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CHAPTER 2

RECAP Data Acquisition and Analytics 
Methodology

Paolo Casari, Jörg Domaschka, Rafael García Leiva, 
Thang Le Duc, Mark Leznik, and Linus Närvä

Abstract  The collection, analysis, and processing of infrastructure infor-
mation and telemetry data lie at the very heart of RECAP. This chapter 
describes the infrastructure for the acquisition and processing of data from 
applications and systems, and explains the methodology used to derive 
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statistical and machine learning models from this data. These models are 
then used to identify relevant features and forecast future values, and thus 
inform run-time planning, decision making, and optimisation support at 
both the infrastructure and application levels. We conclude the chapter 
with an overview of RECAP data visualisation approaches.

Keywords  Data analytics • Data acquisition • Machine learning • 
Application modelling • Infrastructure modelling • Distributed cloud 
computing • Edge computing

2.1    Introduction

The collection, analysis, and processing of data (e.g., infrastructure infor-
mation and telemetry) lie at the very heart of RECAP and constitute a 
crucial part of the entire RECAP system. Data make it possible to train 
machine learning and data analytics algorithms in the analytics mode; 
moreover, data provide the basis for run-time planning, decision making, 
and optimisation support at both the infrastructure and the application 
levels; finally, they can be used as calibration mechanisms for the RECAP 
simulators. As such, the data acquisition and analytics methodology com-
prises (1) data acquisition, defining how to collect data from the RECAP 
infrastructure and the applications running on top of it, how to store that 
data, and how to provision it to the various parts of the RECAP ecosys-
tem; and (2) data analytics, defining how to access the data and create 
usable models from it.

Accordingly, this chapter is structured as follows: Section 2.2 describes 
the infrastructure for the acquisition and processing of data (both from 
applications and from systems). This is followed by an overview of the data 
analytics methodology in Sect. 2.3, including the development of mathe-
matical models to identify relevant features and forecast future values. 
Section 2.4 provides an overview of visualisation in RECAP.

2.2    Data Acquisition and Storage

Data collection in RECAP serves three purposes: (i) to derive information 
about the flow of messages (hence, the load in the application layer) and 
use it to create workload and load transition models; (ii) to derive the 
impact of the application layer behaviour on resource consumption on the 

  P. CASARI ET AL.



29

physical layer; and (iii) to provide input to simulation and visualisation 
components.

As shown in Fig. 2.1, RECAP makes use of a central data repository, 
which serves as the single integration point for all elements of the RECAP 
ecosystem, and as the primary source of data for other parts of the RECAP 
platform.

In its databases, the repository stores information about: (i) time series 
of load metrics, (ii) information about the configuration of the data centre 
and virtual infrastructure, and (iii) information about the applications run-
ning on top of this infrastructure. While (i) is the primary focus of the 
repository, (ii) and (iii) are additional metadata that enrich the time series 
data and that help correlate time series of various metrics from different 
layers of the system. As an example, metadata could help correlate infra-
structure metrics, such as CPU usage, with application performance met-
rics from the application layer, such as worker queue length.

Technically, the data repository cannot be realised as a single entity, as 
it has to satisfy different requirements from various components. While 
the data analytics and machine learning functionality in RECAP require 
access to large chunks of CSV-formatted data, the visualisation compo-
nent requires the capability to flexibly query for data upon a user request. 
Finally, other RECAP components require access to a live stream of data: 
for instance, the optimisers constantly need to look up the current state of 
the system. In consequence, a polyglot approach to persistence is required, 
as will be presented in later in this chapter.

Fig. 2.1  Conceptual overview of data handling in RECAP
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2.2.1    Terminology

We now briefly cover the terminology that applies to the RECAP 
Monitoring Architecture.

2.2.1.1	 �Metrics and Monitoring
Formally, a metric is a function that takes a system as input and yields a 
scalar as a result. The application of a metric on a particular system is called 
a measurement and the result of the application is called the value of that 
metric. The unit of the value depends on the metric.

The monitoring process continuously (or periodically) applies metrics 
to systems and generates a series of timestamped values. This is called a 
time series (of a metric).

In order to distinguish values and time series that belong to the same 
metric, but come from different systems, we allow values to be further 
enhanced by metric properties (or tags). This enables values to be 
grouped, leading to a time series for that tag.

