
significantly decayed for both the set B and the set C. This observation inspires
us to consider the functional representation of signal power spectra, as the func-
tionality of signals within each set is now significantly enhanced when compared
to the original time series plots. However, as we can see from Fig. 1, the power
spectra for each set of signals are still very noisy and further smoothing may
be required, in order to achieve a better performance on clustering of extracted
features.
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Fig. 1. Sample plots of the power spectra for data sets B (Normal: Eyes Open), C
(Non-epileptogenic zone), D (Epileptogenic zone) and E (Seizure onset), respectively.
Each plot contains three sample power spectra of the first 200 frequency values. This
Figure appears in the proceeding of ICPRAM 2019 [25].

2.2 Functional Representation of Signal Power Spectrum

Our discussion on the signal power spectra in the previous section shows that,
they are in fact noisy and further processing is required before we can extract
the signal features for clustering. Otherwise, the extracted signal features may
be distorted by such noises and a performance of further clustering may not be
ideal. Also, a signal is often sampled at a discrete time and further processing
is required to make it functional. Equipped with functional data analysis, we
can model the power spectrum of a signal with discrete observations by a linear
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Fig. 2. The plots of functional power spectra for data sets A (Normal: Eyes Closed) and
B (Normal: Eyes Open), respectively, with different choices of K value. 10 B-splines
basis functions are used to smooth sample power spectra.

combination of a set of continuous basis functions. This makes feature extraction
of signals to be more mathematically tractable. For a given ith signal, we can
expand the power spectrum Ii(ω) by

Ii(ω) =
K∑

k=1

αikφk(ω), (3)

where ω is the frequency value, αik is the coefficient of the kth basis function
and K is the total number of basis functions. Since our objective is not to fully
represent a power spectrum using a set of functional basis, K is assumed to be
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Fig. 3. The plots of functional power spectra for data sets C (Non-epileptogenic zone)
and D (Epileptogenic zone), respectively, with different choices of K value. 10 B-splines
basis functions are used to smooth sample power spectra.

finite and relatively small. That is, we approximate the power spectrum by a
linear combination of K basis functions, but for the ease of explanation, we use
an equal sign in Eq. (3). However, from the computational perspective, K being
finite is always true, as the total number of basis functions needed to approximate
the power spectrum is less than the total number of frequency values that we
focus on. Notice that, within the discussion of this section, we do not isolate
the mean function from the representation of signal. In the later discussion, we
will separate the mean function from the signal expansion because of the need
of studying functional variation.
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Fig. 4. The plots of functional power spectra for data sets E (Epileptic Seizure), with
different choices of K value. 10 B-splines basis functions are used to smooth sample
power spectra.

When considering a sample of N signals, that is i = 1, 2, . . . , N , in the above
Eq. (3), the matrix notation of these power spectra becomes

I(ω) = Aφ(ω), (4)

where I(ω) = [I1(ω), I2(ω), . . . , IN (ω)]� is a column vector of length N and φ(ω)
= [φ1(ω), φ2(ω), . . ., φK(ω)]� is a column vector of length K containing the
basis functions. A is the coefficient matrix of the size N × K, i.e.

A =

⎡

⎢⎢⎢⎣

α11 α12 α13 . . . α1K

α21 α22 α23 . . . α2K

...
...

...
. . .

...
αN1 αN2 αN3 . . . αNK

⎤

⎥⎥⎥⎦ . (5)

Notice that, the set of basis functions φ(ω) can be different for various groups
of signals, however, given the fact that we will be considering signals that share
many commonalities in the spectral domain, it is reasonable to use the same set of
basis functions. This allows us to extract signal features within the same feature
space. So, in this work, we will hypothesize that signals can be represented by
using the same set of basis functions.

