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Abstract  As growth and adoption of the Internet of Things continue to 
accelerate, cloud infrastructure and communication service providers 
(CSPs) need to assure the efficient performance of their services while 
meeting the Quality of Service (QoS) requirements of their customers and 
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their end users, while maintaining or ideally reducing costs. To do this, 
testing and service quality assurance are essential. Notwithstanding this, 
the size and complexity of modern infrastructures make real-time testing 
and experimentation difficult, time-consuming, and costly. The RECAP 
Simulation Framework offers cloud and communication service providers 
an alternative solution while retaining accuracy and verisimilitude. It com-
prises two simulation approaches, Discrete Event Simulation (DES) and 
Discrete Time Simulation (DTS). It provides information about optimal 
virtual cache placements, resource handling and remediation of the sys-
tem, optimal request servicing, and finally, optimal distribution of requests 
and resource adjustment, with the goal to increase performance and con-
currently decrease power consumption of the system.

Keywords  Simulation • Discrete event simulation • Discrete time 
simulation • Resource allocation • Capacity planning • CloudSim • 
CloudLightning Simulator • Distributed clouds

5.1    Introduction

In this chapter, an overview of the RECAP Simulation Framework which 
comprises two different simulation approaches is outlined and discussed—
Discrete Event Simulation (DES) and Discrete Time Simulation (DTS). 
The RECAP Simulation Framework offers two approaches to recognise 
the characteristics, requirements, and constraints of cloud and 
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communication service providers. As such, the RECAP Simulation 
Framework offers a solution for (1) SMEs and large hyperscale cloud and 
network operators, and (2) providers requiring rapid less-detailed simula-
tion results and those requiring a more-detailed simulation.

DES focuses on aggregating each incoming request in the form of 
events, regarding their entry timestamp, and usually in a pipelined man-
ner. These events are stored in an initialised list of tasks, retained in mem-
ory and augmented with each incoming task. In order to accommodate all 
this information, the required resources and especially memory require-
ments are significant and large. Thus, DES is suitable for simulating 
smaller and intensively detailed scenarios, in order to maintain accuracy at 
high levels. DTS on the other hand provides the potential to simulate 
larger scenarios with its ability to scale up significantly. This is feasible due 
to the fact that DTS does not need precomputation and storage of future 
events; it uses a time-advancing loop, where the requests are entering the 
system in respective time steps during the simulation. This results in a 
significant reduction in memory requirements, providing significant 
improvements in the ability to scale up the simulation. DTS does not offer 
the level of detail of DES, but it can be a useful and accurate tool for simu-
lating real large-scale scenarios, while maintaining resource consumption 
on reasonable levels.

In this chapter, a high-level overview of the RECAP Simulation 
Framework is presented and discussed. This is followed by a brief overview 
of the RECAP DES framework, followed by a short case study illustrating 
its applicability for cloud infrastructure and network management. Then, 
the RECAP DTS framework is presented with a short case study illustrat-
ing its applicability for simulating virtual content distribution networks.

5.2    High-Level Conceptual Overview 
of the RECAP Simulation Framework

The RECAP Simulation Framework facilitates reproducible and control-
lable experiments to support the identification of targets for the deploy-
ment of software components and optimising deployment choices before 
actual deployment in a real cloud environment. It was designed specifically 
to simulate distributed cloud application behaviours and to emulate data 
centre and network systems across the cloud-to-thing continuum.
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Figure 5.1 presents a high-level conceptual overview of the RECAP 
simulation framework comprising the following components: Simulation 
Experiment Models, Application Programming Interface (API), 
Simulation Manager, and Model Mappers for DES and DTS simulators.

