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1 Introduction

Considering the solution of hyperbolic conservation laws, high order methods
can be very efficient, providing accurate numerical solutions with relatively low
computational effort [21]. In order to make use of this accuracy, stability has to be
established. Mimicking estimates obtained on the continuous level via integration-
by-parts, summation-by-parts (SBP) operators [22, 37] can be used. In short, SBP
operators are discrete derivative operators equipped with a compatible quadrature
providing a discrete analogue of the L2 norm. The compatibility of discrete
integration and differentiation mimics integration-by-parts on a discrete level.
Combined with the weak enforcement of boundary conditions via simultaneous
approximation terms (SATs) [1], highly efficient and stable semidiscretisations can
be obtained at least for linear problems, see e.g. [6, 14, 39] and references cited
therein.

In recent years, there has been an enduring and increasing interest in the basic
ideas of SBP operators and their application in various frameworks including finite
volume (FV) [25, 26], discontinuous Galerkin (DG) [2, 4, 10, 11, 13, 20, 27, 28, 30],
and the recent flux reconstruction/correction procedure via reconstruction frame-
work [15, 16, 42] as described in [31, 32]. While there is only a limited amount
of well-posedness theory for nonlinear conservation laws, mimicking properties
such as entropy stability semidiscretely has received much interest. Building on the
seminal work of Tadmor [40, 41], entropy stability of second order schemes using
symmetric numerical fluxes has been investigated, resulting in well-defined proper-
ties that numerical fluxes have to satisfy in order to result in entropy conservative
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schemes. Decomposing general semidiscretisations into a non-dissipative central
part and an additional dissipative part, suitable artificial dissipation or filtering can
be added afterwards, cf. [7, 9, 38]. Second order methods based on symmetric
numerical fluxes can be extended to high order in a conservative way, cf. [4, 7, 28]
and [8, 23, 34–36].

Another property of numerical methods for the Euler equations that has received
much interest in the literature concerns the kinetic energy. A structural property
of numerical fluxes described by Jameson [18] has been used to construct so-
called kinetic energy preserving (KEP) numerical fluxes inter alia by Chandrashekar
[3]. However, schemes using these fluxes do not preserve the kinetic energy as
expected in numerical experiments by Gassner et al. [12]. They had to change the
discretisation of the pressure to reduce undesired changes of the kinetic energy.
However, this resulted in a loss of entropy conservation. Motivated by these results,
some analytical insights into this behaviour have been developed in [29, Section 7.4]
and will be presented here.

This chapter is structured as follows. At first, some basic results about SBP
operators and corresponding semidiscretisations of hyperbolic conservation
laws are reviewed in Sect. 2. Afterwards, the Euler equations are considered in
Sect. 3. After demonstrating that the property that has been used to characterise
numerical fluxes as KEP is not well-defined, the new concept of KEP numerical
methods is introduced. Moreover, a numerical flux that is both entropy
conservative and kinetic energy preserving in the new sense is developed.
Thereafter, results of a numerical experiment comparing entropy conservative
numerical fluxes are described in Sect. 4. Finally, a brief summary is given in
Sect. 5.

2 Discretisations Using Summation-by-Parts Operators

Consider the Euler equations in two space dimensions
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where ρ is the density, v the velocity, e the specific total energy, and p the pressure.
For a perfect gas, p = (γ −1)

(
ρe− 1

2ρv2
)
. The usual entropy is U = − ρs

γ−1 , where
s = log p − γ log ρ is the specific (physical) entropy.

With the entropy fluxes Fj fulfilling ∂uU · ∂uf
j = ∂uF

j , smooth solutions of
the Euler equations in d space dimensions satisfy ∂tU(u)+∑d

j=1 ∂jF
j (u) = 0 and
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the entropy inequality

∂tU(u) +
d∑

j=1

∂jF
j (u) ≤ 0 (2)

is used as additional admissibility criterion for weak solutions, cf. [5].
In order to discretise (1), the domain Ω is divided into several non-overlapping

sub-domains Ωl ⊆ Ω and SBP operators will be used on each element. SBP
operators consist of discrete derivative operators Dj , approximating the partial
derivative in direction j , and a symmetric and positive definite mass/norm matrix M ,
approximating the L2(Ωl) scalar product via uT Mv = 〈u, v, 〉M ≈ 〈u, v, 〉L2(Ωl)