As an example, the cpu_load metric, when applied to a server, yields the 
current load of the central processing unit on that server. In order to be 
able to distinguish values measured from server A from those measured 
from server B, the value may be tagged with the tag origin that in this 
example can take the values A and B. In total, this creates three time series: 
one for A, one for B, and one for both servers.

2.2.1.2	 �Actors
Based on the context of RECAP and the requirements defined by the 
project’s use case providers, the monitoring infrastructure assumes a 
cloud-like environment where virtual resources (cloud resources) are 
made available through a Web-based API.

A (cloud) operator or infrastructure provider provides the physical 
resources on which virtual resources run. Physical resources may be geo-
graphically distributed, leading to a cloud-edge scenario. This actor is 
responsible for maintaining the physical set-up and for running the soft-
ware stack that enables access to the virtual resources. The infrastructure 
provider is also the actor that operates the RECAP infrastructure. Note 
that communications service providers, such as telecommunications com-
panies, can also be cloud operators and infrastructure providers.

(Cloud) users access the virtual resources offered by the cloud pro-
vider. In Infrastructure-as-a-service clouds, they acquire virtual machines 
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and virtual networks to operate their applications. This makes them 
(application) operators and therefore also users of RECAP.

Finally, end users access the applications provided by the application 
operator. Usually, they do not care where the application runs, as long as 
it provides an acceptable quality of service and experience.

2.2.2    Monitoring Layers

Figure 2.2 illustrates the four layers that can be monitored in order to 
derive insights on application behaviour and load propagation. Not all lay-
ers are required for all installations, so the set-up presented here is a super-
set of the possible set-ups.

The physical layer is provided by the infrastructure provider, and con-
tains the hardware used to run all higher layers. Here, monitoring metrics 
mainly include CPU, RAM, disk, and network consumption at specific 
points in time. The layout of the physical infrastructure is also important, 
e.g. which servers share the same network storage or uplink to the Internet. 
Figure  2.3 shows two data centre locations on the left and right hand 
sides, each with a router. Both are connected through the Internet. The 
infrastructure provides RECAP-aware monitoring support for the physical 
layer and report measurements for the metrics.
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Fig. 2.2  RECAP monitoring layers

2  RECAP DATA ACQUISITION AND ANALYTICS METHODOLOGY 



32

The virtual layer constitutes virtual infrastructure as realised for 
instance by Infrastructure-as-a-Service (IaaS) clouds. This infrastructure is 
composed of virtual machines, virtual storage, and virtual networks. It is 
run by the application operator, which is responsible for the measurements 
on that layer as well. Similar to the physical layer, metrics mainly include 
CPU, RAM, disk, and network consumption, but several instances of vir-
tual infrastructure (to be monitored separately) can exist in the virtual 
layer (cf. different colours in Fig. 2.2). Also, the number of virtual com-
ponents per virtual infrastructure as well as the number of virtual infra-
structures is not fixed, but can dynamically grow and shrink.

On top of the virtual (or physical) layer resides an optional container 
layer such as a Kubernetes1 cluster or a Rancher Cattle2 cluster. Basically, 
the same restrictions and considerations hold for this layer as for the vir-
tual layer. Yet, in contrast to both, the container layer can provide a seam-
less abstraction and hide the location of different data centres. Whether 
containers are used is a design choice by application owners or cloud pro-
viders: containers can be offered by a cloud provider or be deployed by a 
user on top of virtual machines.

1 https://kubernetes.io/
2 https://github.com/rancher/cattle
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At the top resides the application layer where application- and 
component-specific metrics can be applied. These include, for instance, 
the queue length of load balancers, detailed statistics on the use of data-
bases, and the message throughput of a publish-subscribe system. 
Application-specific metrics are important conveyors of KPIs or 
QoS. Although the RECAP monitoring platform cannot define all possi-
ble application-level metrics to be captured, it provides a structure to mea-
sure and store application-level metrics.

2.2.3    Monitoring Architecture

The RECAP Monitoring Architecture collects and provides the monitor-
ing data from the four layers described earlier to the RECAP simulator, 
run-time system, and users.