The system monitoring data obtained from the RECAP Data Analytics 
Framework (presented in Chap. 2) are used to compile the Simulation 
Experiment Models:

•	 Application Model: represents the application components and their 
connections and behaviour, i.e. application load propagation and 
operational model;

•	 Infrastructure Model: describes the physical infrastructure (network 
topology and (physical and virtual) machines’ configurations) where 
the application will be hosted;

•	 Workload Model: describes how the workload generated by the users 
is distributed and processed by the application components; and,

•	 Experiment Configuration: where the simulation user configures the 
simulation parameters, such as simulation time, simulation time step, 
log files, and input files.
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Fig. 5.1  High-level conceptual overview of the RECAP simulation framework
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The RECAP Optimisation Framework makes use of the RECAP 
Simulation Framework to evaluate different application deployments and 
infrastructure management alternatives in terms of cost, energy, resource 
allocation, and utilisation, before actuating on real application deploy-
ments. This integration is done through an API that receives the models, 
the experiment configuration, and the set of simulation scenarios, and 
sends them to a web-based REST API. Depending on the type of API call, 
the experiment is forwarded to the RECAP DES or DTS simulator. Once 
simulation is completed the results can be accessed from the chosen stor-
age method, e.g. local CSV files or a database.

5.3    Discrete Event Simulation

5.3.1    Overview

Discrete Event Simulation (DES) is a system modelling concept wherein 
the operation of a system is modelled as a chronological sequence of events 
(Law et al. 2000). DES-based decision support processes can be divided 
into three main phases: modelling, simulation, and finally, results analysis. 
During the modelling phase, a simulated system is defined by grouping 
interacting entities that serve a particular purpose together into a model. 
Once the representative system models are created, the simulation engine 
orchestrates a time-based event queue, where each event is admitted to the 
defined system model in sequence. An event represents actions happening 
in the system during operation time. Depending on the event type, the 
system reaction is simulated, and associated metrics captured. These met-
rics are collected at the end of the simulation for results analysis. Therefore, 
system behaviour can be examined under different conditions. Using DES 
is beneficial in a complex real non-deterministic small-to-medium-sized 
system environment (SME) where the system definition using mathemati-
cal equations may no longer be a feasible option (Idziorek 2010).

5.3.2    The RECAP DES Framework

The RECAP DES Framework captures system configurations by using 
Version 3 of the Google Protocol Buffers technology.1 This 
implementation approach was chosen to ensure model schema would 

1 https://developers.google.com/protocol-buffers/
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remain programming language-neutral allowing serialised models to be 
used across multiple language platforms such as Java, C++, C#, or Python. 
In addition, Protocol Buffers are simple and faster to use and are smaller 
in size compared to XML or JSON notations. Speed and file size of the 
model are important when dealing with large-scale systems by managing 
the memory footprint of simulation framework and sending data over a 
RESTful web API client.

As shown in Fig. 5.2, the RECAP DES simulator root element is the 
Experiment class which contains nested system models, the name identifier 
of the simulation experiment, and its parameters used by the simulation 
engine, i.e. Duration, Granularity, PlacementPolicy, ConsolidationPolicy, 

Fig. 5.2  DES simulation model data format (inputs)
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AutoScalingPolicy and RequestRoutingPolicy. The Duration parameter 
defines the length of the simulation experiment in simulated time while 
the Granularity is a multiplier for the number of requests represented by 
a single simulation event. Placement, consolidation autoscaling, and 
request routing policies are optional attributes which specify the name of 
any resource management policies which can be integrated within the 
simulator. In addition, the Experiment class contains nested Infrastructure, 
Workload, and ApplicationLandscape models, which describe edge to 
cloud system composition and behaviour.

The Infrastructure model captures the hardware characteristics of a dis-
tributed network and computes hardware locations. Each ResourceSite 
component in the model represents a virtualised cloud/edge/fog data-
centre location which is geographically distributed with Location class 
containing latitude and longitude spatial information. Nested 
NetworkSwitch, NetworkRouter and Node model components capture net-
work bandwidth, latency, and compute resource (CPU, memory, storage) 
capacity at each location.

The Workload model contains mappings between devices and requests 
devices made to the system. The Device system component has Name and 
ID attributes as well as a time-dependent Location array and an array of 
Requests. Each Request component describes a request of the device (user) 
made to the system at a specific geographical location. The Request attri-
butes capture the time of the request, amount of data to transfer, type of 
data, and application model API where the request is destined for.

The ApplicationLandscape component contains information on the 
applications running in the virtualised infrastructure. Each application can 
be composed of multiple interconnected components, and each applica-
tion component can have multiple functions expressed through an API 
definition; hence in the model, we have Application, Component, and API 
classes describing the relationships. The model assumes a one-to-one rela-
tionship between the application component and a Virtual Entity (VM or 
Container) it is deployed to. Therefore, the Component class also contains 
the Deployment class describing which hardware node it is deployed to and 
a VeFlavour class specifying what resources it requires.