=∫
Ωl

u v. Moreover, an interpolation operator R approximates the restriction of
functions on Ωl to the boundary ∂Ωl and a symmetric and positive definite
boundary mass matrix B approximate the L2(∂Ωl) scalar product. Representing
the multiplication by the j -th component of the outer unit normal ν at ∂Ωl by the
diagonal matrix nj , the SBP property

MDj + DT
j M = RT BnjR (3)

has to be satisfied in order to mimic integration-by-parts discretely via

uT MDjv + uT DT
j Mv︸ ︷︷ ︸ = uT RT BNjRv,︸ ︷︷ ︸

≈ ≈︷ ︸︸ ︷∫
Ωl

u (∂j v) +
∫

Ωl

(∂ju) v =
︷ ︸︸ ︷∫

∂Ωl

u v nj .

(4)

Semidiscretisation of (1) will be constructed as follows. Each sub-domain Ωl ⊆
Ω is mapped onto a reference element and all computations are performed there.
On each element, the resulting semidiscretisation is of the form

∂tu + VOL + SURF = 0, (5)

where the volume terms VOL discretise the flux divergence in the interior of Ωl

and the surface terms SURF couple elements or impose boundary conditions.
Here, u is the vector of the nodal values of the numerical solution at specified
nodes ξi in Ωl and a collocation approach is used. Thus, nonlinear operations are
performed pointwise and the discrete fluxes f j are given by their nodal values
f

j
i = f j (ui) = f j (u(ξi)). As in (nodal) discontinuous Galerkin methods, the

surface terms will be built using numerical fluxes f num,j in the j -th coordinate
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direction as

SURF =
d∑

j=1

M−1RT Bnj

(
f num,j − Rf j

)
. (6)

Finally, the volume terms are constructed using symmetric (two-point) numerical
fluxes f vol,j (volume fluxes) that are consistent with f j as

VOLi =
d∑

j=1

∑
k

2(Dj )i,kf
vol,j (ui, uk), (7)

where VOLi is the volume term at ξi [7]. If f vol,j are smooth fluxes, the
discretisation (7) is of the same order of accuracy as the derivative matrices Dj

[4, 28]. Moreover, if the mass matrix M is diagonal, this approximation can be
written in a conservative form [7]. Finally, if the boundary operators RT BnjR are
also diagonal and f vol,j are entropy conservative in the sense of Tadmor [40, 41],
the semidiscretisation (5) is entropy conservative/stable across elements if the
numerical surface fluxes f num,j are entropy conservative/stable. Moreover, some
results on the kinetic energy can be transferred as well [12]. In the following, the
focus will lie on the fluxes f vol,j .

3 Euler Equations and Kinetic Energy

The kinetic energy Ekin = 1
2ρv2 fulfils (for sufficiently smooth solutions)

∂tEkin + div
(1

2
ρv2v

)
+ v · grad p = 0. (8)

Jameson [18] investigated the kinetic energy in a one-dimensional semidiscrete
setting using finite volume methods. To simplify the notation, this setup will be used
in the following; its extension to multiple dimensions is straightforward. Jameson
proposed to mimic (8) semidiscretely by using numerical momentum fluxes of the
form f num

ρv = f num
ρv (u−, u+) = {{v}}f num

ρ +pnum, where {{v}} is the arithmetic mean
of v− and v+, f num

ρ is the numerical density flux, and pnum is a consistent numerical
approximation of the pressure. Later, this has been used as a kind of “definition” of
kinetic energy preserving (KEP) numerical fluxes, e.g. in [3, 12]. However, this is
not a well-defined concept, cf. [28, 29]. Indeed, every numerical momentum flux
can be written as

f num
ρv = {{v}}f num

ρ + (
f num

ρv − {{v}}f num
ρ

)
︸ ︷︷ ︸

=: pnum?

