
27© The Author(s) 2020
T. Lynn et al. (eds.), Managing Distributed Cloud Applications
and Infrastructure, Palgrave Studies in Digital Business & Enabling
Technologies, https://doi.org/10.1007/978-3-030-39863-7_2

P. Casari (*) • R. García Leiva
IMDEA Networks Institute, Madrid, Spain
e-mail: paolo.casari@imdea.org; rafael.garcia@imdea.org

J. Domaschka • M. Leznik
Institute of Information Resource Management, Ulm University, Ulm, Germany
e-mail: joerg.domaschka@uni-ulm.de; mark.leznik@uni-ulm.de

T. Le Duc
Tieto Product Development Services, Umeå, Sweden
e-mail: thang.leduc@tieto.com

L. Närvä
Tieto Sweden Support Services AB, Karlstad, Sweden
e-mail: linus.narva@tieto.com

CHAPTER 2

RECAP Data Acquisition and Analytics
Methodology

Paolo Casari, Jörg Domaschka, Rafael García Leiva,
Thang Le Duc, Mark Leznik, and Linus Närvä

Abstract  The collection, analysis, and processing of infrastructure infor-
mation and telemetry data lie at the very heart of RECAP. This chapter
describes the infrastructure for the acquisition and processing of data from
applications and systems, and explains the methodology used to derive

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39863-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-39863-7_2#ESM
mailto:paolo.casari@imdea.org
mailto:rafael.garcia@imdea.org
mailto:joerg.domaschka@uni-ulm.de
mailto:mark.leznik@uni-ulm.de
mailto:thang.leduc@tieto.com
mailto:linus.narva@tieto.com

28

statistical and machine learning models from this data. These models are
then used to identify relevant features and forecast future values, and thus
inform run-time planning, decision making, and optimisation support at
both the infrastructure and application levels. We conclude the chapter
with an overview of RECAP data visualisation approaches.

Keywords  Data analytics • Data acquisition • Machine learning •
Application modelling • Infrastructure modelling • Distributed cloud
computing • Edge computing

2.1   Introduction

The collection, analysis, and processing of data (e.g., infrastructure infor-
mation and telemetry) lie at the very heart of RECAP and constitute a
crucial part of the entire RECAP system. Data make it possible to train
machine learning and data analytics algorithms in the analytics mode;
moreover, data provide the basis for run-time planning, decision making,
and optimisation support at both the infrastructure and the application
levels; finally, they can be used as calibration mechanisms for the RECAP
simulators. As such, the data acquisition and analytics methodology com-
prises (1) data acquisition, defining how to collect data from the RECAP
infrastructure and the applications running on top of it, how to store that
data, and how to provision it to the various parts of the RECAP ecosys-
tem; and (2) data analytics, defining how to access the data and create
usable models from it.

Accordingly, this chapter is structured as follows: Section 2.2 describes
the infrastructure for the acquisition and processing of data (both from
applications and from systems). This is followed by an overview of the data
analytics methodology in Sect. 2.3, including the development of mathe-
matical models to identify relevant features and forecast future values.
Section 2.4 provides an overview of visualisation in RECAP.

2.2   Data Acquisition and Storage

Data collection in RECAP serves three purposes: (i) to derive information
about the flow of messages (hence, the load in the application layer) and
use it to create workload and load transition models; (ii) to derive the
impact of the application layer behaviour on resource consumption on the

  P. CASARI ET AL.

29

physical layer; and (iii) to provide input to simulation and visualisation
components.

As shown in Fig. 2.1, RECAP makes use of a central data repository,
which serves as the single integration point for all elements of the RECAP
ecosystem, and as the primary source of data for other parts of the RECAP
platform.

In its databases, the repository stores information about: (i) time series
of load metrics, (ii) information about the configuration of the data centre
and virtual infrastructure, and (iii) information about the applications run-
ning on top of this infrastructure. While (i) is the primary focus of the
repository, (ii) and (iii) are additional metadata that enrich the time series
data and that help correlate time series of various metrics from different
layers of the system. As an example, metadata could help correlate infra-
structure metrics, such as CPU usage, with application performance met-
rics from the application layer, such as worker queue length.

Technically, the data repository cannot be realised as a single entity, as
it has to satisfy different requirements from various components. While
the data analytics and machine learning functionality in RECAP require
access to large chunks of CSV-formatted data, the visualisation compo-
nent requires the capability to flexibly query for data upon a user request.
Finally, other RECAP components require access to a live stream of data:
for instance, the optimisers constantly need to look up the current state of
the system. In consequence, a polyglot approach to persistence is required,
as will be presented in later in this chapter.

Fig. 2.1  Conceptual overview of data handling in RECAP

2  RECAP DATA ACQUISITION AND ANALYTICS METHODOLOGY 

30

2.2.1   Terminology

We now briefly cover the terminology that applies to the RECAP
Monitoring Architecture.