RECAP operators may manage infrastructure spread over several, geo-
graphically distributed locations. In each of these sites an edge or core/
cloud data centre resides. In order to limit data hauling across data cen-
tres, collected data are stored as close to their origin as possible. RECAP’s 
acquisition and retrieval strategy takes these circumstances into account. 
In the following, we first describe the acquisition and storage architecture 
per site and then the overall architecture spanning different sites.

2.2.3.1	 �Single Site Monitoring Set-up
This section describes the monitoring set-up for each site in a RECAP 
managed infrastructure. Each of the sites can run in isolation and is not 
affected by traffic and load on other sites. The per-site architecture con-
sists of monitoring probes on the physical layer and on the higher layers of 
the software stack. It also involves a data dispatcher that filters the incom-
ing data and relays it to three different data sinks: a data lake, a time series 
database, and a data stream emitter.

Components
Probe: Probes convey monitoring data out of monitored systems. 
Different probes may be necessary for different metrics, even though most 
probes will perform measurements for multiple metrics. Each probe may 
emit data in a different format and at different time intervals. In addition 
to a timestamp and value, an emitted data item contains metric properties 
to identify the source and scope of the data point. While it is the responsi-
bility of the infrastructure operator to provide probes for the physical 
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layer, the cloud user shall provide the necessary metrics for higher layers of 
the stack. All probes directly or indirectly send their data to the data 
dispatcher.

Data dispatcher: The data dispatcher is a site’s central data monitoring 
integration point. It receives and normalises all probe data and sends them 
to the data sinks. Normalisation depends on the probes: an individual 
transformation is needed per metric and per probe type. The dispatcher 
adds site information and similar attributes to collected data.

The data normalised by the dispatcher are then put in the sinks. In 
RECAP, different data post-processing demands exist with regard to the 
monitoring subsystem. Feature engineering and data analytics in RECAP 
operate on large data sets which need to be processed offline in dedicated 
servers. Visualisation works on smaller datasets, but requires high flexibil-
ity in data provisioning. Finally, optimisers require a snapshot that repre-
sents the most recent state of the managed infrastructure. Therefore, 
RECAP applies three different types of sinks:

•	 Data lake sink: accumulates large amounts of monitoring data in a 
durable storage for a long time using a compact representation. This 
data is the basis for data analytics and machine learning.

•	 Time series database sink (TSDB): stores monitoring data in time 
series. Through an underlying indexed search engine, it supports live 
queries of current and past data. It is the primary data source for the 
visualisation components.

•	 Stream emitter sink: relays a configurable subset of live monitoring 
data to other parts of the RECAP infrastructure. It is the primary 
data source for the application optimisation and infrastructure opti-
misation engines, which decide on the metrics of interest and any 
pre-processing (e.g. smoothing) to be applied.

A distinctive trait of RECAP is the “separation of concerns” between 
application and infrastructure optimisation procedures. This makes it pos-
sible to accommodate the (often contrasting) objectives, costs and con-
straints of both application and infrastructure providers, and to harmonise 
them as far as possible within the RECAP framework.

Practical Considerations
The dispatcher and all sinks are stateless and can be scaled to serve large 
hardware installations, large amounts of users, and high volumes of data. 
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Neither the architecture nor its implementation puts any restrictions on 
where dispatcher and sinks can be run. Yet, in order to ensure a correct 
interplay of the acquisition and storage components with other parts of 
the RECAP infrastructure, the following constraints have to be considered:

	1.	 All kinds of probes at a site need to be able to connect to the dis-
patcher of that site either directly or indirectly.

	2.	 Both the TSDB and data lake sink need to be accessible from the 
API component described later in Sect. 2.3.2.

	3.	 The stream emitter sink needs to communicate to other data cen-
tres, and particularly to the optimisation subsystem.

2.2.3.2	 �Cross-site Monitoring Set-up
As RECAP provides cross data centre resource and application manage-
ment, individual sites must be spanned to achieve a holistic view of the 
system. The Monitoring Architecture achieves this by introducing a 
RECAP entrypoint that may also be bound to a DNS name in order to 
ease access, and includes a load balancer to point to the various sites man-
aged by this instance of RECAP.