. (9)
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Since the numerical fluxes are consistent, pnum := f num
ρv − {{v}}f num

ρ is a
consistent approximation of the pressure. The insufficiency of the condition f num

ρv =
{{v}}f num

ρ + pnum is in accordance with observations of Gassner et al. [12]. They
investigated a Taylor-Green vortex problem and compared several numerical fluxes
for the Euler equations. There, numerical fluxes of the form f num

ρv = {{v}}f num
ρ +

pnum with pnum �= {{p}} resulted in a clear loss of kinetic energy compared to other
KEP fluxes using the arithmetic average pnum = {{p}} as approximation of the
pressure. They observed that “the discretisation of the pressure plays a crucial role
for the kinetic energy” and that the choice of the arithmetic average pnum = {{p}}
“seems to be important for the kinetic energy equation” [12, Section 4.2]. However,
they had no (theoretical) explanations for this observation.

3.1 New Approach to Kinetic Energy Preservation

By a heuristic argument, the balance law (8) may not be suitable in the incompress-
ible limit: Indeed, for smooth solutions, (8) can be rewritten as

∂tEkin + div
(1

2
ρv2v + pv

)
− p div v = 0, (10)

which becomes a conservation law for smooth solutions of the incompressible
Euler equations due to div(v) = 0 or an energy inequality similar to the entropy
inequality (2). Since the kinetic energy is plays a crucial role in the incompressible
limit [24], the second form (10) might be considered the “better” one. Thus, a
semidiscretisation mimicking this equation might be desirable near the incompress-
ible limit.

Definition 1 A numerical flux f num = (f num
ρ , f num

ρv , f num
ρe ) for the Euler equations

is called kinetic energy preserving (KEP), if the momentum flux can be written as
f num

ρv = {{v}}f num
ρ + {{p}}.

Definition 1 results in a well-defined concept of KEP numerical fluxes.

Theorem 1 (Corollary 7.5 of [29]) If a kinetic energy preserving numerical flux is
used in a semidiscrete FV method, the resulting semidiscrete kinetic energy equation
mimics both the conservative and the non-conservative terms of Eq. (10).

Proof (Sketch) Using the chain rule in a one dimensional finite volume setting, the
time derivative of the kinetic energy in cell i becomes

∂t

(1

2
ρv2

)
i
= − 1

Δxi

((1

2
ρv2v + pv

)num
(ui, ui+1) −

(1

2
ρv2v + pv

)num
(ui−1, ui)

)

+ pi

{{v}}i,i+1 − {{v}}i−1,i

Δxi

,

where
( 1

2ρv2v + pv
)num

(ui, uj ) = vivjf
num
ρ (ui, uj ) + pivj +pj vi

2 . �	
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Using the momentum flux f num
ρv = {{v}}f num

ρ + {{p}} in the volume terms (7) in
one dimension, the arithmetic average of the pressure yields the volume term Dp,
i.e. a straightforward discretisation of ∂xp. Analogous results hold in multiple space
dimensions, cf. Sect. 2.

The kinetic energy preserving DG methods presented in [11, 27] use volume
terms corresponding to the numerical fluxes f num

ρ = {{ρv}}, f num
ρv = {{ρv}}{{v}} +

{{p}}, which are kinetic energy preserving in the sense of Definition 1.

3.2 Entropy Conservative and KEP Numerical Fluxes

Since entropy stability has received much interest and the entropy conservative
numerical fluxes of [3, 17] are not KEP in the sense of Definition 1, it is interesting
whether both concepts can be fulfilled simultaneously. The logarithmic mean
value {{ρ}}log = [[ρ]]/[[log ρ]] has been proposed by Roe [33] in the context
of entropy conservative numerical fluxes and is described in [17]. Many useful
entropy conservative numerical density fluxes are of the form f num

ρ = {{ρ}}log{{v}},
e.g. the one presented in [3]. This form seems to be preferable, since positivity
preservation of the density can be achieved using local Lax-Friedrichs/Rusanov
dissipation operators [28, Section 6.2]. Using this ansatz for f num

ρ and Definition 1,
the following entropy conservative and kinetic energy preserving numerical flux
(f num,y analogously) has been constructed in [29, Section 7.4]

f num,x
ρ = {{ρ}}log{{vx}}, f num,x

ρvx
= {{vx}}f num,x

ρ + {{p}}, f num,x
ρvy

= {{vy}}f num,x
ρ ,

(11)

f num,x
ρe =

⎛
⎝{{ρ}}log

(
{{vx}}2+{{vy}}2− {{v2

x + v2
y}}

2

)
+ 1

γ − 1

{{ρ}}log

{{ρ/p}}log
+{{p}}

⎞
⎠{{vx}}

− [[p]][[v]]
4

.