The simulation results, called outputs, are also arranged in a structured 
form using Protocol Buffers. The proposed format structure is captured 
within a class diagram shown in Fig. 5.3.

The ExperimentResult root class splits into two arrays of simulated sys-
tem behaviour metrics: ResourceSiteMetrics and ApplicationMetrics. As the 
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name suggests the ResourceSiteMetrics class contains information on hard-
ware utilisation and ApplicationMetrics contains information on applica-
tion performance metrics. The subclass NodeMetrics stores per-node 
metrics of CPU, memory, storage, and power utilisation. The subclass 
LinkMetrics stores each link utilisation bandwidth. Similarly, the subclass 
ComponentMetrics captures utilisation of resources per individual virtual 
entity besides including a response time metrics for end-to-end application 
performance in the upper ApplicationMetrics class. All of the measure-
ments are captured at regular time intervals, hence attributes in the 
Utilisation class list time and the actual utilisation value. The Utilisation 
class is built as an abstract and can be extended to fit different types of 
measurements.

Once the models are created based on the desired system parameters, 
they can be then loaded into the RECAP DES Simulator. The RECAP 

ExperimentResults

ResourceSiteMetrics ApplicationMetrics

+ Name:string
+ ID:string

+ nodesMetrics:NodeMetrics
+ linksMetrics:LinkMetrics

+ Name:string
+ ID:string

+ componentMetrics:ComponentMetrics
+ ResponseTime:Utilization

+ Name:string
+ ID:string

+ cpuUtilization:Utilization
+ memoryUtilization:Utilization
+ storageUtilization:Utilization
+ powerUtilization:Utilization

+ vCpuUtilization:Utilization
+ vMemoryUtilization:Utilization
+ vStorageUtilization:Utilization

Utilization

NodeMetrics

LinkMetrics ComponentMetrics

+ Name:string
+ ID:string

+ linkUtilization:Utilization

+ time:double
+ utilisation:double

+ ExperimentId:string
+ siteMetrics:ResourceSiteMetrics

+ applicationMetrics:ApplicationMetrics

Fig. 5.3  DES simulation results format (outputs)

  M. SPANOPOULOS-KARALEXIDIS ET AL.



101

DES Simulator is based on CloudSim2 with a custom DES implementa-
tion in the back-end. To load, read, and query the simulation input mod-
els and output results shown in Figs. 5.2 and 5.3, Google Protocol Buffers 
library provides auxiliary methods ensuring ease of use.3

5.3.3    Cloud Infrastructure and Network Management: 
A RECAP DES Framework Case Study

To illustrate how the RECAP simulation and modelling approach can be 
used by communication service providers, we present the application of 
the RECAP Simulation Framework for mobile technology service man-
agement within fog/cloud computing infrastructure. This case study is 
based on automated services and infrastructure deployment (using virtual 
network functions (VNF)), automated orchestration, and optimisation 
services to reach the desired QoS for the different network services. We 
model distributed infrastructure and a VNF service application chain using 
the RECAP DES Framework.

5.3.3.1	 �Infrastructure Model
The infrastructure simulation model was designed and implemented to 
capture available physical characteristics of real edge infrastructure and 
used input from the infrastructure models described in Chap. 4. It consists 
of several sites that are interconnected by links between each other. Each 
Site entity in the model represents a location that is hosting network and/
or computing equipment, such as switches, routers, and computing nodes. 
NetworkSwitch and NetworkRouter capture attributes of bandwidth and 
latency while Nodes in addition to bandwidth also capture properties of 
CPU, Memory, and Storage. For the simulation experiments, physical 
infrastructure for 45 distributed sites was modelled; each site contains a 
router for handling inbound and outbound internet traffic and two 
switches handling control plane and user plane traffic separately. This 
meant that any traffic that is received or transmitted from the site is tra-
versing through the router and internal traffic between physical hosts and 
is flowing through routers only. The user plane switch was assigned 40 
Gbps bandwidth and control plane switch 1 Gbps where routers were 

2 http://www.cloudbus.org/cloudsim/
3 The methods are well documented in tutorials widely available for a range of program-

ming languages: https://developers.google.com/protocol-buffers/docs/tutorials
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assigned 100 Gbps. Bandwidth assumptions were made based on the data 
gathered from testbed experiments and correspond to the volume of traf-
fic observed. In addition, links between sites were assigned additional 
latency delays proportionate to the distance between locations; hence, 
requests sent between sites take more time to arrive.