2.3 Functional Probes

The descriptive methods such as functional mean, functional variance or func-
tional covariance allow us to see functional central tendency and functional vari-
ation patterns. However, they may be functional and high-dimensional as well.
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Fig. 5. The plots of extracted probe values using mean function of power spectrum of
Set D as the functional probe for data sets A (Normal: Eyes Closed, Black), B (Normal:
Eyes Open, Red), C (Non-epileptogenic zone, Green) and D (Epileptogenic zone, Blue),
respectively. (Color figure online)

If this is the case, for classification purpose, a dimension of these functional
descriptive statistics needs to be further reduced. As a possible dimension reduc-
tion method an application of functional probes may be considered. A probe ρξ

is a measure that allows us to see specific variation by defining a functional
weight ξ(ω) and it is defined as the inner product of functions ξ(ω) and I(ω).

ρξ =
∫

ξ(ω)I(ω)dω. (6)
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The ξ(ω) has to be structured so that we can extract specific features or mean-
ingful patterns of the variation in power spectrum I(ω). The probe values for ith
signal power spectrum using functional mean and functional standard deviation
of the jth group power spectrum are defined, respectively, as

ρĪij
=

∫
Ī(j)(ω)Ii(ω)dω =

K∑

k1=1

K∑

k2=1

αik1 ᾱ
(j)
k2

∫
φk1(ω)φk2(ω)dω, (7)

ρSij
=

∫
S
(j)
Ii(ω)

Ii(ω)dω. (8)

The functional probe values capture the similarity between the weight func-
tion and the ith power spectrum of a signal. Using functional mean as a probe,
when the basis functions are orthogonal, i.e.,

∫
φk1(ω)φk2(ω)dω = 0, for k1 �= k2,

and
∫

φ2
k(ω)dω = 1, for k = 1, 2, . . ., the probe values become

ρĪij
=

K∑

k=1

αikᾱ
(j)
k , (9)

and they can be interpreted as a similarity measure between two different groups
of signals in the spectrum domain, in terms of overall pattern. Unlike the case
of using functional mean as a probe, the closed form does not exist for the
probe values using functional standard deviation. In this work, we continue to
investigate how the extracted signal features (i.e., probe values) behave when
functional mean and functional standard deviation are used as the functional
probes. However, we focus only on one dimensional quantity. For two dimensional
patterns, we refer to [25].

So far, we have discussed functional probe values based on the power spec-
trum I(ω). If we replace I(ω) by v(ω1, ω2), i.e. by the variance-covariance func-
tion, then the functional probe value becomes

∫
ξ(ω2)v(ω1, ω2)dω2. (10)

This is exactly the left hand side of eigenequation for solving eigenvalues and
eigenvectors in functional principal component analysis. More discussion of this
type of probe will be provided later.

2.4 Classical Principal Component Analysis

In multivariate statistics, principal component analysis (PCA) of a p-variate
random vector X = (X1,X2, . . . , Xp) looks for a set of weight values, denoted by
ξj = (ξ1j , ξ1j , . . ., ξpj), so that, at the jth step, the variance of linear combinations
of variable Xi is maximized. That is,

V ar

( p∑

i=1

ξijX
(j)
i

)
(11)
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is maximized or in matrix notation, V ar(X(j)ξ�
j ) is maximized, where

X(j) = X(j−1) − ξ�
j−1X

(j−1), for j = 1, 2, . . . , p, (12)

where X(0) is defined as 0. This process is repeated for j = 1, 2, . . . , p, and at
each step, it is subject to

p∑

i=1

ξ2ij = 1 and
p∑

i=1

ξijξil = 0, for j < l, and 1 ≤ l, j ≤ p.