4 Numerical Results

Since the kinetic energy is an important quantity for the incompressible Euler
equations, a Taylor-Green vortex given by

ρ(t, x, y) = 1, vx(t, x, y) = sin(x) cos(y),

vy(t, x, y) = − cos(x) sin(y), p(t, x, y) = 100

γ
+ cos(2x) + cos(2y)

4
,

(12)
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for (x, y) ∈ [0, 2π ]2 with periodic boundary conditions is considered, which is
a stationary solution of the incompressible Euler equations. Using tensor product
Lobatto bases for polynomials of degree p = 5 on N = 16 elements per
coordinate direction, the numerical solutions have been computed in the time
interval t ∈ [0, 30] with the fourth order, ten-stage, strong stability preserving
Runge-Kutta method of [19]. The time step Δt has been chosen as Δt =
cfl min

{
Δx/(2p + 1)λ

}
, where λ is the greatest absolute value of the eigenvalues

of f ′ and the minimum is taken over all cells and nodes. As in [12], the given
numerical fluxes have been used for both the volume terms (7) and as surface fluxes
in (6), without additional dissipation.

The evolution of the entropy U and the kinetic energy Ekin using a CFL number
cfl = 0.9 for the entropy conservative fluxes of Ismail and Roe [17], Chandrashekar
[3], and the new flux (11) are visualised in Fig. 1. As can be seen there, the entropy
remains approximately constant and the kinetic energy oscillates uniformly until
t ≈ 20. Afterwards, the kinetic energy drops for the fluxes of [3, 17] and there is
a relative change of the entropy of order 10−5. Contrary, there is no visible change
for the new flux (11).

The entropy loss for the fluxes of Ismail and Roe [17] and Chandrashekar [3] is
caused by the time integration scheme, as can be seen in Fig. 2, where the time step
is reduced by an order of magnitude (cfl = 0.09). However, the behaviour of the
kinetic energy is nearly unchanged.
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−2 ·10−2

0

E
(t
)−

E
(0
)

E
(0
)

0 5 10 15 20 25 30

−2 ·10−5
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Time t

U
(t
)−

U
(0
)

|U
(0
) |

Numerical Flux of Chandrashekar
Numerical Flux of Ismail & Roe
New Numerical Flux (KEP & EC)

Fig. 1 Total entropy and kinetic energy of numerical solutions using different entropy conserva-
tive numerical fluxes with cfl = 0.9
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Fig. 2 Total entropy and kinetic energy of numerical solutions using different entropy conserva-
tive numerical fluxes with cfl = 0.09

5 Summary and Discussion

Using summation-by-parts operators, high order numerical schemes with specific
properties can be constructed using symmetric (two-point) numerical fluxes. While
several “kinetic energy preserving” methods have been proposed, they have been
characterised by a property of the numerical fluxes that is not well-defined. Such
numerical fluxes resulted in schemes that did not preserve the kinetic energy as
expected [12]. Here, a new approach to kinetic energy preservation inspired by
the incompressible Euler equations and developed in [29, Section 7.4] has been
described. This results in a well-defined property numerical fluxes have to satisfy
in order mimic the balance law for the kinetic energy more reliably. Moreover, new
entropy conservative numerical fluxes have been developed that are kinetic energy
preserving in the new sense.