5.3.3.2	 �Application and Workload Propagation Model
Application behaviour for the simulation is realised by implementing a 
modelling concept that captures data flow through multiple intercon-
nected, distributed, components. Each component is represented as a vir-
tual entity (VM or container) that is assigned to a physical machine in a 
site and has access to the portion of resources.

Application behaviour logic is realised through multiple interconnected 
API elements that each component has. The API represents a model 
object that holds information on resource demand and connection to the 
next component in line, thus forming a logical path between different 
application components. The current use case is based around NFV para-
digm, and the used VNF chain is of a virtualised LTE stack which consists 
of user data plane and control data plane virtual components:

•	 eNodeB user plane denoted as CU-C
•	 Mobility Management Entity control plane denoted as MME-C
•	 eNodeB control plane denoted as CU-U
•	 Serving Gateway-User plane denoted as SGW-U
•	 Packet Data Network Gateway-User plane denoted as PGW-U

For example, Fig. 5.4 graphically describes one of the possible applica-
tion topologies where application components like CU-C, CU-U, SGW-
U, and PGW-U are located on one site and component MME-C is located 
on another site. In this example, both user plane download (green) and 
upload (red) requests are executed on one site, but the control plane 
(blue) requests require to travel to another site to be processed resulting 
in longer processing delays. When a request arrives at a component, based 
on the API parameters number of resources are requested from the hard-
ware to process this request. Once the appropriate amount of resources is 
available, the request is sent further in the system according to the API 
connection path. During the simulation experiments, 1482 different 
application configurations (placements) were generated and combined 
with the infrastructure model and corresponding workload models.

  M. SPANOPOULOS-KARALEXIDIS ET AL.
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The workload simulation model was implemented to capture the num-
ber of end-user devices that use the system for the duration of the simula-
tion experiment. The model contains an array of devices each containing 
multiple requests. Furthermore, each request contains information on the 
arrival time, the size of the request, and application information for its 
destination. The number of users varies depending on the VNF placement 
on the infrastructure sites. More densely populated areas have more users, 
and this aspect is reflected in the workload models; hence, each placement 
experiment has a bespoke number of users. User-request parameters were 
based on the data gathered from testbed experiments, and an average of 
the quantity and size of the request was done, along with defining them 
into three categories User Download, User Upload, and Control. As shown 
in Table 5.1, on average data download request in user plane is 13,927 
bits and user makes 2808 requests per hour. For data upload requests user 
sends around 224 requests per hour each of 8572 bits in size and finally 
control plane administrative requests were taken as a fracture of upload 
traffic and amount to 6 requests per hour each 219 bits in size.

DES simulations were executed in concurrent batches of 5 parallel runs 
on a dedicated VM in a testbed. The VM configuration was set to 8 CPU 
cores, 64  GB of RAM, and 500  GB attached volume storage. Each 

Fig. 5.4  Application simulation model example
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simulation experiment was set for 3600-second duration of simulated  
time and on average took around 30 seconds of wall clock time to 
complete.

The simulation results were analysed using utility functions with the 
total resource utilisation and the cost of the allocated machine serving as 
the provider utility with equal weighting, along with the network band-
width consumed and total latency serving as the customer utility with 
equal weighting. The mathematical formulation of these utility functions 
is available in Chap. 4. Our goal was to minimise resource utilisation util-
ity, latency utility, and cost utility while maximising network bandwidth 
utility. The total utility for the placement was then defined as an equally 
weighted sum of normalised provider and customer utility.

5.3.3.3	 �RECAP DES Results
Results showed that by fixing the provider utility or customer utility, there 
is further scope to maximise the corresponding utility by changing the 
placement distribution of the VNFs. This is highly beneficial for stake-
holders when making business decisions regarding the available infrastruc-
ture. These decisions map back to the values considered within the 
definition of both utility functions such as response time, bandwidth, 
latency, and utilisation costs.

