
Evaluation of Structures and Methods
for Resolution Determination of Remote

Sensing Sensors

Henry Meißner1(B) , Michael Cramer2 , and Ralf Reulke3

1 Institute of Optical Sensor Systems, German Aerospace Center,
12489 Berlin, Germany
henry.meissner@dlr.de

2 Institute for Photogrammetry (ifp), University of Stuttgart,
70174 Stuttgart, Germany

michael.cramer@ifp.uni-stuttgart.de
3 Humboldt-University, 12489 Berlin, Germany

ralf.reulke@hu-berlin.de

Abstract. Effective image resolution is an important image quality fac-
tor for remote sensing sensors and significantly affects photogrammet-
ric processing tool chains. Tie points, mandatory for forming the block
geometry, fully rely on feature points (i.e. SIFT, SURF) and quality
of these points however is significantly correlated to image resolution.
Spatial resolution can be determined in different ways. Utilizing bar
test charts (e.g. USAF51), slanted edges (ISO 12233) and Siemens-Stars
are widely accepted techniques. The paper describes these approaches
and compares all in one joint experiment. Moreover, Slanted-Edge and
Siemens-Star method is evaluated using (close to) ideal images convolved
with known parameters. It will be shown that both techniques deliver
conclusive and expected results.

Keywords: Resolving power · Image quality · Siemens-Star ·
Slanted-Edge · USAF51 test-chart

1 Introduction

Ground resolved distance (GRD) or true ground sample distance (tGSD) is an
essential parameter of imaging systems [4,9], as it defines the detail of informa-
tion in any image taken by remote sensing sensors. The effective geometric res-
olution significantly affects photogrammetric processing tool chains. Tie points,
mandatory for forming the block geometry, fully rely on feature points (SIFT,
SURF, etc.) and the quality parameters of these points however are significantly
correlated to image resolution [7]. This is why resolution determination is of such
importance to quantify the potential of a sensor-lens-combination.

Although acquisition of resolving power is a well-studied field of research,
there are still some scientific questions to be answered when it comes to a stan-
dardized (eventually absolute) determination. This is also research object of a
c© Springer Nature Switzerland AG 2020
J. J. Dabrowski et al. (Eds.): PSIVT 2019 Workshops, LNCS 11994, pp. 59–69, 2020.
https://doi.org/10.1007/978-3-030-39770-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39770-8_5&domain=pdf
http://orcid.org/0000-0002-2070-4027
http://orcid.org/0000-0002-3647-617X
http://orcid.org/0000-0003-3819-2848
https://doi.org/10.1007/978-3-030-39770-8_5


60 H. Meißner et al.

committee of the “German Institute for Standardization” and the given con-
tribution outlines the current state of investigation concerning remote sensing
sensors.

Orych [9] provided a description of calibration targets used for high-resolution
remote sensing imaging equipment and concluded: “Based on a preliminary anal-
ysis, three types of test patterns were selected as possible choices for evaluating
the quality of imagery acquired by UAV sensors: bar target, Slanted Edge Test
and Siemens Star.” Extending the perspective from UAV-context to a general
remote sensing perspective all three approaches must deliver similar or ideally
the exact same results for identical images and image regions.

Furthermore, implementations of Slanted-Edge and Siemens-Star method can
be tested for validity by using known (model) parameters for a Gaussian-kernel
and subsequent convolution with (close to ideal) images. Then it must be possible
to extract (resp. measure) the predefined parameters with both approaches.

Therefore, all techniques (USAF51, Slanted-Edge, Siemens-Star) will be
described with mathematical detail in Sect. 2 followed by introducing a model-
based approach to simulate distinct image resolution in Sect. 3. Related experi-
ment description and obtained results are given in Sect. 4.

2 Structures and Techniques

Sharpness as an image property is characterized by the modulation transfer
function (MTF) which is the spatial frequency response of an imaging system to
a given illumination. “High spatial frequencies correspond to fine image detail.
The more extended the response, the finer the detail - the sharper the image.”
[8]. Inverse Fourier-transforming MTF, directly delivers the point spread func-
tion (PSF) [10]. The parameter σ (standard deviation) of the PSF (assumed
Gaussian-shape function) is one criterion. It directly relates to image space and
can be seen as objective measure to compare different camera performances.
Another criterion is the spatial frequency where the MTF reaches a certain
(minimal-) value (i.e. 10%, MTF10). The reciprocal of that frequency is the
approximation for size of the smallest line per pixel. The width of PSF at half
the height of the maximum is another criterion (full width half maximum -
FWHM) and is related to σ of PSF as follows [14]. Starting by assuming a
Gaussian-shape function (Eq. 1).