2.2.1.1	 �Metrics and Monitoring
Formally, a metric is a function that takes a system as input and yields a
scalar as a result. The application of a metric on a particular system is called
a measurement and the result of the application is called the value of that
metric. The unit of the value depends on the metric.

The monitoring process continuously (or periodically) applies metrics
to systems and generates a series of timestamped values. This is called a
time series (of a metric).

In order to distinguish values and time series that belong to the same
metric, but come from different systems, we allow values to be further
enhanced by metric properties (or tags). This enables values to be
grouped, leading to a time series for that tag.

As an example, the cpu_load metric, when applied to a server, yields the
current load of the central processing unit on that server. In order to be
able to distinguish values measured from server A from those measured
from server B, the value may be tagged with the tag origin that in this
example can take the values A and B. In total, this creates three time series:
one for A, one for B, and one for both servers.

2.2.1.2	 �Actors
Based on the context of RECAP and the requirements defined by the
project’s use case providers, the monitoring infrastructure assumes a
cloud-like environment where virtual resources (cloud resources) are
made available through a Web-based API.

A (cloud) operator or infrastructure provider provides the physical
resources on which virtual resources run. Physical resources may be geo-
graphically distributed, leading to a cloud-edge scenario. This actor is
responsible for maintaining the physical set-up and for running the soft-
ware stack that enables access to the virtual resources. The infrastructure
provider is also the actor that operates the RECAP infrastructure. Note
that communications service providers, such as telecommunications com-
panies, can also be cloud operators and infrastructure providers.

(Cloud) users access the virtual resources offered by the cloud pro-
vider. In Infrastructure-as-a-service clouds, they acquire virtual machines

  P. CASARI ET AL.

31

and virtual networks to operate their applications. This makes them
(application) operators and therefore also users of RECAP.

Finally, end users access the applications provided by the application
operator. Usually, they do not care where the application runs, as long as
it provides an acceptable quality of service and experience.

2.2.2   Monitoring Layers

Figure 2.2 illustrates the four layers that can be monitored in order to
derive insights on application behaviour and load propagation. Not all lay-
ers are required for all installations, so the set-up presented here is a super-
set of the possible set-ups.

The physical layer is provided by the infrastructure provider, and con-
tains the hardware used to run all higher layers. Here, monitoring metrics
mainly include CPU, RAM, disk, and network consumption at specific
points in time. The layout of the physical infrastructure is also important,
e.g. which servers share the same network storage or uplink to the Internet.
Figure 2.3 shows two data centre locations on the left and right hand
sides, each with a router. Both are connected through the Internet. The
infrastructure provides RECAP-aware monitoring support for the physical
layer and report measurements for the metrics.

physical
layer

virtual
layer

container
layer

application
layer

Load
Balancer

Application
server MySQL

Proxy

Master
DB

(write)

Slave
DB

(read)
Application

serverApplication
server

Slave
DB

(read)

Fig. 2.2  RECAP monitoring layers

2  RECAP DATA ACQUISITION AND ANALYTICS METHODOLOGY 

32

The virtual layer constitutes virtual infrastructure as realised for
instance by Infrastructure-as-a-Service (IaaS) clouds. This infrastructure is
composed of virtual machines, virtual storage, and virtual networks. It is
run by the application operator, which is responsible for the measurements
on that layer as well. Similar to the physical layer, metrics mainly include
CPU, RAM, disk, and network consumption, but several instances of vir-
tual infrastructure (to be monitored separately) can exist in the virtual
layer (cf. different colours in Fig. 2.2). Also, the number of virtual com-
ponents per virtual infrastructure as well as the number of virtual infra-
structures is not fixed, but can dynamically grow and shrink.

On top of the virtual (or physical) layer resides an optional container
layer such as a Kubernetes1 cluster or a Rancher Cattle2 cluster. Basically,
the same restrictions and considerations hold for this layer as for the vir-
tual layer. Yet, in contrast to both, the container layer can provide a seam-
less abstraction and hide the location of different data centres. Whether
containers are used is a design choice by application owners or cloud pro-
viders: containers can be offered by a cloud provider or be deployed by a
user on top of virtual machines.

1 https://kubernetes.io/
2 https://github.com/rancher/cattle

optimisation

location 2
RECAP entrypoint location 1 location 3

app

infra

Visualisation
Dashboard

data
dispatcher app

app

data lake
TSDB

stream emitter

app

infra

data
dispatcher app

app

data lake
TSDB

stream emitter

app

infra

data
dispatcher app

app

data lake
TSDB

stream emitter

APIVisualisation
Download

Fig. 2.3  RECAP’s distributed monitoring architecture

  P. CASARI ET AL.

https://kubernetes.io/
https://github.com/rancher/cattle

33

At the top resides the application layer where application- and
component-specific metrics can be applied. These include, for instance,
the queue length of load balancers, detailed statistics on the use of data-
bases, and the message throughput of a publish-subscribe system.
Application-specific metrics are important conveyors of KPIs or
QoS. Although the RECAP monitoring platform cannot define all possi-
ble application-level metrics to be captured, it provides a structure to mea-
sure and store application-level metrics.