Figure 2.3 provides an overview of the overall architecture of the moni-
toring infrastructure spanning sites. It shows three locations, one of which 
functions as the RECAP entrypoint. Besides the local entities from Sect. 
2.3.1, it shows the visualisation endpoints that offer a dashboard with 
usage graphs as well as a GUI for bulk download of data from the data 
lakes. The more generic API entity component serves as an integration 
point for other RECAP components. In particular, the optimiser can use 
it to configure the stream emitter sink which provides input to the optimi-
sation cycle or in order to access time series data from the TSDB.

As detailed earlier, the data lake sink is instantiated per site and can be 
a distributed component that compresses and stores raw monitoring data. 
Its primary purpose is to serve files for bulk download. As this storage 
form is resource hungry, the monitoring infrastructure (1) switches off 
persisting raw metrics on a per-site basis (this is beneficial if the site cannot 
store larger amounts of data or no later data analysis shall be performed), 
and (2) deletes or moves away data older than a certain age. While this 
creates cross-site load, the fact that data is sent filtered and compressed 
requires much less bandwidth than uncompressed probe data.
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2.2.4    Data Structure for Storage

This section introduces the actual data that is collected on the four layers. 
We do not discuss the data sent by the various probes as RECAP does not 
enforce the use of specific probes. Instead, it assumes that the dispatcher 
performs probe-specific normalisation.

2.2.4.1	 �Metrics on the Physical Layer
The metrics gathered for the physical layer are split into seven metric sets 
(cpu, diskio, filesystem, memory, vms, and vm). Each of the metric sets 
contain several detailed metrics. The four metric sets host.cpu, host.diskio, 
host.memory, and host.filesystem capture the detailed usage and utilisa-
tion of basic system resources (cpu, block devices, memory, file systems). 
Instead, host.vms gives information about the virtual machines running 
on a host, and the metrics from the host.vm metric set detail the resource 
consumption per virtual machine.

We measure the resource consumption of a virtual machine from the 
host to avoid the misinterpretation of numbers seen from inside the virtual 
infrastructure. For example, a 100% CPU load seen inside the virtual 
machine may not mean that the machine uses a full physical core. The 
mapping of how many physical cores are represented by one virtual core 
for this particular virtual machine is subject to the CPU scheduler on the 
host/hypervisor and is heavily influenced by the overbooking factor of the 
physical server. Hence, the physical layer needs to report on the physical 
resource usage per virtual machine.

2.2.4.2	 �Metrics on the Virtual Layer
The metrics gathered at the virtual machine level (i.e. captured from 
within a virtual machine) start with vm. and are basically the same as the 
physical host except, for example, cpu.steal. In addition to resource con-
sumption, information about available containers is collected in the same 
way as resource utilisation per container.

2.2.4.3	 �Metrics on the Container Layer
On the container level, we collect the very same metric sets and metrics as 
for the virtual layer (cpu, diskio, memory, filesystem, and network). The 
names of the metric sets start with container. instead of vm.

  P. CASARI ET AL.
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2.2.4.4	 �Metrics on the Application Layer
Applications differ and so do the metrics that can and need to be collected 
from them. In particular, the measurement gathering methods depend on 
the application and its software components. Hence, the data format and 
content for application metrics cannot be fixed in advance, and metric col-
lection must be part of the application lifecycle management.

A generic naming convention for application-level metrics is adopted in 
RECAP with the format app.<app name>.<comp name>.<metric name>, 
which includes the (system-wide unique) application name, the compo-
nent name (unique per application), and the metric name.

2.2.4.5	 �Metric Attributes: Tagging
So far, we have presented metrics per layer. Yet, with the information pro-
vided so far, it is not possible to distinguish data from different sources. 
This is achieved via metric attributes that also enable data grouping and 
correlation. For example, all metrics are tagged with the timestamp and 
the layer (physical, virtual, container, application). All physical layer met-
rics are further tagged with the data centre location, the name of the phys-
ical host, and the name of the infrastructure provider. Metrics on the 
virtual layer are enriched with information about the cloud they are run-
ning in, the current region they reside in, and their respective identifier. 
Similarly, container metrics contain information about the container iden-
tifier. On all levels, specific attributes are added if required by the metric. 
For instance, devicename helps distinguish network interfaces on physi-
cal hosts.