An alternative approach of finding a solution of ξj is by using a singular value
decomposition (SVD) of the data matrix X, which contains N realizations of
X. The solution of ξj is the jth eigenvector obtained from the SVD of the data
matrix X. In this work, the data matrix X becomes I(ω), which is a N × p
data matrix, where p is the total number of frequency values being considered.
Technically, the SVD of I(ω) is a factorization of the form UΣV, where U is a
N × N unitary matrix, Σ is a N × p diagonal matrix consisting of eigenvalues
of I(ω) and V is a p × p unitary matrix. The columns of U and the columns
of V are called the left eigenvectors and right eigenvectors of I(ω), respectively.
Also, each column of V is just the weight vector ξj . The feature extraction of
data matrix I(ω) becomes a problem of computing I(ω)ξ�

j , for j = 1, 2, . . . , p.
For example, the first principal component scores set is I(ω)ξ�

1 , and the second
principal component scores set is I(ω)ξ�

2 , etc.
We should also realize that the objective function in PCA can be rewritten

as ξjX�Xξ�
j , assuming that vector X is centred. In this case, X�X becomes

the variance - covariance matrix. The vector ξj is still the eigenvector that is
associated with the variance and covariance matrix. All of these can help us
understand the relationships among the functional probe, PCA and the func-
tional PCA, which will be discussed later. Notice that, the functional probes
discussed above aim at capturing the variation of data associated with the weight
function. If we carefully select the functional weight ξ(ω), so that, the variance
of functional probe values in (6) is maximized, subject to the constraint that∫

ξl(ω)ξj(ω)dω = 0 for l �= j, and
∫

ξ2j (ω)dω = 1, then it becomes the functional
PCA. In this case, the functional probe values are the principal component scores
and the weight function becomes functional principal component loadings.

2.5 Functional Principal Component Analysis

So far, we have explained how functional probe and classical principal component
analysis work in analyzing the power spectra of random signals. We have also
mentioned that when principal component analysis is combined with functional
probe, it leads to functional principal component analysis. That is, functional
principal component analysis is a typical statistical analysis procedure that aims
at maximizing the functional probe values with the use of variance-covariance
matrix as an input to functional probe.
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Suppose that the power spectrum of a given signal can be expanded using K
basis functions and it is given as follows:

Ii(ω) = μ(ω) +
K∑

k=1

βikφk(ω), (13)

where μ(ω) is the functional mean of power spectrum. Here, we consider an
approximation of Ii(ω) rather than exact representation of the function using
infinite number of basis functions. Of course, we can not rule out the possibility of
having a very large K in representing a signal, but in this work, we will consider
a sparse representation of the power spectrum. Also, obtaining the functional
mean of power spectrum requires an estimate. Without loss of generality, we can
simply take the grand mean over all ω, denoted by μ0, as an estimate, so that
the Eq. (13) becomes

Ii(ω) = μ0 +
K∑

k=1

βikφk(ω), (14)

or in a matrix notation
I − μ = Cφ, (15)

where μ = (μ0, μ0, . . . , μ0)�, φ = (φ1, φ2, . . . , φK)�, and the coefficient matrix C
is N × K that can be written as a matrix:

C =

⎡

⎢⎢⎢⎣

β11 β12 β13 . . . β1K

β21 β22 β23 . . . β2K

...
...

...
. . .

...
βN1 βN2 βN3 . . . βNK

⎤

⎥⎥⎥⎦ .

Now, we will describe how to obtain the function principal components and
their scores. First, let us denote the variance-covariance function of the power
spectra I by v(ω1, ω2). In a matrix notation this function is defined as

v(ω1, ω2) =
1

N − 1
φ�(ω1)C�Cφ(ω2).

To solve for the eigenfunction, first we have to solve the following eigenequation
for an appropriate eigenvalue λ

∫
v(ω1, ω2)ξ(ω2)dω2 = λξ(ω1). (16)

Suppose that the eigenfunction ξ(ω) has an expansion

ξ(ω) =
K∑

k=1

bkφk(ω), (17)

or in matrix notation
ξ(ω) = φ�(ω)b, (18)
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where b= (b1, b2, . . . , bK)�. This yields
∫

v(ω1, ω2)ξ(ω2)dω2 =
1

N − 1

∫
φ�(ω1)C�C

φ(ω2)φ�(ω2)bdω2.