2.2.3   Monitoring Architecture

The RECAP Monitoring Architecture collects and provides the monitor-
ing data from the four layers described earlier to the RECAP simulator,
run-time system, and users.

RECAP operators may manage infrastructure spread over several, geo-
graphically distributed locations. In each of these sites an edge or core/
cloud data centre resides. In order to limit data hauling across data cen-
tres, collected data are stored as close to their origin as possible. RECAP’s
acquisition and retrieval strategy takes these circumstances into account.
In the following, we first describe the acquisition and storage architecture
per site and then the overall architecture spanning different sites.

2.2.3.1	 �Single Site Monitoring Set-up
This section describes the monitoring set-up for each site in a RECAP
managed infrastructure. Each of the sites can run in isolation and is not
affected by traffic and load on other sites. The per-site architecture con-
sists of monitoring probes on the physical layer and on the higher layers of
the software stack. It also involves a data dispatcher that filters the incom-
ing data and relays it to three different data sinks: a data lake, a time series
database, and a data stream emitter.

Components
Probe: Probes convey monitoring data out of monitored systems.
Different probes may be necessary for different metrics, even though most
probes will perform measurements for multiple metrics. Each probe may
emit data in a different format and at different time intervals. In addition
to a timestamp and value, an emitted data item contains metric properties
to identify the source and scope of the data point. While it is the responsi-
bility of the infrastructure operator to provide probes for the physical

2  RECAP DATA ACQUISITION AND ANALYTICS METHODOLOGY 

34

layer, the cloud user shall provide the necessary metrics for higher layers of
the stack. All probes directly or indirectly send their data to the data
dispatcher.

Data dispatcher: The data dispatcher is a site’s central data monitoring
integration point. It receives and normalises all probe data and sends them
to the data sinks. Normalisation depends on the probes: an individual
transformation is needed per metric and per probe type. The dispatcher
adds site information and similar attributes to collected data.

The data normalised by the dispatcher are then put in the sinks. In
RECAP, different data post-processing demands exist with regard to the
monitoring subsystem. Feature engineering and data analytics in RECAP
operate on large data sets which need to be processed offline in dedicated
servers. Visualisation works on smaller datasets, but requires high flexibil-
ity in data provisioning. Finally, optimisers require a snapshot that repre-
sents the most recent state of the managed infrastructure. Therefore,
RECAP applies three different types of sinks:

•	 Data lake sink: accumulates large amounts of monitoring data in a
durable storage for a long time using a compact representation. This
data is the basis for data analytics and machine learning.

•	 Time series database sink (TSDB): stores monitoring data in time
series. Through an underlying indexed search engine, it supports live
queries of current and past data. It is the primary data source for the
visualisation components.

•	 Stream emitter sink: relays a configurable subset of live monitoring
data to other parts of the RECAP infrastructure. It is the primary
data source for the application optimisation and infrastructure opti-
misation engines, which decide on the metrics of interest and any
pre-processing (e.g. smoothing) to be applied.

A distinctive trait of RECAP is the “separation of concerns” between
application and infrastructure optimisation procedures. This makes it pos-
sible to accommodate the (often contrasting) objectives, costs and con-
straints of both application and infrastructure providers, and to harmonise
them as far as possible within the RECAP framework.

Practical Considerations
The dispatcher and all sinks are stateless and can be scaled to serve large
hardware installations, large amounts of users, and high volumes of data.

  P. CASARI ET AL.

35

Neither the architecture nor its implementation puts any restrictions on
where dispatcher and sinks can be run. Yet, in order to ensure a correct
interplay of the acquisition and storage components with other parts of
the RECAP infrastructure, the following constraints have to be considered:

	1.	 All kinds of probes at a site need to be able to connect to the dis-
patcher of that site either directly or indirectly.

	2.	 Both the TSDB and data lake sink need to be accessible from the
API component described later in Sect. 2.3.2.

	3.	 The stream emitter sink needs to communicate to other data cen-
tres, and particularly to the optimisation subsystem.

2.2.3.2	 �Cross-site Monitoring Set-up
As RECAP provides cross data centre resource and application manage-
ment, individual sites must be spanned to achieve a holistic view of the
system. The Monitoring Architecture achieves this by introducing a
RECAP entrypoint that may also be bound to a DNS name in order to
ease access, and includes a load balancer to point to the various sites man-
aged by this instance of RECAP.

Figure 2.3 provides an overview of the overall architecture of the moni-
toring infrastructure spanning sites. It shows three locations, one of which
functions as the RECAP entrypoint. Besides the local entities from Sect.
2.3.1, it shows the visualisation endpoints that offer a dashboard with
usage graphs as well as a GUI for bulk download of data from the data
lakes. The more generic API entity component serves as an integration
point for other RECAP components. In particular, the optimiser can use
it to configure the stream emitter sink which provides input to the optimi-
sation cycle or in order to access time series data from the TSDB.