5.4    Discrete Time Simulation

5.4.1    Overview

Discrete Time Simulation (DTS) is a simulation technique based on a 
time-advancing loop of predefined starting and ending time. The defined 
time step is a portion of time values (usually seconds) that the user has the 
ability to set before the execution. During each time step, potential new 

Table 5.1  Average val-
ues of user requests

Request type Requests per  
user per hour

Request  
size (bits)

User download 2808 13,927
User upload 224 8572
Control 6 219
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requests/events enter the system from the defined entry points. The major 
advantage of DTS is that no precomputation and storage of future events 
are needed, thus resulting in a significant reduction in memory consump-
tion requirements. This also suggests the possibility to dynamically allo-
cate simulated resources based on current computational load.

5.4.2    The RECAP DTS Framework

The RECAP DTS simulation framework is based on the CloudLightning 
Simulation Platform, which is designed to simulate hyperscale heteroge-
neous cloud infrastructures (Filelis-Papadopoulos et al. 2018a, b). It was 
built using the C++ programming language utilising OpenMP to exploit 
parallelism and acceleration in computations where applicable. The 
RECAP Simulation Framework focuses on optimally placing VMs as 
caches or containers in a network while taking into account efficient 
resource utilisation, reduction of energy consumption and end-user 
latency, and load balancing for minimisation of network congestion.

The CloudLightning Simulation Platform was developed to simulate 
hyperscale environments and efficiently manage heterogeneous resources 
based on Self-Organisation Self-Management (SOSM) dynamic resource 
allocation policies. The simulated cloud architecture is based on the 
Warehouse Scale Computer (WSC) architecture (Barroso et al. 2013). It 
manages to maintain a simplistic approach by utilising models that do not 
demand extremely high computational effort and, at the same time, main-
tain accuracy at adequate levels. The utilisation of a time advancing loop, 
rather than a discrete sequence of events, enables the potential to use these 
dynamic resource allocation techniques while also providing high scalabil-
ity due to the lack of restrictions in memory requirements.

A brief summary of the basic characteristics of the CloudLightning 
Simulation architecture is as follows. The gateway lies at the topmost level 
on the master node and the cells, which are connected directly to the gate-
way, hosted on separate distributed computing nodes at a lower level. 
Each cell is responsible for the underlying components, such as cell’s bro-
ker, network, telemetry, and finally, hardware resources. Key responsibili-
ties of the gateway are (1) communication with the available cells, in the 
essence of data transport, fragmentation, and communication of the task 
queues between the cells with the appropriate load balancing on each time 
step; and (2) receiving and maintaining metrics and cells’ status, amongst 
others. From the cell’s perspective, the key responsibilities are (1) the 
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aforementioned communication with the gateway, including simulation 
parameters and initialisation of the underlying components, and addition-
ally, sending status and metrics’ information to the gateway; and (2) task 
queue receipt on each time step, finding the optimal component with the 
required available resources, utilising the SOSM engine, and finally, exe-
cuting the tasks.

Considering the above, many CloudLightning Simulator components 
were adopted for the RECAP Simulation Framework including power 
consumption modelling, resource utilisation (vCPU, memory, storage), 
and bandwidth utilisation. Some of the most important differences 
between the two frameworks are: (1) the focus of the RECAP Simulator 
which is on the optimal cache placement in the network, and (2) the dif-
ference in task servicing, and specifically in task deployment to the avail-
able nodes. The CloudLightning Simulator utilises a Suitability Index 
formula and is based on the required weights communicated by the gate-
way to the underlying components. The most appropriate node is assigned 
with the incoming task, by adopting a first-fit approach. The RECAP 
Simulator, on the other hand, utilises caches with the corresponding con-
tent placed in the network. In order to assign a task to a respective node, 
it performs a search for the optimal available node, which offers, in excess, 
the required resources while adequately handling network congestion. 
Experimental results of the CloudLightning Simulator demonstrated that 
it can accurately handle simulations of hyperscale scenarios with relatively 
low computational resources. This is particularly suitable for large distrib-
uted networks that many Tier 1 network operators manage.