=
1

N − 1
φ�(ω1)C�CΦb, (19)

where Φ=
∫

φ(ω)φ�(ω)dω is the matrix that is given as follows:

Φ =

⎡

⎢⎢⎢⎣

∫
φ1φ1dω

∫
φ1φ2dω . . .

∫
φ1φKdω∫

φ2φ1dω
∫

φ2φ2dω . . .
∫

φ2φKdω
...

...
...

...∫
φKφ1dω

∫
φKφ2dω . . .

∫
φKφKdω

⎤

⎥⎥⎥⎦ .

The eigenequation in (16) becomes

1
N − 1

φ�(ω)C�CΦb = λφ�(ω)b. (20)

Since (20) must hold for all ω, this implies that the following matrix equation
must hold

1
N − 1

C�CΦb = λb. (21)

To obtain the required principal components, we define u = Φ1/2b and the
Eq. (21) becomes

1
N − 1

Φ1/2C�CΦ1/2u = λu. (22)

By solving the symmetric eigenvalue problem for u in (22), and then computing
b = Φ−1/2u to get the eigenfunction ξ(ω), we get that

ξ(ω) = φ�(ω)Φ−1/2u. (23)

Solving the eigenvalue problem in (22) will produce K different eigenfunctions
and their corresponding eigenvalues which we denote by (λj , ξj(ω)).

If φk(ω) are orthonormal, then Φ becomes the K × K identity matrix and
the eigenanalysis of the functional PCA problem in (21) reduces to

1
N − 1

C�Cb = λb,

which is the multivariate PCA that replaces variance-covariance matrix by the
coefficient matrix C obtained from the function approximation of power spec-
trum. However, one should realize that this is not a standard multivariate PCA.
From the discussion above, a multivariate PCA conducts eigenanalysis for a
p × p covariance matrix. With function approximation using K basis functions,
the eigenanalysis of functional PCA is applied to K×K coefficient matrix, which
depends on the value of K. In case of sparse approximation, which gives a small
value of K, solving an eigenequation is much more efficient from the point of
view of computational complexity.
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2.6 B-Spline as Functional Basis

In this work, we choose the spline function as functional basis which is called
B-spline [3,19]. B-spline has been used very often in numerical analysis to
approximate a function or a surface. Assume that there is a sequence of non-
decreasing real numbers (i.e., tk ≤ tk+1), such that t0 ≤ t1 ≤ . . . ≤ tN−1,
and N is the length of a signal. We call the set {tk | k ∈ Z} a knot set and
each value tk is referred to as a knot. Next, we define the augmented knot set
t−v+2 = . . . = t0 ≤ t1 ≤ . . . ≤ tN−1 = tN . . . = tN+v−2, where v is the order of
the B-spline. We have appended the lower and upper indexes because of the use
of recursive formula of the B-spline. Furthermore,we reset the index, so that the
new index in the augmented knot set becomes k = 0, 1, . . ., N +2v − 3. For each
augmented knot tk, k = 0, 1, . . . , N + 2v − 3, we define B-spline recursively as
follows:

Bk,0(x) =

{
1, if tk ≤ x < tk+1

0, otherwise

Bk,j(x) = γk,j+1(x)Bk,j(x) + [1 − γk+1,j+1]Bk+1,j(x), (24)

for j = 0, 1, . . . , v − 1, where

γk,j+1(x) =

{
x−tk

tk+j−tk
, if tk+j �= tk

0, otherwise
.

Fig. 6. The results of principal component scores and eigenvalues of power spectra
for C (Non-epileptogenic zone, Green), D (Epileptogenic zone, Blue) and E (Epileptic
seizure onset, Light Blue). (Color figure online)

After this recursive process, the maximum number of non-zero basis functions
is N , and they are denoted by B1,v−1, B1,v−1, . . ., BN,v−1, and they are called
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B-spline basis functions of v − 1 degree. If the number of interior points of the
knot set, denoted by N∗, is smaller than N − 2, then the total number of basis
functions is K =N∗ + v. When v = 4, these functions are called cubic B-spline
basis functions. In this work, we assume

φk(a) = Bk,3(a), for k = 1, 2, . . . , N∗ + 4.