H (x) =
1

σ
√

2π
· e− (x−μ)2

2·σ2 (1)

The constant scaling factor 1
σ

√
2π

can be ignored. Applying H(x) = 0.5 leads to
Eq. (2):

e− x0−μ

2·σ2 = 2−1 (2)

Solving Eq. (2) and assuming function value H(xmax) occurs at μ = 0 half-
maximum points x0 are found (Eq. 3):

x0 = ±σ
√

2 ln 2 (3)
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The full width at half maximum is then given by:

FWHM = x+ − x− = 2
√

2 ln 2σ ≈ 2.3548σ (4)

A similar measure exists in frequency domain. The effective instantaneous field-
of-view (EIFOV) for MTF at 50% contrast level [3]. Assuming a Gaussian-shape
function for PSF (Eq. 1) the Fourier-transformed H̃(ν) (MTF, Eq. 5) is formu-
lated as follows [5]. Again, the constant scaling factor can be ignored.

H̃ (ν) = e−2·π2·σ2·ν2
= 0.5 (5)

By setting H̃(ν) equal to = 0.5 Eq. (5) can be written as:

2 · π2 · σ2 · ν2 = − log(0.5) (6)

Subsequent transposing then gives:

ν =

√
− log(0.5)
2 · π2 · σ2

=

√−log(0.5)/2
π · σ

(7)

Substituting with C

C =

√−log(0.5)/2
π

(8)

gives the formula for νδ (Eq. 9) similar to Eq. (3) and x0.

ν · δ = νδ =
C

σδ
(9)

Finally EIFOV can be calculated with the following equation:

EIFOV =
σδ

2C
= 2.67 · σδ (10)

By comparing Eqs. (4) and (10) it is noticeable that both image quality param-
eters (FWHM & EIFOV) depend in their related domain (image- or frequency-
domain) only on parameter σ (PSF or MTF) and a similar constant factor.

Aforementioned image quality parameters can be determined with different
structures of patterns and different techniques and will be described in the fol-
lowing sub sections.

2.1 Bar Target

A classic approach is to use defined test targets (e.g. USAF resolution test chart,
see Fig. 1, left) with groups of bars [12]. “The resolving power target used on all
tests shall be as follows: The target shall consist of a series of patterns decreasing
in size as the

√
2, 3

√
2, 6

√
2, with a range sufficient to cover the requirements [. . . ].

The standard target element shall consist of two patterns (two sets of lines) at
right angles to each other. Each pattern shall consist of three lines separated by
spaces of equal width. Each line shall be five times as long as it is wide.”
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Images of test targets fulfilling these requirements are directly linked to object
space metric resolution (see Fig. 1, right). There, the identified resolution cor-
responds to the distance between bars of the least discriminable group. The
decision whether a group still is discriminable or not strongly relies on viewers’
perception. To diminish subjective influence statistically the number of viewers
n is chosen to be significant (e.g. n ≥ 10) and the resulting resolution Gr (GRD,
tGSD) is calculated (11) as mean of all independent observations Gi.

Gr =
1
n

n∑
i=1

Gi (11)

With knowledge about interior camera parameters (focal length f , pixel size s)
and distance between camera system and test target d the theoretical resolution
Gt is calculated as:

Gt =
s

f
d (12)

While Gr is equivalent to GRD or tGSD, the quotient Gq according to Eq. (13)
provides another measure for image resolving power.

Gq =
Gr

Gt
(13)

Usually values for Gq greater than 1 are expected to be calculated. In this case
theoretical resolution Gt is better than ultimately determined resolution Gr.
Values Gq ≤ 1 either result due to loss-less transition from object space to image
space or indicate image enhancement (e.g. edge-sharpening, color refinement or
super resolution).

Besides the disadvantage of subjective influence included in this acquisition
method values for resolving power are discrete instead of continuous.