As detailed earlier, the data lake sink is instantiated per site and can be
a distributed component that compresses and stores raw monitoring data.
Its primary purpose is to serve files for bulk download. As this storage
form is resource hungry, the monitoring infrastructure (1) switches off
persisting raw metrics on a per-site basis (this is beneficial if the site cannot
store larger amounts of data or no later data analysis shall be performed),
and (2) deletes or moves away data older than a certain age. While this
creates cross-site load, the fact that data is sent filtered and compressed
requires much less bandwidth than uncompressed probe data.

2  RECAP DATA ACQUISITION AND ANALYTICS METHODOLOGY 

36

2.2.4   Data Structure for Storage

This section introduces the actual data that is collected on the four layers.
We do not discuss the data sent by the various probes as RECAP does not
enforce the use of specific probes. Instead, it assumes that the dispatcher
performs probe-specific normalisation.

2.2.4.1	 �Metrics on the Physical Layer
The metrics gathered for the physical layer are split into seven metric sets
(cpu, diskio, filesystem, memory, vms, and vm). Each of the metric sets
contain several detailed metrics. The four metric sets host.cpu, host.diskio,
host.memory, and host.filesystem capture the detailed usage and utilisa-
tion of basic system resources (cpu, block devices, memory, file systems).
Instead, host.vms gives information about the virtual machines running
on a host, and the metrics from the host.vm metric set detail the resource
consumption per virtual machine.

We measure the resource consumption of a virtual machine from the
host to avoid the misinterpretation of numbers seen from inside the virtual
infrastructure. For example, a 100% CPU load seen inside the virtual
machine may not mean that the machine uses a full physical core. The
mapping of how many physical cores are represented by one virtual core
for this particular virtual machine is subject to the CPU scheduler on the
host/hypervisor and is heavily influenced by the overbooking factor of the
physical server. Hence, the physical layer needs to report on the physical
resource usage per virtual machine.

2.2.4.2	 �Metrics on the Virtual Layer
The metrics gathered at the virtual machine level (i.e. captured from
within a virtual machine) start with vm. and are basically the same as the
physical host except, for example, cpu.steal. In addition to resource con-
sumption, information about available containers is collected in the same
way as resource utilisation per container.

2.2.4.3	 �Metrics on the Container Layer
On the container level, we collect the very same metric sets and metrics as
for the virtual layer (cpu, diskio, memory, filesystem, and network). The
names of the metric sets start with container. instead of vm.

  P. CASARI ET AL.

37

2.2.4.4	 �Metrics on the Application Layer
Applications differ and so do the metrics that can and need to be collected
from them. In particular, the measurement gathering methods depend on
the application and its software components. Hence, the data format and
content for application metrics cannot be fixed in advance, and metric col-
lection must be part of the application lifecycle management.

A generic naming convention for application-level metrics is adopted in
RECAP with the format app.<app name>.<comp name>.<metric name>,
which includes the (system-wide unique) application name, the compo-
nent name (unique per application), and the metric name.

2.2.4.5	 �Metric Attributes: Tagging
So far, we have presented metrics per layer. Yet, with the information pro-
vided so far, it is not possible to distinguish data from different sources.
This is achieved via metric attributes that also enable data grouping and
correlation. For example, all metrics are tagged with the timestamp and
the layer (physical, virtual, container, application). All physical layer met-
rics are further tagged with the data centre location, the name of the phys-
ical host, and the name of the infrastructure provider. Metrics on the
virtual layer are enriched with information about the cloud they are run-
ning in, the current region they reside in, and their respective identifier.
Similarly, container metrics contain information about the container iden-
tifier. On all levels, specific attributes are added if required by the metric.
For instance, devicename helps distinguish network interfaces on physi-
cal hosts.

For application metrics, tagging needs to fulfil two orthogonal tasks: to
distinguish different instances of the same application (e.g. WordPress
installation for customer A and customer B), and to distinguish different
instances of an application component, e.g. a scaled out application server.
Hence, all application metrics are tagged with an application instance
identifier and a component instance identifier, both automatically assigned
by the platform and added by the RECAP data dispatcher system. If
needed, application owners can provide further tags.

Second, tagging needs to convey on what physical resource an applica-
tion or component was running. Therefore, all application metrics are
tagged with the type and identifier of the containing entity (e.g. virtual
machine or container).

2  RECAP DATA ACQUISITION AND ANALYTICS METHODOLOGY 

38

2.2.5   Implementation Technology

The implementation technology for the monitoring system chosen for
RECAP is largely based on experience gained from the FP7 CACTOS
project (Groenda et al. 2016) using an OpenStack testbed and production
system (bwCloud3) and from the Horizon 2020 Melodic project (Melodic
2019). Where possible, all technical building blocks were components
where technology was available under an open source and/or a commer-
cial licence. Finally, no chosen component makes any assumptions on the
technology of the other components, facilitating replacements and
upgrades.