So, the maximum number of basis functions used in this work is K = N∗ + 4.

Fig. 7. The evolution of extracted first two principal component scores of power spectra
under different choices of K for data sets A (Normal: Eyes Closed, Black), B (Normal:
Eyes Open, Red), C (Non-epileptogenic zone, Green) and D (Epileptogenic zone, Blue).
(Color figure online)
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2.7 Feature Extraction by Functional Principal Component
Analysis

After the jth eigenfunction ξj(ω) is obtained, we can extract the principal com-
ponent scores, denoted by Pj , for the given power spectrum I(ω) as follows

Pj =
∫

I(ω)ξj(ω)dω, j = 1, . . . ,K. (25)

Subsitituting (15) and (23) to the equation above, we get

Pj =
∫

(μ + Cφ(ω))φ�(ω)Φ−1/2ujdω.

=
∫

μφ�Φ−1/2uj +
∫

Cφφ�Φ−1/2uj

= μΦ−1/2uj + CΦ−1/2uj .

Thus, P1 is the first principal component score vector of the N power spectra of
signals, and P2 is the second principal component score vector, and so on. One of
the strengths of using PCA is retaining a small number of principal components,
so that, the dimension of feature vector is low. Using the functional PCA on the
Fourier power spectra, we have been able to focus on only the first two PCs for
clustering the EEG signals.

3 Results

In this study, we use the same data set as in [25], which is from the Univer-
sity of Bonn, Germany (http://epileptologie-bonn.de/cms/front content.php?
idcat=193), but we extend our study by including the set E. We focus on both the
epilepsy diagnosis and the epilepsy seizure detection problems. From the results
displayed in Figs. 2 and 3, one can see that the numbers of basis functions have
a significant effect on the shape of the power spectra. When K = 10 is used to
smooth out the power spectra, then the smoothed signal power spectra behave
similarly for both types of signals, one coming from healthy people (sets A and
B) and another one coming from patients for which the signals were collected
from a non-epileptogenic zone (set C). However, there are still some differences
that we can see among the graphs. This may suggest that further classification
is needed based on these power spectra to recognize the differences hidden in the
power spectra. Also, one can see that the power spectra of signals collected from
patients’ epileptogenic zone (set D) are more volatile and look different from the
signals of healthy people. However, they share some commonalities with signals
from the set C. These differences become more clear when the number of basis
functions is K = 50. It is understood that when the values of K increase, the
smoothed power spectra tend to capture more of the local patterns. This makes a
significant difference between different sets of signals. Furthermore, the patterns
of power spectra associated with signals from patients with seizure onset (set E)

http://epileptologie-bonn.de/cms/front_content.php?idcat=193
http://epileptologie-bonn.de/cms/front_content.php?idcat=193
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are completely different from other types of signals. From Fig. 4, one can see that
there is no clear functionality in the power spectra and with the decrease of K
values the overall pattern among the power spectra is still not recognizable. This
may suggest the ease of clustering this type of signals from the others. Overall,
the graphical display offers some evidence that suitable clustering methods may
differentiate these types of signals successfully. In particular, we can aim for the
clustering between the sets A and B, this allows us to see the differences caused
by artifacts. We can also combine the signals from healthy people, i.e. the sets
A and B, and combine the signals from patient without seizure onset, i.e. the
sets C and D, in order to see if there is a clustering effect between patients’
EEGs and healthy people’s EEGs. However, one question still remains. Should
the clustering be based on the one that leads to significant overall difference,
or the one that offers big difference in local patterns within the power spectra?
This question will be answered later in the analysis of the evolution of extracted
features.