2.2 Slanted-Edge

The presented approach uses an edge-step technique [1,6]. It evaluates the tran-
sition between a very homogeneous dark area to a very homogeneous bright area
along an extremely sharp, straight edge within the image. The most challenging
part of the algorithm is to identify suitable horizontal and vertical edges [6] and
to make sure that their position is known to sub-pixel accuracy [1]. Identification
of the edges is done automatically either by using a line segment detector [13]
or by using a Canny edge detector followed by a Hough transform. Each edge is
refined to match the actual transition in the current image as closely as possible,
using a custom-built refinement procedure.

After the edges have been located and confirmed to meet the quality stan-
dards, their complete profile, spanning their entire length, has to be derived. For
each point on the edge, moving along the edge pixel by pixel, the profile following
the image’s pixel grid is extracted and projected onto the perpendicular to the
edge. An alternative approach is to scan and combine multiple perpendicular
lines by applying bi-cubic or bi-linear interpolations methods [11].
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Fig. 1. Aerial image of USAF bar test target (left), corresponding ground resolution
[cm] in object space (right)

(a) Edge Spread Function (b) Line Spread Function (c) Normalized Fourier
Transform of the LSF

Fig. 2. ESF, LSF and normalized FFT of an edge.

The thus obtained projected edge profile is cleaned from blunders, filtered
and approximated with a Sigmoid function. The resulting Edge Spread Func-
tion (ESF), i.e. the response of the system to this edge [1,6], is shown in Fig. 2(a).
The numerical derivative of the ESF yields the Line Spread Function (LSF), the
response of the system to a line target [1,6], an example of which is displayed
in Fig. 2(b). Finally, a Fast Fourier Transform (FFT) is applied to the LSF
(Fig. 2(c)) and the normalized magnitude of the result evaluated at the Nyquist
frequency (0.5 cycles per pixel) yields the MTF.

2.3 Siemens-Star

Using a priori knowledge of the original scene (well-known Siemens-Star target)
contrast transfer function CTF, MTF and PSF are approximated by a Gaussian
shape function [7]. Coordinate axis X for CTF and MTF is the spatial frequency
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f (Eq. 14) and is calculated as target frequency fs divided by current scan radius
r multiplied by π. Target frequency fs is constant and equivalent to the number
of black-white segments of the well-known Siemens-Star.

f =
fs

πr
(14)

Related (initially discrete) values for contrast transfer function Cd (f) are derived
using intensity maxima Imax and minima Imin for every scanned circle (Eq. 15).
Simultaneously the function value is normalized to contrast level C0 at spatial
frequency equal to 0 (infinite radius).

Cd (f) =
Imax (f) − Imin (f)
Imax (f) + Imin (f)

∗ 1
C0

(15)

Continuous function values C are derived by fitting a Gaussian function into
discrete input data (Eq. 16).

C =
1

σ
√

2π
e− 1

2 ( x−μ
σ )2 (16)

According to [2] the obtained CTF describes the system response to a square
wave input while MTF is the system response to a sine wave input. The pro-
posed solution is a normalization with π

4 followed by series expansion using odd
frequency multiples (Eq. 17).

MTF (f) =
π

4

[
C (f) +

C (3f)
3

+
C (5f)

5
+ . . .

]
(17)

MTF describes the effective resolving power in frequency domain while PSF is
the image domain equivalent. For this reason both functions are linked directly
by fourier transform (Eq. 18).

PSF � � MTF (18)

3 Model-Based PSF and MTF

A conclusive validation of Slanted-Edge (Sect. 2.2) and Siemens-Star technique
(Sect. 2.3) is to apply predefined modulation (MTF) or spread parameters (PSF)
to an ideal representation of resolving patterns (see Fig. 3). This can be done
in both domains. In image-domain it can be done by forming a convolution
of mathematical-ideal image-intensity values of an image (I), a Gaussian-shape
model PSF (Hm) and a mathematical-ideal sensor PSF (Hs). Simulated PSF
(Hsim) then can be formulated as follows:

Hsim(ρ) = I(ρ) ∗ Hm(ρ) ∗ Hs(ρ) (19)

In frequency-domain calculation gets simpler, only the product of image spec-
trum (Ĩ) with a predefined model-based MTF (H̃M ) and (mathematical-ideal)
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Fig. 3. Original image (upper left) continuous and discrete Gaussian PSF convolution
kernel (upper mid) and convolution result (upper right), ideal MTF, close to ideal MTF
and model-based MTF (lower left), related products in frequency domain (lower right)

sensor MTF (H̃S) has to be calculated. Therefore, simulated-image MTF (H̃Sim)
can be formulated as follows:

H̃Sim(ν) = Ĩ(ν) · H̃M (ν) · H̃S(ν) (20)

The derived hypothesis is, if both algorithms (Slanted-Edge and Siemens-Star)
described in Sect. 2 provide measurements of absolute value then model-MTF
(H̃M ) respectively model-PSF (Hm) must directly be confirmed by measurement
of simulated-image MTF (H̃Sim) respectively PSF (Hsim).

Mathematical-ideal sensor-MTF H̃S(ν) with ν ∈ R is characterized as being
equal to 1 for all frequencies (see Fig. 3, dotted line). However, when an ideal
pattern is rendered to a pixel grid the resulting (Nyquist-limited) sensor-PSF and
sensor-MTF unavoidably will differ from ideal shape. An example of (close to)
ideal sensor-MTF can be seen in Fig. 3 (dashed-dotted line) with Nyquist-limit
1.0 line per pixel.

As a result, obtained MTF values (H̃Sim) measure the product of (close
to) ideal sensor-MTF (H̃S) and model-MTF (HM ) and therefore are expected
to be smaller than the product of ideal sensor-MTF (H̃S(ν) = 1, ν ∈ R) and
model-MTF (HM ) (see Fig. 3, magenta and cyan line).

Considering that, PSF and MTF are directly linked by (inverse) Fourier
transformation (Eq. 18), it can be assumed that for increasing values σm (Hs)
respectively for decreasing values σM (H̃S) simulated images and corresponding
measured quality parameter σSLE and σStar of Hsim will be continuously less
affected by the difference of ideal and (close to) ideal sensor- PSF or MTF. This
assumption can be verified (empirically) by an experiment in Sect. 4.2.
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4 Experiments

Algorithms for standardized (eventually absolute) determination of resolving
power under consideration for norm-description (e.g. by a committee of the
“German Institute for Standardization”) need to be validated with respect to
conditions described in Sects. 2 and 3.

Every method to determine effective resolving power of remote sensing sen-
sors described in Sect. 2 for itself has individual advantages. Slanted-Edge is
a well studied approach and has been transferred to a norm-description (ISO
12233, [15]). Bar charts (e.g. USAF51) are very intuitive and responsive. Slanted-
Edge uses the first derivative of ESF between intensity maxima and minima, in
contrast the Siemens-Star approach uses exact those maxima and minima and
calculates CTF (Eq. 14) and MTF. Empirical observations indicate that due
to this difference measurements of the Siemens-Star approach are more robust
against influence of widely used sharpening filters.

4.1 Simultaneous Resolving Power Determination

Given the variety of approaches and techniques it is consistently necessary to
compare their respective results and answer the question if used techniques do
or do not perform equivalently and what are reasons for particular observations.
Therefore, all described approaches have been applied simultaneously for iden-
tical images and image regions (example Fig. 4). Used image quality parameter
is ground resolved distance (GRD in cm). For USAF51 bar chart GRD is cal-
culated according to Eq. (11) with number of observers n ≥ 10. Reciprocal of
MTF10 is the approximation for size of the smallest line per pixel. Multiplying
reciprocal of MTF10-values from Slanted-Edge and Siemens-Star measurement
with calculated ground sample distance (GSD, Eq. 12) delivers GRD for both
algorithms. Seven images (example see Fig. 4), showing bar chart and Siemens-
Star simultaneously and GSD between 1.24 cm and 1.27 cm, have been taken to
obtain following results (Table 1):

The fourth column (Δ SLE-Star) shows the absolute difference between
Slanted-Edge and Siemens-Star approach in percent. Except for one outlier,
both techniques seem to measure very similar at an overall mean difference of
3.3%.

Values obtained by independent human observers and USAF51 tend to be
more static compared to the other methods. This effect could be caused by huge
resolution steps between groups of bars. Rearranging the target, including more
groups with finer descent, may weaken the effect.

Even when comparing all three approaches at once (Δ Min-Max) the overall
mean difference of 7.1% still can be considered very low.