The data dispatcher is realised through Elastic Logstash4 which offers
pipelines for receiving, processing, and dispatching a wide range of moni-
toring data. It comes with an extensive list of input plugins, including
software to accept TCP/UDP network traffic with JSON payload. Output
plugins range from time series databases and overwrites to the file system
to sending message streams through publish-subscribe platforms such as
Apache Kafka. Filters are provided for data curation and transformation.

The time series database sink is realised via an InfluxDB instance,
which supports both groups of metrics and metric attributes/tags. It also
supports continuous queries and data aggregation, and integrates well
with Grafana, an open source metric analytics and visualisation suite com-
monly used for visualising time series data for infrastructure and applica-
tion analytics.5

The stream emitter sink is realised by the Apache Kafka6 publish-
subscribe system, due to its wide adoption and well-known scalability.

The data lake sink is based on CSV files stored in a compressed format.
Probes: The entire monitoring subsystem is independent from the spe-

cific monitoring technology. This allows RECAP to integrate into existing
installations. Consequently, running RECAP does not require operators
to perform major updates on their infrastructure. Therefore, the mapping
from the data collected by the probes to the metrics schema must be
implemented for the dispatcher per probe type. Based on the RECAP
testbeds, a set of mapping rules have been implemented for specific probes.
In particular, this is the case for the Elastic Metric Beat metric collector to

3 https://www.bw-cloud.org/
4 https://www.elastic.co/products/logstash
5 https://grafana.com
6 https://kafka.apache.org/

  P. CASARI ET AL.

https://www.bw-cloud.org/
https://www.elastic.co/products/logstash
https://grafana.com
https://kafka.apache.org/

39

collect metrics on the physical and virtual layer, for Intel’s SNAP collector
to collect metrics on the virtual container and application layer, and for a
VMware vSphere7 collector.8

2.3   Data Analytics and Modelling

2.3.1   Data Analytics Methodology

In this section, we describe the RECAP methodology for the analysis of
datasets and the development of machine learning algorithms to support
the application of RECAP’s results to new problems related to optimal
resource allocation and capacity planning. The methodology is composed
of five main steps as outlined in Fig. 2.4.

2.3.1.1	 �Step 1: Problem Definition and Data Assembling
The initial steps are to identify the problem to be solved and the available
data that can help solve the problem through machine learning. In
RECAP we merged these steps into a single task due to their high interde-
pendence. If the available datasets are insufficient, we have to change our
expectations about the problem or find additional data. As an alternative,
we later explain how to enrich existing datasets with synthetic datasets
mimicking the same workload data collected from RECAP Use Cases.

2.3.1.2	 �Step 2: Metric for the Evaluation of the Results
Selecting the metric to evaluate the results of our model is critical, since
that metric is exactly what the training algorithm will optimise. If the out-
put of the model is a continuous variable, the Root Mean-Square Error
(RMSE) is a typical choice. In the case of a categorical response, typical
metrics are accuracy, or the area under the receiver operating characteristic
(ROC) curve (AUC).

There are multiple standard techniques to evaluate the performance of
a machine learning model and detect issues, such as overfitting, early.
These include train/test splits of the dataset, N-fold cross-validation, and
bootstrapping. In RECAP, we use train/test splits for the early model
prototyping, and apply a cross-validation to the final models before

7 http://www.virten.net/2015/05/vsphere-6-0-performance-counter-description/
8 https://github.com/Oxalide/vsphere-influxdb-go

2  RECAP DATA ACQUISITION AND ANALYTICS METHODOLOGY 

http://www.virten.net/2015/05/vsphere-6-0-performance-counter-description/
https://github.com/Oxalide/vsphere-influxdb-go

40

production. Techniques to avoid cross-validation altogether have also
been investigated as a promising research direction (García Leiva
et al. 2019).

2.3.1.3	 �Step 3: Data Curation and Enhancement
A data curation process to remove errors and anomalies and fix missing
data is an important preparatory step before training a model. A visualisa-
tion of the dataset and a descriptive analysis provides valuable information
about the quality of the data being used in the project. Outlier detection
or the identification of ‘Not Available’ values could be applied as well. It
might also be necessary to enhance the data by deriving new features
based on those that already exist. This data enrichment could significantly
improve the predictive capabilities of models.

Fig. 2.4  A summary
of the main steps of the
methodology for
exploratory data
analysis of new datasets

  P. CASARI ET AL.

41

2.3.1.4	 �Step 4: Model Development
Identifying the best model is often a daunting task in the presence of all
possible alternatives. For example, in the case of a classification problem,
we could apply techniques like K-means, decision trees, support vector
machines, or neural networks. Moreover, each technique could have dif-
ferent alternative configurations. An approach to speed up the selection of
the right family of models is to test the statistical power of the machine
learning techniques. This test consists of performing fast training of the
model, perhaps with a data subset, and in checking if the model has better
predictive capabilities than random guessing. Any family of models with
no predictive power should be discarded.

