
WISS a Java Continuous Simulation
Framework for Agro-Ecological Modelling

D. W. G. van Kraalingen(&) , M. J. Rob Knapen , A. de Wit ,
and H. L. Boogaard

Wageningen University and Research, Droevendaalsesteeg 3, 6708 PB,
Wageningen, The Netherlands

{daniel.vankraalingen,rob.knapen,allard.dewit,

hendrik.boogaard}@wur.nl

Abstract. A simulation framework is presented (WISS, Wageningen Integrated
Systems Simulator) which targets the agro-ecological modelling domain.
Especially simulation for a large number of locations, such as in detailed
regional and global simulation studies. The framework strengths are in modu-
larization, control, speed, robustness and computational protection (multiple
system checks during simulation). The WOFOST model is currently imple-
mented in WISS, through which it is used in a number of Wageningen
University and Research projects. WISS is written in Java and the framework
code is freely available.

Keywords: Simulation � Agro ecology � Modelling � WOFOST � Crop
modelling � Framework

1 Introduction

In crop modelling there has been a tendency over the years for more modularization
and looser coupling of software code describing the principal physiological and
physical processes. The software architectures that were used had to evolve as model
descriptions became more complex requiring increased modularization, understanding
of reality improved and demands on speed, robustness and versatility increased
(Holtzworth et al. 2015; Donatelli et al. 2010). But these trends also required solutions
for communication of data among modules. In some implementations large arguments
lists of variables were moved around, where in some cases people could hit the
maximum of 255 arguments in some Fortran implementations. In other cases, large
blocks of global storage were used (such as ‘common blocks’ in Fortran). Other
solutions tended to introduce a software component responsible for the exchange of
state and other variables by lookup in long lists. In all such solutions, ownership of
state variables is with the software code where the states are calculated, but basically
copies of these variables are communicated and are supplied on request by the com-
munication component to other parts of the model, providing some greater flexibility
and protection.

© IFIP International Federation for Information Processing 2020
Published by Springer Nature Switzerland AG 2020
I. N. Athanasiadis et al. (Eds.): ISESS 2020, IFIP AICT 554, pp. 242–248, 2020.
https://doi.org/10.1007/978-3-030-39815-6_23

http://orcid.org/0000-0003-0562-5563
http://orcid.org/0000-0003-0556-158X
http://orcid.org/0000-0002-5517-6404
http://orcid.org/0000-0001-7831-2280
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39815-6_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39815-6_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39815-6_23&domain=pdf
https://doi.org/10.1007/978-3-030-39815-6_23

The BioMa framework (1Donatelli et al. 2010) facilitates modularization and
heterogenous model compositions but source code of the framework itself is not
provided and its dependency on the .NET platform limits its use on non-Microsoft
operating systems.

Another force behind the WISS development was the need for the WOFOST crop
model (Wit et al. 2019) to be able to run for very large numbers of situations, where
speed, robustness and versatility of the code are of utmost importance. An example
where WOFOST as implemented using WISS is applied is the Agro Data Cube (https://
agrodatacube.wur.nl/).

WISS is implemented in Java, which was chosen for its speed, language features,
market penetration and machine independence (Microsoft Windows, Linux, mac OS),
requiring no recompilation of the code. An installation of a JavaVirtual Machine
(JVM) is required though (VMs are available for all relevant platforms).

2 WISS Approach to Agro-Ecological Modelling

In this short paper we present a different approach which has clear advantages over
more traditional techniques of inter-module communication of data. In the WISS
framework (Wageningen Integrated Systems Simulator), we have developed a tech-
nique whereby states are not dispersed and kept permanently in software code
describing model processes (the classic approach) but are kept in a special object which
manages all states. This approach we call the “shared state approach”.

Having all states together in one object during the whole simulation implicates the
huge advantage that this object can be queried not only during simulation, but also after
simulation. Not only can final values be obtained through simple functions, but also
more advanced functionality like the highest and lowest value of a state variable during
simulation, the change in value between the first and the last date, the average value
and more can be programmed in a very generic way even without knowledge of the
names of the state variables!

A consequence of the centralized state principle is that a module has to obtain the
value(s) of its own state variables from the central object before starting calculations for
the new time step, next to obtaining the value for other state variables it may need, but
does not own. The calculations provide rates of change to the central state object. At
the start of the new time step, the central state object integrates all states for which it
has received rates. Having this kind of architecture enables us to override state vari-
ables to specific values without any code change in the module that calculates its rates.
In fact, there is no way of knowing for this module whether a state value it received
was overridden or not.

The central state object has several advanced features that help to maintain simu-
lation integrity and support modularity. First of all, it accepts states in a particular unit
and deliver it in another unit to a module requesting it, of course only if the unit
conversion is valid. This improves flexibility in coupling modules together into one

1 Biophysical Model Applications, https://en.wikipedia.org/wiki/BioMA.

WISS a Java Continuous Simulation Framework for Agro-Ecological Modelling 243

https://agrodatacube.wur.nl/
https://agrodatacube.wur.nl/
https://en.wikipedia.org/wiki/BioMA

model, whereby each module can have its own set of units (which may differ from the
units used by another module in the system), e.g. weight per area conversions from kg.
ha-1 to g.m-2, or temperature conversions from degrees Celsius to Kelvin.