For application metrics, tagging needs to fulfil two orthogonal tasks: to 
distinguish different instances of the same application (e.g. WordPress 
installation for customer A and customer B), and to distinguish different 
instances of an application component, e.g. a scaled out application server. 
Hence, all application metrics are tagged with an application instance 
identifier and a component instance identifier, both automatically assigned 
by the platform and added by the RECAP data dispatcher system. If 
needed, application owners can provide further tags.

Second, tagging needs to convey on what physical resource an applica-
tion or component was running. Therefore, all application metrics are 
tagged with the type and identifier of the containing entity (e.g. virtual 
machine or container).

2  RECAP DATA ACQUISITION AND ANALYTICS METHODOLOGY 
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2.2.5    Implementation Technology

The implementation technology for the monitoring system chosen for 
RECAP is largely based on experience gained from the FP7 CACTOS 
project (Groenda et al. 2016) using an OpenStack testbed and production 
system (bwCloud3) and from the Horizon 2020 Melodic project (Melodic 
2019). Where possible, all technical building blocks were components 
where technology was available under an open source and/or a commer-
cial licence. Finally, no chosen component makes any assumptions on the 
technology of the other components, facilitating replacements and 
upgrades.

The data dispatcher is realised through Elastic Logstash4 which offers 
pipelines for receiving, processing, and dispatching a wide range of moni-
toring data. It comes with an extensive list of input plugins, including 
software to accept TCP/UDP network traffic with JSON payload. Output 
plugins range from time series databases and overwrites to the file system 
to sending message streams through publish-subscribe platforms such as 
Apache Kafka. Filters are provided for data curation and transformation.

The time series database sink is realised via an InfluxDB instance, 
which supports both groups of metrics and metric attributes/tags. It also 
supports continuous queries and data aggregation, and integrates well 
with Grafana, an open source metric analytics and visualisation suite com-
monly used for visualising time series data for infrastructure and applica-
tion analytics.5

The stream emitter sink is realised by the Apache Kafka6 publish-
subscribe system, due to its wide adoption and well-known scalability.

The data lake sink is based on CSV files stored in a compressed format.
Probes: The entire monitoring subsystem is independent from the spe-

cific monitoring technology. This allows RECAP to integrate into existing 
installations. Consequently, running RECAP does not require operators 
to perform major updates on their infrastructure. Therefore, the mapping 
from the data collected by the probes to the metrics schema must be 
implemented for the dispatcher per probe type. Based on the RECAP 
testbeds, a set of mapping rules have been implemented for specific probes. 
In particular, this is the case for the Elastic Metric Beat metric collector to 

3 https://www.bw-cloud.org/
4 https://www.elastic.co/products/logstash
5 https://grafana.com
6 https://kafka.apache.org/
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collect metrics on the physical and virtual layer, for Intel’s SNAP collector 
to collect metrics on the virtual container and application layer, and for a 
VMware vSphere7 collector.8

2.3    Data Analytics and Modelling

2.3.1    Data Analytics Methodology

In this section, we describe the RECAP methodology for the analysis of 
datasets and the development of machine learning algorithms to support 
the application of RECAP’s results to new problems related to optimal 
resource allocation and capacity planning. The methodology is composed 
of five main steps as outlined in Fig. 2.4.

2.3.1.1	 �Step 1: Problem Definition and Data Assembling
The initial steps are to identify the problem to be solved and the available 
data that can help solve the problem through machine learning. In 
RECAP we merged these steps into a single task due to their high interde-
pendence. If the available datasets are insufficient, we have to change our 
expectations about the problem or find additional data. As an alternative, 
we later explain how to enrich existing datasets with synthetic datasets 
mimicking the same workload data collected from RECAP Use Cases.

2.3.1.2	 �Step 2: Metric for the Evaluation of the Results
Selecting the metric to evaluate the results of our model is critical, since 
that metric is exactly what the training algorithm will optimise. If the out-
put of the model is a continuous variable, the Root Mean-Square Error 
(RMSE) is a typical choice. In the case of a categorical response, typical 
metrics are accuracy, or the area under the receiver operating characteristic 
(ROC) curve (AUC).