2.3.1.5	 �Step 5: Regularisation and Hyperparameter Selection
The final step of the methodology is to tune the model’s hyperparameters,
whose values must be set before the learning process begins. Hyperparameter
optimisation makes it possible to obtain the best predictive capabilities
from a machine learning model, at the price of a higher risk of overfitting.
Once hyperparameters have been optimised, the model can be applied to
test data never used during training and validation. A clear sign of overfit-
ting is then a divergence between test performance and validation
performance.

2.3.2   Exploratory Data Analysis

Descriptive statistics are metrics that quantitatively describe, characterise,
and summarise the features of a data set. Even when data analysis draws its
main conclusions using inferential statistics and predictive analytics,
descriptive statistics can be used to provide a summary of the types of data
involved in the use cases, and inform future inference and prediction steps.

Exploratory data analysis (EDA) is used to understand data beyond
formal modelling or hypothesis testing. EDA is useful to check assump-
tions required for model fitting, to handle missing values, and understand
the required variable transformations. Figure 2.5 shows an example of a
decomposition of a time series in order to visually identify trends and pos-
sible cycles. The top panel visualises the original time series. From this
data, we extract a trend (second panel), a seasonal component showing
clear cyclic behaviour (third panel), and a residual behaviour not explained
by trend and seasonal components (bottom panel). These exploratory
steps are helpful to inform the choice of time series prediction techniques.

2  RECAP DATA ACQUISITION AND ANALYTICS METHODOLOGY 

42

2.3.3   Workload Prediction

After a careful survey of the available literature in the field (Le Duc et al.
2019), three techniques were considered for the specific task of workload
prediction—probabilistic models, regression-based models, and machine
learning models.

2.3.3.1	 �Probabilistic Models
Probabilistic models are powerful tools to explain datasets, and are widely
used in statistics, traffic engineering, simulations, etc. To facilitate work-
load prediction in RECAP, we attempt to fit several probability density
functions to our datasets on a per-use-case basis. Parameter fitting is
obtained through Maximum-Likelihood Estimation, and the resulting
models are compared through the Kolmogorov-Smirnov test. The best
fitting model is finally chosen (an example for cache content pulling is
provided in Fig. 2.6).

2.3.3.2	 �Regression-based Models
Regression-based models are often simple and robust in generating pre-
dictions, and thus particularly suitable for offline modelling and prediction
tasks. In RECAP, we consider autoregressive integrated moving average
(ARIMA) models, which are composed of three parts. The AR part relies

Fig. 2.5  Decomposition of received traffic at a cache

  P. CASARI ET AL.

43

on the lagged values of the variable of interest; the MA part is actually a
linear combination of error terms whose values occurred in the past; and
the I part (for “integrated”) indicates that the data values have been
replaced with the difference between their values and previous values. We
also extend ARIMA models with seasonal components (SARIMA).

2.3.3.3	 �Machine-Learning-based Models
In order to facilitate fast online workload predictions in RECAP, we con-
sider the Online Sequential Extreme Learning Machine (OS-ELM), which
enables the generation of workload models and predictions online, and
can flexibly handle workload changes. OS-ELM is an efficient technique
for online time series modelling and prediction due to its accuracy compa-
rable to batch training methods and to its extremely fast generation of
predictions (Huang et al. 2005; Liang and Huang 2006). It accepts input
data either sample-by-sample or through varying- or fixed-size data chunks.

Different from other learning methods (e.g. single hidden layer feed-
forward neural networks), OS-ELM randomly initialises input weights
and updates output weights using the recursive least squares method. This
makes OS-ELM adapt quickly to new input patterns, and results into a
better prediction performance than other online learning algorithms (Park
and Kim 2017).

Fig. 2.6  Statistical distributions fitted to records of data sizes of pulled
cache content

2  RECAP DATA ACQUISITION AND ANALYTICS METHODOLOGY 

44

2.3.4   Artificial Workload Generation

RECAP is interested in the availability of datasets describing the evolution
of workloads of servers and services (applications), so that stochastic mod-
els can be trained to forecast future workloads. However, for reasons
including commercial sensitivity and privacy, such datasets may be insuf-
ficient for research tasks. This issue can be circumvented by generating
synthetic datasets that preserve the statistical properties of the datasets
collected from real infrastructures.

Here, we briefly introduce the mathematical models used to generate
artificial workload traces in RECAP. Relevant references are provided for
the interested reader.

2.3.4.1	 �Structural Models-based Workload Generation
Structural time series models are a family of stochastic models for time
series that includes and generalises modelling techniques, including
ARIMA or SARIMA models (Harvey 1989). A structural time series
model expresses an observed time series as the sum of simpler components:

	
f t f t f t f tn() = () + () +…+ () +1 2 

	

where ϵ is a white error term following a normal distribution of mean 0
and variance σ2.

For example, one component might encode a linear trend, a cycle, or a
dependence of previous values. Structural time series models identify and
encode assumptions about the processes that have generated the original
data. In this way, they make it possible to generate artificial data traces that
have the same statistical properties as the original datasets. The application
of a structural time series model to requests coming to a search engine
web server is shown in Fig. 2.7. We observe that predicted data (light
grey) mimic well the general characteristics of ground truth (dark grey).