5.4.3    Network Function Virtualisation—Virtual Content 
Distribution Networks: A RECAP DTS Case Study

Traditional Content Distribution Network (CDN) providers occasionally 
install their hardware, such as customised hardware caches, in third-party 
facilities or within the network of an Internet Service Provider. BT has 
such a scenario, which the RECAP DTS simulator utilises as a case study. 
BT’s main activities focus on the provision of fixed-line services, broad-
band, mobile and TV products and services, and networked IT services as 
well. BT hosts customised hardware caches from the biggest CDN opera-
tors in their network. Considering the fact that it would be extremely 
hard, for sensitive reasons, for content providers to install their hardware 
in many locations across the UK in the edge nodes of BT’s network (also 
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known as Tier 1 MSANs (Multi-Service Access Nodes)), there lies the 
need to provide an alternate solution. In order to ensure the required QoS 
for their virtual network functionalities, the introduction of a Virtual 
CDN (vCDN) provides a beneficial approach, which aims to replace the 
presence of multiple physical caches in the network, with standard servers 
and storage providing multiple virtual applications per CDN operator. BT 
accomplishes that, by installing the appropriate compute infrastructure at 
its edge nodes (MSANs) and thus offering a CDN-as-a-Service (CDNaaS). 
In this way, operational costs are significantly declined and additionally, 
the content is stored in virtual caches closer to end user, thus minimising 
end-user latency and maximising user experience.

5.4.3.1	 �DTS Architecture and Component Modelling
The topological architecture is divided in four tiers, in a hierarchical order 
namely MSAN, Metro, Outer-Core, and Inner-Core, in a total number of 
1132 nodes; more information on infrastructure architecture is provided 
in the next subsection. Note that in order to maintain efficient simulation 
accuracy, a specific time interval is selected, at which all the components 
update their status. This provided the opportunity to reduce computa-
tional cost, but it is essential to mention that the choice of the interval 
value is critical. A small interval can lead to huge computational effort and 
reduce performance, while a large interval can lead to major accuracy 
leaks, considering that whole requests could be missed during the status 
update process. Considering all these, the RECAP DTS framework pro-
vides the essential scalability for the current use case. The ambition is to 
improve the efficiency of vCDNs systems by replacing multiple custom-
ised physical caches running multiple virtual applications per CDN 
operator.

Figure 5.5 depicts the DTS architecture optimised to simulate a vCDN 
network. The Graph Component is responsible for the input topology of 
the simulation, which is fed to the component as an input file in Matrix 
Market storage format. The structure is stored as a Directed Acyclic Graph 
(DAG) in the component, in the form of a sparse matrix, with the number 
of rows being the total number of sites and each row, the ID of a site. 
More specifically, it is stored both as a Compressed Sparse Row (CSR) and 
Compressed Sparse Column (CSC) format which results in a faster tra-
verse of the available connections. These connections are indicated by off-
diagonal values and point to links with lower level sites, while the diagonal 
values denote the level/tier of the respective site.
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All the available sites are retained in a vector of sites, where a site is an 
object of the Site class which contains a number of attributes. Each site has 
a unique ID value and a type value, indicating the tier of the respective site. 
Furthermore, a two-dimensional vector retains the available connections 
input and output to the immediate upper and lower level respectively. 
Note that in case of the first level there are no input connections, and simi-
larly, there are no output connections in case of the last level. Another 
vector retains the output bandwidth of the output connections as double 
precision values (Gbps). All the attached nodes, of predefined type, to the 
site are also retained in a vector and contain resource information such as 
CPU, Memory, and Storage. These nodes are mostly utilised by the power 
consumption component. In addition to nodes, there is a list of the hosted 
VMs deployed to the nodes of each site and provide same information 
with the addition of Network. Additionally, a map, which contains the 
cached content in the VMs, is used in order to simplify and speed up the 
search of specific content type or available VMs. All the cache hits and 
misses are also stored into a vector; these refer to all active VMs hosted by 
a single site. Lastly, a site can forward requests to sites at a higher tier, due 
to lack of VMs or insufficient resources in them. These forwarded requests 
are also retained in a list and have an impact only on the network band-
width of the site.

The Content Component retains all the potential information referring 
to the type of content a VM in a site can serve. Specifically, this information 
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includes minimum and maximum duration of each type of content and the 
requirements that need to be met by the VM in order to serve it. Also, the 
probability of a cache hit for each type of content and maximum number 
of requests that can be served are included. The requirements of each type 
of cached content request is provided by the ratio of the VM require-
ments of this specific request to the aforementioned maximum number of 
requests the VM can serve.