Second, the central state object can also safeguard calculations during simulation as
the state variables can be registered with a valid range (e.g. zero to infinity, between
zero and one etc.). Violation of these bounds will be detected by the central state object
on acceptance of the rate of change of the state variable and simulation will be
interrupted. Running the model with well-established bounds results in a higher quality
model implementation and more confidence in the final results. Calculations can also
be protected against accidental changes of state variables by other model components,
through a strict ownership mechanism.

Finally, the central state object also enables us to suspend and resume the calculations
of a model on a particular date during simulation, since the state of the system is com-
pletely defined by the states in the central object. This is an important feature particularly
for more complicated models, for instance in the case of simulations that track near real
time weather, as the simulation can start where it left off in the previous run.

Several other ambitions led to the development of the WISS framework. We
wanted a framework in which the model can be called as a fast numerical function
without any file based input and file based output. This is an essential requirement for
models intended to run for a large number of geographically different units, e.g. in a
distributed computing environment. We also wanted a framework in which model
components can be run together with as little code changes to the model components as
possible, and we wanted to have great flexibility in making those compositions (run a
water balance for a bare soil, or one with a crop on top of it, rotations etc.). Flexibility
was also required in starting and stopping subsystems during one simulation period,
e.g. a crop on top of a soil water balance. Obviously, the crop module needs to be
terminated at harvest (the crop is gone), but the water balance must continue to run.

3 Time Steps and Integration

WISS is targeted at the agro-ecological modelling domain. In this domain, daily time
steps in numerical integration are most common (basically driven by the nature of daily
weather data, hourly being much harder to obtain). Systems with flexible (=variable)
time steps tend to introduce a level of complexity that would make programming a
WISS model much less straightforward, and would slow down development of the
initial framework. Simulation with flexible time steps may be introduced in future
versions, should the need arise. Concurrent with daily time steps, rectangular inte-
gration (Euler) is the provided integration method. Remember it is the central state
object doing the actual integration.

4 WISS Model Components

Besides the WISS framework components, a model implemented in WISS must have at
least one so called SimObject, and one so called SimController. A SimObject is the
place where the calculations for a model component are programmed, providing

244 D. W. G. van Kraalingen et al.

separation of calculations. It normally consists of a section where the states it will
produce are registered and a place where the states it needs are registered. There must
also be a rate calculation section where the rate of change for each state variable must
be calculated. Prior to the calculations, the latest values for the required states must be
obtained from the central state object, which is called SimXChange. A SimObject,
however, does nothing while the model is running unless it is started (=instantiated) by
a so called SimController which’s sole responsibility is to start and stop one or more
SimObjects, providing separation of control. Not only can there be one or more
SimObjects, there can also be one or more SimControllers (e.g. one for ‘seeding’ a
crop, one for harvesting a crop).

A SimObject which is not started will do nothing, but if started it will need model
parameters and initial states to properly initialize. This is where another important
WISS model component kicks in, ParXChange. This component works like a key value
list which is meant to hold parameters by name and is able to accept and provide the
numerical value for that name. Similarly, for initial values for states, these are given to
the ParXChange component, which provides it to SimObjects requesting it. Typically a
ParXChange object is filled with data prior to starting the simulation.

The central state object is called SimXChange in WISS terminology. It is empty at
the start of the simulation but gets filled with data as simulation proceeds. During
simulation it constantly accepts rates of change and provides values to the running
SimObjects. After termination of the model, it is loaded with all simulated data of every
time step and ready for final processing or exporting the results of part of whole of the
simulation period.

The simulation loop, in simplified form is given in Fig. 1.

Fig. 1. The simulation loop in WISS

WISS a Java Continuous Simulation Framework for Agro-Ecological Modelling 245

The schema in Fig. 1 shows the sequence of events that take place in WISS while
the model is running. The implementation in code is in the TimeDriver class. Execution
is in clockwise order, starting from “Start at start date”. The following steps are made:

• Start one or more SimControllers (depending on the model, not shown here for
clarity). These will oversee the simulation and start and stop the SimObject(s) if
necessary (but starting is actually done later in the loop).

• Intervene:
The Intervene step is an opportunity for every running SimObject in the system to
override (=force) any state variable in the provided SimXChange object. Here
adding or taking away part or whole of a state variable is allowed (if within the
registered bounds). The provided SimXChange object will report these forcings in a
special report with the date of overriding, the old and the new value. Examples are
an external mowing event in case of grass simulation, a crop growth model in which
the leaf area index needs to be forced by the values from a field experiment.

• Aux calculations:
All running SimObjects are called to provide, if it is the SimObject’s responsibility,
time dependent driving data to provided SimXChange for SimObjects to use during
the rate calculation step. Examples are air temperature, air carbon dioxide con-
centration etc. After this point, all existing states and time dependent driving data
are up to date for the current simulation date!