2.3.4.2	 �GAN-based Workload Generation
Synthetic data generation using Generative Adversarial Networks (GAN)
has recently gained popularity. A GAN is based on a combination of two
neural networks, a discriminator (D) and a competing generator network
(G). In the training phase, D is trained to distinguish real data from gener-
ated data. In parallel, G is trained to fool D by producing better and better
fake data that D will eventually accept.

  P. CASARI ET AL.

45

In RECAP, the overall idea behind the use of GANs is twofold. Firstly,
using this approach provides a “what-if” analysis on a dataset, answering
such questions as “how would this workload look for a larger number of
nodes?” Secondly, the inherent training goal of a GAN is to estimate the
probability distribution of the training data and to generate synthetic sam-
ples drawn from that distribution. Hence, when applied to a real dataset,
the GAN learns to mimic its statistical properties.

2.3.4.3	 �Traffic-Propagation-based Workload Generation
RECAP implements five diffusion algorithms for workload generation.
These algorithms can be divided into two groups: non-hierarchical and
hierarchical workload diffusion. The former includes population-based,
location-based, and bandwidth-based algorithm; the latter includes
hierarchy-based and network-routing-based algorithm.

Diffusion algorithms can be applied in different use cases and under
different assumptions related to the network topology, network links’
capacity, and the distribution of users throughout the network. Given
these models, and real workload data traces collected as time series at a
limited number of locations, it is possible to produce workload traces for
any or all network locations.

Fig. 2.7  Simulated workload for a search engine

2  RECAP DATA ACQUISITION AND ANALYTICS METHODOLOGY 

46

2.3.4.4	 �Simulation System Model Data Sets
The role of simulation in the RECAP project is to go beyond the limita-
tions of an available testbed in terms of scale and complexity of experimen-
tations. Based on simulation, it is possible to generate synthetic datasets
consisting of two parts: large-scale models of a system that is being simu-
lated, and simulated behaviour measurements of the modelled system.
This is discussed further in Chap. 5.

2.4   Data Visualisation

Data visualisation empowers end users and data scientists to analyse and
reason about data and its features. With data visualisation, data sets pro-
duced by RECAP or collected from production systems of use cases are
transformed to be more accessible, understandable and consumable.
RECAP uses a range of visualisation tools which we will now discuss.

2.4.1   Visualisation for Data Analysis

To facilitate data analysis and reasoning, RECAP has adopted various visu-
alisation tools for data presentation, for instance the histogram, box plot,
and scatter plot. Upon dealing with heterogeneous data sets, the selected
tools enable both univariate and multivariate data visualisation, facilitating
corresponding data analysis methods applied to different data sets. To
illustrate the use of the visualisation tools as well as their facilitation of data
analysis, different visualisations of features extracted from a real data set
from a search engine are provided along with explanations of how each
visualisation helps retrieving insights into the data.

Figure 2.8 visualises univariate data (specifically, the serving time of
user requests in the given workload data set) in different forms. The histo-
gram provides the insight that the majority of user requests are served
within very short time periods. The observable data distribution suggests
a potential application of probabilistic modelling techniques is needed to
construct models of the feature for further analysis or workload genera-
tion. The box plot of this serving time feature shows a large number of
outliers exist in the data set. Further investigation is thus required for hints
on the construction of predictive models. Figure 2.9 visualises multivariate
data and shows a relationship between the response size and response time
of the user requests. This visualisation suggests a correlation analysis on
the data set is needed when addressing workload analysis and modelling.

  P. CASARI ET AL.

https://doi.org/10.1007/978-3-030-39863-7_5

47

2.4.2   Visualisation of RECAP Telemetry Data

The visualisation of telemetry data makes the status of the infrastructure
and applications operating on the infrastructure more comprehensible for
the operators at both application and infrastructure level. This becomes

Fig. 2.8  An exemplary presentation of serving time of requests in a workload
data set. (a) Histogram of serving time of user requests. (b) Box plot of serving
time of user requests

0

0

100

200

300

400

500

1000000 2000000 3000000

ResponseSize

R
es

po
ns

eT
im

e

4000000 5000000 6000000

Fig. 2.9  An exemplary presentation of a correlation of features in a workload
data set

2  RECAP DATA ACQUISITION AND ANALYTICS METHODOLOGY 

48

crucial for the automation of system (application and infrastructure) man-
agement, in which trust is required and can be established based on visu-
alisations illustrating the response of the system to the triggered and
ongoing management actions. In RECAP, telemetry data acquired from
use case testbeds and production systems need to be visualised in order to
aid the analysis of the workload and application behaviours as well as the
mutual dependencies between metrics or features of both the infrastruc-
ture and applications.