The requests are generated by the Request Creation Engine, which is 
responsible for the insertion of a group of requests to the system in each 
time step. This component is based on a uniform distribution generator, 
which produces requests of each type of content and duration between a 
given interval denoting the minimum and maximum requests permitted in 
a time step. Each request contains the following information: duration of 
the request, type of content, and the site from which it enters the system. 
For each of the inserted requests, a path (list of sites) is formed showing 
the flow the content will follow in order to reach the user. During path 
creation, each site traversed and is appended to the end of the list; this 
continues until a cache hit occurs or otherwise. If the last element is not a 
cache hit, the request is rejected. When a cache hit occurs, the content 
flows downwards from that site to all sites of the path of a lower tier until 
it reaches the user.

During each time step, the duration of all requests is reduced until it 
reaches zero, at the point they are considered served and can be discarded 
from the system, thus freeing up resources. This procedure takes place in 
each site as well as in the site’s nodes and VMs that update their status. 
This is where OpenMP provides acceleration of the computations on 
shared memory systems. Each site is independent; thus, they can be 
assigned to the available threads and their status updated without any 
interference. During each time step, each site checks its current status, 
duration of requests, any new additions, or any finished, and respectively 
adjusts available resources. This procedure has no data traces, as sites are 
independent. Thus, this computational-intensive process, considering the 
number of sites and the huge number of time steps can be performed in 
parallel, saves significant amount of time and increases performance. Apart 
from status update, at each time step, another component is also used, the 
Power Consumption Component. This calculates the power/energy con-
sumption of the site’s nodes depending on their type (Makaratzis 
et al. 2018).
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Power consumption along with other metrics is stored in the last com-
ponent, the Statistics Engine which is deployed at specific time intervals. 
It contains all metrics of the vCDN network and each site generally. 
Metrics include the aforementioned power consumption, cache hits and 
misses, and other stats per level such as cumulative accepted and rejected 
requests per level, average vCPU, Memory, Storage, and Network utilisa-
tion per level. The Statistics Engine outputs these metrics to files at each 
specific time interval. Note again that accurate selection of this interval is 
critical otherwise it can lead to either huge writing effort (in the case of a 
small interval) or under-sampling (in the case of a large interval).

5.4.3.2	 �Infrastructure Model
The considered vCDN system is hierarchical and has sites located at four 
different levels: (1) inner core, (2) outer-core, (3) metro, and (4) Multi-
Service Access Node (MSAN), as illustrated in Fig. 5.6.

The physical network topology is composed of 1132 sites. Each site can 
host physical machines (nodes) that, in turn, can host vCDNs containing 
content requested by customers. Moreover, each site has predefined 
upload and download bandwidth as well as inbound and outbound con-
nections. The general structure of a site is given in Fig. 5.7.

Each node inside a site can host multiple VMs and each VM services 
specific content. However, multiple VMs can service the same content if it 
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is requested by a large number of users, since each VM has predefined 
capacity to service customer.

5.4.3.3	 �Application and Workload Propagation Model
Each type of content (content with different sizes) characterises a VM. For 
example, content of type j is serviced by a specific VM with predefined 
characteristics described above. Thus, each type of content has its unique 
accompanying requirements. Moreover, each user of a specific content 
requires predefined bandwidth and occupies the system for a variable 
amount of time lying between predefined intervals. For each type of con-
tent, the requirements in terms of VMs as well as per user bandwidth are 
defined. The same content can be hosted in several VMs on the same site, 
since the number of users requiring a specific type of content serviced by 
a VM is limited. The characteristics of content include required vCPUs 
per VM, required memory per VM, required storage per VM, maximum 
number of customers per VM, network bandwidth required per VM at full 
capacity.
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Outbound connection

VM 1 VM M…
Node N

VM 1 VM M…
Node 1

…

Content 1

Content C

…

Fig. 5.7  A site architecture of DTS
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Regarding the creation of VMs, the DTS should offer two options:

	1.	 Static: In this case, no new VM can be created during a simulation. 
This requirement comes from Infrastructure Optimiser that will use 
the RECAP Simulation Framework to decide placements; or

	2.	 Dynamic: In this case, every time a cache miss occurs at MSAN site, 
the requested content is copied to that given MSAN site. Moreover, 
when there is no user requesting a given content, this content (VM) 
is deleted from the node. If the node has no more available resources, 
then the request is rejected.