To further reduce the dimensionality of the power spectrum and its functional
mean and its functional standard deviation, the functional probe values are
calculated based on the inner product of a selected functional mean and a given
signal power spectrum. The results using functional standard deviation as a
weight function are also studied. In our study, the best results, in terms of
separability of features, are the ones that use the functional mean calculated
from the set D. Using the functional mean as a probe, we extract a single-
dimensional feature vector from a given signal power spectrum. Figure 5 clearly
display the pattern, which shows a great separability of extracted features (i.e.,
functional probe values), due to the dimension reduction. We observe that the
artifacts (i.e., eyes open or eyes closed) associated with the healthy people can
be identified when mapping the power spectra of signals on the power spectra of
epileptic signals (i.e., set D signals). Using only a single dimension of features, the
separation of signals can be achieved for the set A and the set B. Similarly, these
single dimension features are highly separable for other cases. This may suggest
that the functional probe approach has certain merits in automatic clustering of
different types of EEG signals.

To demonstrate the application to epileptic seizure detection, we use func-
tional PCA to extract the principal components of the power spectra of signals
from the sets C, D and E. From the results one can see if there exist some dom-
inant signal components. Additionally, the corresponding scores can be used for
clustering. The obtained results are displayed in Fig. 6. From Fig. 6(a), one can
see that the extracted features for non-seizure signals (sets C and D) and seizure
signals (set E) form into clusters and they are linearly separable in first PC.
Figure 6(b) display that, the first eigenvalue is very dominant, which explains
why the extracted features are highly separable in the first PC. This implies
that the extracted first PC scores can be successfully classified using a simple
classification method, such as k-NN. The second PC scores are not helpful in
contributing to the cluster effect as they are completely overlapped. We further
investigate the effect of the number of basis functions (i.e., K) on the sepa-
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rability of extracted signal features (i.e., principal component scores of power
spectra). The proposed method is applied to signals from sets A, B, C and D
only by varying the value of K. The obtained results are displayed in Fig. 7. We
observe that the proposed method is highly successful in separating the artifacts
(i.e., open/closed eyes) as the results did not depend on how the number of basis
functions was selected. The feature separability increases with the decrease of K,
i.e. the number of basis functions. This may suggest that the sparsity in approx-
imation of the signal power spectra plays an important role in the success of
applying functional principal component analysis. When K = 50, the extracted
features for epileptic signals overlap significantly. This overlapping changes when
K decreases, and features start to be fully separable when K is relatively small,
for example, around 20. When K = 5, the obtained results are considered to
be optimal in the sense of feature separability. However, the overall separabil-
ity between healthy and epileptic signals is not affected by the number of basis
functions. This may suggest that applying the proposed methods to the epilepsy
diagnosis problem can be a successful tool, which allows separating the healthy
and patient signal.

4 Concluding Remarks

Clustering and classification of high-dimensional data are important aspects in
both pattern recognition and artificial intelligence. To be successful in dealing
with clustering and classification, dimension reduction of high-dimensional data
plays an important role. In this work, we focus on the study of using feature
extraction as a dimension reduction approach. We use EEG signals to illustrate
our proposed methodologies. We first transform EEG signals to the spectral
domain to obtain their power spectra. Next, we apply functional principal com-
ponent analysis, which is considered to be a special case of functional probe, to
further investigate the characteristics of the signals and to extract their features
for clustering. We have demonstrated that functional principal component anal-
ysis in spectral domain is useful for better understanding of different types of
EEG signals. Furthermore, the extracted features can be used for signal classi-
fication. We have also investigated the effect of sparsity on the performance of
separating signal features. We have observed that the separability of extracted
features is significantly improved, when the number of signal components used
for approximating the power spectra decreases. This may imply that the sparse
approximation for signal approximation in spectral domain is a necessary step
for better performance of signal clustering. From an application perspective,
the obtained results demonstrate that the proposed method may be useful for
both epilepsy diagnosis and epileptic seizure detection. Future work will focus
on the study of wavelet spectral domain functional PCA and its application to
clustering general random signals such as financial time series.
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