As discussed, to facilitate the visualisation, Grafana was used as a visuali-
sation tool. This is an open source tool with a large community and a wide
selection of plugins and pre-configured dashboards which accelerates visu-
alisation. Grafana has an easy-to-use interface with various graph visualisa-
tion techniques including line graphs, bars, heat maps, maps, and
architecture. It enables grouping various graphs into a single-view dash-
board and supports multiple dashboards to provide different perspectives
of a given data set. Figures 2.10 and 2.11 illustrate the snapshots of two
dashboards. The first includes multiple graphs showing resource utilisa-
tion of the core of a testbed deployed at Ulm University (UULM),
Germany, and the second illustrates the mobility and behaviour of users
emulated in a testbed deployed at Tieto, Sweden, in a study of Infrastructure
and Network Management.

Fig. 2.10  Snapshot of the dashboard for the testbed at UULM

  P. CASARI ET AL.

49

2.5   Open Data

The RECAP project adheres to the Open Data Pilot of the European
Commission. This means that the project committed to providing the
datasets required to reproduce the results in the project, unless this would
result in, for example, a breach of confidentiality for the dataset provider
or in the loss of intellectual property. Several datasets have been derived
and provided in the context of RECAP. These datasets are described in
RECAP’s Deliverable D5.3 and are available, where appropriate, at
RECAP’s website—https://recap-project.eu.

References

Le Duc, Thang, Rafael García Leiva, Paolo Casari, and Per-Olov Östberg. 2019.
Machine Learning Methods for Reliable Resource Provisioning in Edge-Cloud
Computing: A Survey. ACM Computing Surveys 52 (5): 94:1–94:39.

García Leiva, Rafael, Antonio Fernández Anta, Vincenzo Mancuso, and Paolo
Casari. 2019. A Novel Hyperparameter-Free Approach to Decision Tree
Construction That Avoids Overfitting by Design. IEEE Access 7: 99978–99987.

Groenda, Henning, et al. 2016. CACTOS Toolkit Version 2. CACTOS Project
Deliverable.

Harvey, A.C. 1989. Forecasting, Structural Time Series Models and the Kalman
Filter. Cambridge University Press.

Fig. 2.11  Snapshot of the dashboard for the testbed at Tieto

2  RECAP DATA ACQUISITION AND ANALYTICS METHODOLOGY 

https://recap-project.eu

50

Huang, Liang, et al. 2005. On-Line Sequential Extreme Learning Machine. The
International Conference on Computational Intelligence.

Liang, N.-Y., and G.-B. Huang. 2006. A Fast and Accurate Online Sequential
Learning Algorithm for Feedforward Networks. IEEE Transactions on Neural
Networks 17 (6): 1411–1423.

MELODIC. 2019. Multi-cloud Management Platform. http://www.
melodic.cloud/.

Park, Jin-Man, and Jong-Hwan Kim. 2017. Online Recurrent Extreme Learning
Machine and Its Application to Time-Series Prediction. Proceedings of the
International Joint Conference on Neural Networks (IJCNN), Anchorage, AK.

Open Access  This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the chapter’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the
copyright holder.

  P. CASARI ET AL.

http://www.melodic.cloud/
http://www.melodic.cloud/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Chapter 2: RECAP Data Acquisition and Analytics Methodology
	2.1 Introduction
	2.2 Data Acquisition and Storage
	2.2.1 Terminology
	2.2.1.1	 Metrics and Monitoring
	2.2.1.2	 Actors

	2.2.2 Monitoring Layers
	2.2.3 Monitoring Architecture
	2.2.3.1	 Single Site Monitoring Set-up
	Components
	Practical Considerations

	2.2.3.2	 Cross-site Monitoring Set-up

	2.2.4 Data Structure for Storage
	2.2.4.1	 Metrics on the Physical Layer
	2.2.4.2	 Metrics on the Virtual Layer
	2.2.4.3	 Metrics on the Container Layer
	2.2.4.4	 Metrics on the Application Layer
	2.2.4.5	 Metric Attributes: Tagging

	2.2.5 Implementation Technology

	2.3 Data Analytics and Modelling
	2.3.1 Data Analytics Methodology
	2.3.1.1	 Step 1: Problem Definition and Data Assembling
	2.3.1.2	 Step 2: Metric for the Evaluation of the Results
	2.3.1.3	 Step 3: Data Curation and Enhancement
	2.3.1.4	 Step 4: Model Development
	2.3.1.5	 Step 5: Regularisation and Hyperparameter Selection

	2.3.2 Exploratory Data Analysis
	2.3.3 Workload Prediction
	2.3.3.1	 Probabilistic Models
	2.3.3.2	 Regression-based Models
	2.3.3.3	 Machine-Learning-based Models

	2.3.4 Artificial Workload Generation
	2.3.4.1	 Structural Models-based Workload Generation
	2.3.4.2	 GAN-based Workload Generation
	2.3.4.3	 Traffic-Propagation-based Workload Generation
	2.3.4.4	 Simulation System Model Data Sets

	2.4 Data Visualisation
	2.4.1 Visualisation for Data Analysis
	2.4.2 Visualisation of RECAP Telemetry Data

	2.5 Open Data
	References