There are multiple standard techniques to evaluate the performance of 
a machine learning model and detect issues, such as overfitting, early. 
These include train/test splits of the dataset, N-fold cross-validation, and 
bootstrapping. In RECAP, we use train/test splits for the early model 
prototyping, and apply a cross-validation to the final models before 

7 http://www.virten.net/2015/05/vsphere-6-0-performance-counter-description/
8 https://github.com/Oxalide/vsphere-influxdb-go
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production. Techniques to avoid cross-validation altogether have also 
been investigated as a promising research direction (García Leiva 
et al. 2019).

2.3.1.3	 �Step 3: Data Curation and Enhancement
A data curation process to remove errors and anomalies and fix missing 
data is an important preparatory step before training a model. A visualisa-
tion of the dataset and a descriptive analysis provides valuable information 
about the quality of the data being used in the project. Outlier detection 
or the identification of ‘Not Available’ values could be applied as well. It 
might also be necessary to enhance the data by deriving new features 
based on those that already exist. This data enrichment could significantly 
improve the predictive capabilities of models.

Fig. 2.4  A summary  
of the main steps of the 
methodology for 
exploratory data  
analysis of new datasets
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2.3.1.4	 �Step 4: Model Development
Identifying the best model is often a daunting task in the presence of all 
possible alternatives. For example, in the case of a classification problem, 
we could apply techniques like K-means, decision trees, support vector 
machines, or neural networks. Moreover, each technique could have dif-
ferent alternative configurations. An approach to speed up the selection of 
the right family of models is to test the statistical power of the machine 
learning techniques. This test consists of performing fast training of the 
model, perhaps with a data subset, and in checking if the model has better 
predictive capabilities than random guessing. Any family of models with 
no predictive power should be discarded.

2.3.1.5	 �Step 5: Regularisation and Hyperparameter Selection
The final step of the methodology is to tune the model’s hyperparameters, 
whose values must be set before the learning process begins. Hyperparameter 
optimisation makes it possible to obtain the best predictive capabilities 
from a machine learning model, at the price of a higher risk of overfitting. 
Once hyperparameters have been optimised, the model can be applied to 
test data never used during training and validation. A clear sign of overfit-
ting is then a divergence between test performance and validation 
performance.

2.3.2    Exploratory Data Analysis

Descriptive statistics are metrics that quantitatively describe, characterise, 
and summarise the features of a data set. Even when data analysis draws its 
main conclusions using inferential statistics and predictive analytics, 
descriptive statistics can be used to provide a summary of the types of data 
involved in the use cases, and inform future inference and prediction steps.

Exploratory data analysis (EDA) is used to understand data beyond 
formal modelling or hypothesis testing. EDA is useful to check assump-
tions required for model fitting, to handle missing values, and understand 
the required variable transformations. Figure 2.5 shows an example of a 
decomposition of a time series in order to visually identify trends and pos-
sible cycles. The top panel visualises the original time series. From this 
data, we extract a trend (second panel), a seasonal component showing 
clear cyclic behaviour (third panel), and a residual behaviour not explained 
by trend and seasonal components (bottom panel). These exploratory 
steps are helpful to inform the choice of time series prediction techniques.
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2.3.3    Workload Prediction

After a careful survey of the available literature in the field (Le Duc et al. 
2019), three techniques were considered for the specific task of workload 
prediction—probabilistic models, regression-based models, and machine 
learning models.

2.3.3.1	 �Probabilistic Models
Probabilistic models are powerful tools to explain datasets, and are widely 
used in statistics, traffic engineering, simulations, etc. To facilitate work-
load prediction in RECAP, we attempt to fit several probability density 
functions to our datasets on a per-use-case basis. Parameter fitting is 
obtained through Maximum-Likelihood Estimation, and the resulting 
models are compared through the Kolmogorov-Smirnov test. The best 
fitting model is finally chosen (an example for cache content pulling is 
provided in Fig. 2.6).

2.3.3.2	 �Regression-based Models
Regression-based models are often simple and robust in generating pre-
dictions, and thus particularly suitable for offline modelling and prediction 
tasks. In RECAP, we consider autoregressive integrated moving average 
(ARIMA) models, which are composed of three parts. The AR part relies 

Fig. 2.5  Decomposition of received traffic at a cache
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on the lagged values of the variable of interest; the MA part is actually a 
linear combination of error terms whose values occurred in the past; and 
the I part (for “integrated”) indicates that the data values have been 
replaced with the difference between their values and previous values. We 
also extend ARIMA models with seasonal components (SARIMA).