• Start SimObject(s)?:
All running SimControllers are asked whether additional SimObject(s) must be
started. All started SimObject(s) also have their AuxCalculations method called (not
shown here). At this point the system is up to date for the new states and auxiliary
variables for the current simulation date.

• Rate calculations:
All running SimObjects are called to carry out rate calculations and publish those to
SimXChange.

• Terminate SimObjects(s):
Call all controllers of the model and let them terminate the SimObject(s) which need
to be terminated (through evaluation of states etc.), also ask remaining running
SimObject(s) whether they can continue (method: SimObject.canContinue), if not,
terminate them too.

• Terminate?:
Terminate time loop if there were any previous running models but there are none
anymore, or the simulation’s end date has been reached. If either of that happens,
any running SimObject(s) are terminated, the time loop ends, and post processing
can take place.

• Date = Date + 1:
Date increase if the loop is not terminated.

• Integrate in SimXChange:
The internal states of SimXChange are integrated only if a rate has been provided. If
the rate of change for a state has not been provided, the state will be missing from
the new date until the end date. An error will occur if a SimObject tries to ‘revive’ a
state variable by providing a rate. The state can only exist for one contiguous
period.

246 D. W. G. van Kraalingen et al.

5 Implementation Aspects

The above mentioned features are nice but we also strived for excellent execution
performance. This is achieved by introducing a registration mechanism for state
variables whereby the native unit and value bounds have to be provided. This regis-
tration returns a token which essentially contains the internal SimXChange’s fixed
array location of the state variable so that when communication takes place with
SimXChange using this token the central state object immediately knows the name and
other attributes of the state variable.

WISS is designed to safeguard valid simulation as much as possible. In general
simulation will be terminated by a run-time exception whenever something goes
wrong. Beit a non-existing unit conversion, a bounds check error, a required external
variable not there etcetera. The principle being that if an error occurs, simulation results
are unreliable anyway, so there is no need to continue. Best is to present the error with
as much information as possible to the user, so the error can be located easily and
repaired.

Extensive logging features are available in the WISS framework for the error,
warning, info, debug and trace level.

6 Availability

The current version of the WISS framework is version 1 and it is available as open
source software but the exact license still needs to be discussed (request the author of
this paper for more information). WISS is available on https://github.com/
DanielVanKraalingen/.

Currently 2 models have been implemented in WISS of which WOFOST is the
most complicated one, the other one being a Lotka/Volterra prey predator model for
demonstration purposes.

The current version of WOFOST (for which you’ll need the WISS framework) is
7.2 but we will not automatically provide the Java source code. However, you can work
with the jar file enabling you to run the WOFOST model with all valid inputs and
program all possible outputs because the user has full control of the SimXChange
object after simulation.

7 Real World Application

The WISS version of WOFOST is applied within the EU funded project AGINFRA+.
AGINFRA+ is a D4Science Virtual Research Environment (VRE) and a use case was
developed to perform parcel specific crop simulation taking data from the AgroData-
Cube. The AgroDataCube provides a large collection of open data at parcel level for
use in agri-food applications in the Netherlands (https://agrodatacube.wur.nl/). Through
the VRE, the user has access to a computer cluster, of scalable size. The DataMiner
core component of the D4Science platform provides handles adding and running
algorithms on the cluster, while also making them available through OGC WPS (Web

WISS a Java Continuous Simulation Framework for Agro-Ecological Modelling 247

https://github.com/DanielVanKraalingen/
https://github.com/DanielVanKraalingen/
https://agrodatacube.wur.nl/

Processing Service) interfaces. On top of that, a dashboard has been created to select
crop parcels, activate WISS-WOFOST and visualize and inspect results.

8 Future

We are currently finalizing the freely available manual of the WISS framework version
1.0. With that manual, and the software for WISS 1.0 (including the prey/predator
example) you should be able to start your own WISS model. Contact the author for
more details.

We intend to expand WISS as a modelling framework as well as expand the process
descriptions of WISS-WOFOST with a true multi-layer water balance model.

References

Donatelli, M., et al.: A component-based framework for simulating agricultural production and
externalities. In: Brouwer, F., Ittersum, M. (eds.) Environmental and Agricultural Modelling.
Springer, Dordrecht (2010). https://doi.org/10.1007/978-90-481-3619-3_4

Holzworth, D., et al.: Agricultural production systems modelling and software: current status and
future prospects. Environ. Model Softw. 72, 276–286 (2015). https://doi.org/10.1016/j.
envsoft.2014.12.013

de Wit, A., et al.: 25 years of the WOFOST cropping systems model. Agric. Syst. 168, 154–167
(2019)

248 D. W. G. van Kraalingen et al.

https://doi.org/10.1007/978-90-481-3619-3_4
https://doi.org/10.1016/j.envsoft.2014.12.013
https://doi.org/10.1016/j.envsoft.2014.12.013

	WISS a Java Continuous Simulation Framework for Agro-Ecological Modelling
	Abstract
	1 Introduction
	2 WISS Approach to Agro-Ecological Modelling
	3 Time Steps and Integration
	4 WISS Model Components
	5 Implementation Aspects
	6 Availability
	7 Real World Application
	8 Future
	References