The Request Creation Engine (RCE) creates a series of requests based 
on random number generators following a preselected distribution such as 
Uniform, Normal, or Weibull. Each request performed by a user is consid-
ered to have predefined requirements with respect to content. Thus, all 
customers of a certain content type require the same amount of resources. 
However, customers requiring different content require a different 
amount of resources.

5.4.3.4	 �RECAP DTS Results
The results of this simulation are presented in detail in C.  K. Filelis-
Papadopoulos et al. (2019). In summary, we find that parallel performance 
(status update) is significantly increasing proportionally to the number of 
requests. In addition, resource consumption seems to reach stability, for 
all levels, by the time initial requests have finished execution. The lowest 
level contributes the most to resource and node underutilisation through 
request forwarding to upper layers as a result of probabilistic caching and 
single VM hosting. This leads to reduced active server utilisation and 
increased power consumption concurrently due to node underutilisation. 
Nevertheless, energy consumption is improved with the reduction of VMs 
on the lowest level; thus, these sites act as forwarders to the immediate 
upper layer. This impacts efficient resource utilisation in the upper layers, 
while they service more requests forwarded from the bottom tier.

Other experiments focused on different probabilities for a cache hit, 
such as 0.4 and 0.8. The former leads to requests servicing from the top-
most layer due to the fact that content requested is not potentially cached 
in the lower layers and thus a cache miss occurs and the requests are for-
warded. The latter increases the probability for a cache hit to occur and 
thus requests are serviced mostly from lower layers. More specifically, the 
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intermediate level serves a significantly increased amount of tasks. Note 
that, with 0.8 probability the energy consumption is considerably 
decreased when compared to the other two cases. Nevertheless, high 
probability denotes that the content is cached in a great portion of the 
distributed caches in the network, as the probability value acts as a mecha-
nism to transfer workload between the corresponding nodes and tiers of 
the network. Thus, potential deployment of virtual caches of specific con-
tent in great numbers could result in higher costs and storage require-
ments. On the other hand, lower probability denotes a significant reduction 
in virtual cache numbers, especially on lower levels. As discussed earlier, 
this results in higher service rates from the top layers and furthermore in 
potential network congestion due to increased data traffic in the links of 
the network, request rejection, and increased end-user latency in request 
servicing from nodes significantly further from the end users.

Finally, we performed experiments with an increased number of levels. 
The scalability performance results suggest that the simulator scales lin-
early with the number of input requests, considering the major increase 
(mostly two times) in memory requirements. The results illustrate that the 
framework is capable of executing large-scale simulations in a feasible time 
period even with significant memory requirements (as number of threads 
increases, the need of memory for local data storage also increases) and at 
the same time maintaining required high levels of accuracy. Thus, the 
RECAP DTS framework can be a useful tool for content providers to vali-
date their overall performance.

5.5    Conclusion

In this chapter, the RECAP Simulator Framework, comprising two simu-
lation approaches—DES and DTS, was presented. The design and imple-
mentation details of the RECAP simulation framework were given in both 
simulation approaches, coupled with case studies to illustrate their applica-
bility in two different cloud and communication service provider use cases. 
The main advantage of this framework is the fact that depending on the 
target use case requirements, an appropriate simulation approach can be 
selected based on a time-advancing loop or a discrete sequence of events. 
Thus, by providing this flexibility, focus can be given on the level of accu-
racy of the results (DES) or the scalability and dynamicity (DTS) of the 
simulation platform.
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From the experimentation performed, the RECAP simulation platform 
was capable of efficiently simulating both discrete event and discrete time 
use cases thus providing a useful tool for non-data scientists to forecast the 
placement of servers and resources by executing configurable prediction.
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Open Access   This chapter is licensed under the terms of the Creative Commons 
Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits use, sharing, adaptation, distribution and reproduction 
in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence and 
indicate if changes were made.

The images or other third party material in this chapter are included in the 
chapter’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the chapter’s Creative Commons 
licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder.
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