2.3.3.3	 �Machine-Learning-based Models
In order to facilitate fast online workload predictions in RECAP, we con-
sider the Online Sequential Extreme Learning Machine (OS-ELM), which 
enables the generation of workload models and predictions online, and 
can flexibly handle workload changes. OS-ELM is an efficient technique 
for online time series modelling and prediction due to its accuracy compa-
rable to batch training methods and to its extremely fast generation of 
predictions (Huang et al. 2005; Liang and Huang 2006). It accepts input 
data either sample-by-sample or through varying- or fixed-size data chunks.

Different from other learning methods (e.g. single hidden layer feed-
forward neural networks), OS-ELM randomly initialises input weights 
and updates output weights using the recursive least squares method. This 
makes OS-ELM adapt quickly to new input patterns, and results into a 
better prediction performance than other online learning algorithms (Park 
and Kim 2017).

Fig. 2.6  Statistical distributions fitted to records of data sizes of pulled 
cache content
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2.3.4    Artificial Workload Generation

RECAP is interested in the availability of datasets describing the evolution 
of workloads of servers and services (applications), so that stochastic mod-
els can be trained to forecast future workloads. However, for reasons 
including commercial sensitivity and privacy, such datasets may be insuf-
ficient for research tasks. This issue can be circumvented by generating 
synthetic datasets that preserve the statistical properties of the datasets 
collected from real infrastructures.

Here, we briefly introduce the mathematical models used to generate 
artificial workload traces in RECAP. Relevant references are provided for 
the interested reader.

2.3.4.1	 �Structural Models-based Workload Generation
Structural time series models are a family of stochastic models for time 
series that includes and generalises modelling techniques, including 
ARIMA or SARIMA models (Harvey 1989). A structural time series 
model expresses an observed time series as the sum of simpler components:

	
f t f t f t f tn( ) = ( ) + ( ) +…+ ( ) +1 2 

	

where ϵ is a white error term following a normal distribution of mean 0 
and variance σ2.

For example, one component might encode a linear trend, a cycle, or a 
dependence of previous values. Structural time series models identify and 
encode assumptions about the processes that have generated the original 
data. In this way, they make it possible to generate artificial data traces that 
have the same statistical properties as the original datasets. The application 
of a structural time series model to requests coming to a search engine 
web server is shown in Fig.  2.7. We observe that predicted data (light 
grey) mimic well the general characteristics of ground truth (dark grey).

2.3.4.2	 �GAN-based Workload Generation
Synthetic data generation using Generative Adversarial Networks (GAN) 
has recently gained popularity. A GAN is based on a combination of two 
neural networks, a discriminator (D) and a competing generator network 
(G). In the training phase, D is trained to distinguish real data from gener-
ated data. In parallel, G is trained to fool D by producing better and better 
fake data that D will eventually accept.
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In RECAP, the overall idea behind the use of GANs is twofold. Firstly, 
using this approach provides a “what-if” analysis on a dataset, answering 
such questions as “how would this workload look for a larger number of 
nodes?” Secondly, the inherent training goal of a GAN is to estimate the 
probability distribution of the training data and to generate synthetic sam-
ples drawn from that distribution. Hence, when applied to a real dataset, 
the GAN learns to mimic its statistical properties.

2.3.4.3	 �Traffic-Propagation-based Workload Generation
RECAP implements five diffusion algorithms for workload generation. 
These algorithms can be divided into two groups: non-hierarchical and 
hierarchical workload diffusion. The former includes population-based, 
location-based, and bandwidth-based algorithm; the latter includes 
hierarchy-based and network-routing-based algorithm.

Diffusion algorithms can be applied in different use cases and under 
different assumptions related to the network topology, network links’ 
capacity, and the distribution of users throughout the network. Given 
these models, and real workload data traces collected as time series at a 
limited number of locations, it is possible to produce workload traces for 
any or all network locations.