4.2 Measurement of Model-Based MTF and PSF

As described in Sect. 3, a conclusive validation of Slanted-Edge and Siemens-Star
technique is to apply predefined modulation (MTF) or spread parameters (PSF).
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Fig. 4. Simultaneous determination of ground resolved distance (GRD) for USAF51
(left), Slanted-Edge (upper right) and Siemens-Star (lower right)

Table 1. Simultaneous determination of ground resolved distance (GRD) for USAF51,
Slanted-Edge and Siemens-Star

Bar chart Slanted E. SiemStar Δ SLE-Star [%] Δ Min-Max [%]

Image Nr. 1 1.45 1.49 1.52 2.0 4.6
Image Nr. 2 1.48 1.51 1.52 0.7 2.6
Image Nr. 3 1.55 1.45 1.45 0.0 6.5
Image Nr. 4 1.39 1.32 1.34 1.5 5.0
Image Nr. 5 1.43 1.38 1.30 5.8 9.1
Image Nr. 6 1.45 1.24 1.39 10.8 14.5
Image Nr. 7 1.42 1.50 1.53 2.0 7.2

Then, the used model parameters σm must be reproduced by both methods dur-
ing measurement (σSLE and σStar of Hsim). For this reason, an image showing a
Siemens-Star including (close to) ideal sensor PSF (Hs) has been convolved with
different σm starting at 0.500 and rising to 1.750. Subsequently, σ of Hsim has
been calculated with both Slanted-Egde and Siemens-Star approach. Obtained
results can be found in following table (Table 2):

Values in column ΔA show the difference between model parameter σm and
measured parameter σSLE in absolute percentage [%]. Values of column ΔB
provide results for difference between σm and measured σStar. Similar to the
comparison of both techniques in preceding experiment Sect. 4.1 column ΔC
reflects the absolute difference between σSLE and σStar in absolute percentage
[%].
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Table 2. Model-PSF compared to measured PSF of Slanted-Edge and Siemens-Star

σm of (Hm) σ Slanted Edge σ Siemens Star ΔA [%] ΔB [%] ΔC [%]

0.500 0.609 0.598 17.8 16.4 1.7
0.750 0.894 0.856 16.1 12.4 4.2
1.000 1.093 1.076 8.5 7.1 1.6
1.250 1.301 1.306 3.9 4.3 0.4
1.500 1.546 1.532 3.0 2.1 0.9
1.750 1.739 1.748 0.7 0.1 0.5

Two observations can be emphasized. First, the difference between Slanted-
Edge and Siemens-Star technique again is small. In contrast to experiment
Sect. 4.1 overall mean difference of 1.6% here is even smaller and measurements
deliver no outliers. Second observation regards constructed hypothesis in Sect. 3:
“. . . it can be assumed that for increasing values σm (PSF) . . . simulated images
and corresponding quality parameter . . . will be continuously less affected by the
difference of ideal and (close to) ideal sensor- PSF”. Columns ΔA and ΔB indi-
cate that this hypothesis is true. With rising σm the absolute difference of both
methods tend to approach zero.

5 Conclusion and Outlook

Mathematically detailed descriptions of three different techniques for determina-
tion of resolving power were presented. A model-based approach and its underly-
ing theory has been introduced to verify two acquisition methods (Slanted-Edge
and Siemens-Star). Moreover, two experiments have been conducted to verify
similar and correct measurements of all techniques. It can be concluded that
all methods deliver expected, similar and mathematical predictable results. In
particular, experimental results for difference of Slanted-Edge (ISO 12233) and
Siemens-Star deliver very similar output and thus both approaches can be consid-
ered for further evaluation regarding standardized norm-description. Presented
results highly indicate that both methods can be seen complementary to each
other.

Previous work [7] already described influence of used de-mosaicing methods
on resolving power and related measurements. Future work and final contribution
is going to conclude the investigation and thoroughly clarify further open issues
as support to research of the “German Institute for Standardization”.

These open issues are: Siemens-Star center position (determination and asso-
ciated confidence), normalization of contrast magnitude and related require-
ments of the test pattern layout, exposure time dependency, influence of motion
blur, influence of used interpolation methods during signal-scan (e.g. nearest-
neighbour, bi-linear, bi-cubic), different mathematical models for PSF/MTF
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(Gaussian-shape, polynomial-shape, piece-wise linear) and influence of test tar-
get inclination during acquisition.
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