Fig. 2.7  Simulated workload for a search engine
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2.3.4.4	 �Simulation System Model Data Sets
The role of simulation in the RECAP project is to go beyond the limita-
tions of an available testbed in terms of scale and complexity of experimen-
tations. Based on simulation, it is possible to generate synthetic datasets 
consisting of two parts: large-scale models of a system that is being simu-
lated, and simulated behaviour measurements of the modelled system. 
This is discussed further in Chap. 5.

2.4    Data Visualisation

Data visualisation empowers end users and data scientists to analyse and 
reason about data and its features. With data visualisation, data sets pro-
duced by RECAP or collected from production systems of use cases are 
transformed to be more accessible, understandable and consumable. 
RECAP uses a range of visualisation tools which we will now discuss.

2.4.1    Visualisation for Data Analysis

To facilitate data analysis and reasoning, RECAP has adopted various visu-
alisation tools for data presentation, for instance the histogram, box plot, 
and scatter plot. Upon dealing with heterogeneous data sets, the selected 
tools enable both univariate and multivariate data visualisation, facilitating 
corresponding data analysis methods applied to different data sets. To 
illustrate the use of the visualisation tools as well as their facilitation of data 
analysis, different visualisations of features extracted from a real data set 
from a search engine are provided along with explanations of how each 
visualisation helps retrieving insights into the data.

Figure 2.8 visualises univariate data (specifically, the serving time of 
user requests in the given workload data set) in different forms. The histo-
gram provides the insight that the majority of user requests are served 
within very short time periods. The observable data distribution suggests 
a potential application of probabilistic modelling techniques is needed to 
construct models of the feature for further analysis or workload genera-
tion. The box plot of this serving time feature shows a large number of 
outliers exist in the data set. Further investigation is thus required for hints 
on the construction of predictive models. Figure 2.9 visualises multivariate 
data and shows a relationship between the response size and response time 
of the user requests. This visualisation suggests a correlation analysis on 
the data set is needed when addressing workload analysis and modelling.
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2.4.2    Visualisation of RECAP Telemetry Data

The visualisation of telemetry data makes the status of the infrastructure 
and applications operating on the infrastructure more comprehensible for 
the operators at both application and infrastructure level. This becomes 

Fig. 2.8  An exemplary presentation of serving time of requests in a workload 
data set. (a) Histogram of serving time of user requests. (b) Box plot of serving 
time of user requests
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Fig. 2.9  An exemplary presentation of a correlation of features in a workload 
data set
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crucial for the automation of system (application and infrastructure) man-
agement, in which trust is required and can be established based on visu-
alisations illustrating the response of the system to the triggered and 
ongoing management actions. In RECAP, telemetry data acquired from 
use case testbeds and production systems need to be visualised in order to 
aid the analysis of the workload and application behaviours as well as the 
mutual dependencies between metrics or features of both the infrastruc-
ture and applications.

As discussed, to facilitate the visualisation, Grafana was used as a visuali-
sation tool. This is an open source tool with a large community and a wide 
selection of plugins and pre-configured dashboards which accelerates visu-
alisation. Grafana has an easy-to-use interface with various graph visualisa-
tion techniques including line graphs, bars, heat maps, maps, and 
architecture. It enables grouping various graphs into a single-view dash-
board and supports multiple dashboards to provide different perspectives 
of a given data set. Figures 2.10 and 2.11 illustrate the snapshots of two 
dashboards. The first includes multiple graphs showing resource utilisa-
tion of the core of a testbed deployed at Ulm University (UULM), 
Germany, and the second illustrates the mobility and behaviour of users 
emulated in a testbed deployed at Tieto, Sweden, in a study of Infrastructure 
and Network Management.

Fig. 2.10  Snapshot of the dashboard for the testbed at UULM
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2.5    Open Data

The RECAP project adheres to the Open Data Pilot of the European 
Commission. This means that the project committed to providing the 
datasets required to reproduce the results in the project, unless this would 
result in, for example, a breach of confidentiality for the dataset provider 
or in the loss of intellectual property. Several datasets have been derived 
and provided in the context of RECAP. These datasets are described in 
RECAP’s Deliverable D5.3 and are available, where appropriate, at 
RECAP’s website—https://recap-project.eu.
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