References

1. Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-
difference schemes solving hyperbolic systems: methodology and application to high-order
compact schemes. J. Comput. Phys. 111(2), 220–236 (1994). https://doi.org/10.1006/jcph.
1994.1057

2. Chan, J.: On discretely entropy conservative and entropy stable discontinuous Galerkin
methods. J. Comput. Phys. 362, 346–374 (2018). https://doi.org/10.1016/j.jcp.2018.02.033

3. Chandrashekar, P.: Kinetic energy preserving and entropy stable finite volume schemes for
compressible Euler and Navier-Stokes equations. Commun. Comput. Phys. 14(5), 1252–1286
(2013). https://doi.org/10.4208/cicp.170712.010313a

https://doi.org/10.1006/jcph.1994.1057
https://doi.org/10.1006/jcph.1994.1057
https://doi.org/10.1016/j.jcp.2018.02.033
https://doi.org/10.4208/cicp.170712.010313a


EC and KEP Numerical Methods for the Euler Equations Using SBP Operators 533

4. Chen, T., Shu, C.W.: Entropy stable high order discontinuous Galerkin methods with suitable
quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427–461 (2017).
https://doi.org/10.1016/j.jcp.2017.05.025

5. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-04048-1

6. Fernández, D.C.D.R., Hicken, J.E., Zingg, D.W.: Review of summation-by-parts operators with
simultaneous approximation terms for the numerical solution of partial differential equations.
Comput. Fluids 95, 171–196 (2014). https://doi.org/10.1016/j.compfluid.2014.02.016

7. Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear
conservation laws: finite domains. J. Comput. Phys. 252, 518–557 (2013). https://doi.org/10.
1016/j.jcp.2013.06.014

8. Fisher, T.C., Carpenter, M.H., Nordström, J., Yamaleev, N.K., Swanson, C.: Discretely
conservative finite-difference formulations for nonlinear conservation laws in split form: theory
and boundary conditions. J. Comput. Phys. 234, 353–375 (2013). https://doi.org/10.1016/j.jcp.
2012.09.026

9. Fjordholm, U.S., Mishra, S., Tadmor, E.: Arbitrarily high-order accurate entropy stable
essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal.
50(2), 544–573 (2012). https://doi.org/10.1137/110836961

10. Gassner, G.J.: A skew-symmetric discontinuous Galerkin spectral element discretization and
its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35(3), A1233–A1253
(2013). https://doi.org/10.1137/120890144

11. Gassner, G.J.: A kinetic energy preserving nodal discontinuous Galerkin spectral element
method. Int. J. Numer. Methods Fluids 76(1), 28–50 (2014). https://doi.org/10.1002/fld.3923

12. Gassner, G.J., Winters, A.R., Kopriva, D.A.: Split form nodal discontinuous Galerkin schemes
with summation-by-parts property for the compressible Euler equations. J. Comput. Phys. 327,
39–66 (2016). https://doi.org/10.1016/j.jcp.2016.09.013

13. Gassner, G.J., Winters, A.R., Kopriva, D.A.: A well balanced and entropy conservative
discontinuous Galerkin spectral element method for the shallow water equations. Appl. Math.
Comput. 272, 291–308 (2016). https://doi.org/10.1016/j.amc.2015.07.014

14. Gustafsson, B., Kreiss, H.O., Oliger, J.: Time-Dependent Problems and Difference Methods.
Wiley, Hoboken (2013)

15. Huynh, H.T.: A flux reconstruction approach to high-order schemes including discontinuous
Galerkin methods. In: 18th AIAA Computational Fluid Dynamics Conference. American
Institute of Aeronautics and Astronautics (2007). https://doi.org/10.2514/6.2007-4079

16. Huynh, H.T., Wang, Z.J., Vincent, P.E.: High-order methods for computational fluid dynamics:
a brief review of compact differential formulations on unstructured grids. Comput. Fluids 98,
209–220 (2014). https://doi.org/10.1016/j.compfluid.2013.12.007

17. Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: entropy production
at shocks. J. Comput. Phys. 228(15), 5410–5436 (2009). https://doi.org/10.1016/j.jcp.2009.04.
021

18. Jameson, A.: Formulation of kinetic energy preserving conservative schemes for gas dynamics
and direct numerical simulation of one-dimensional viscous compressible flow in a shock tube
using entropy and kinetic energy preserving schemes. J. Sci. Comput. 34(2), 188–208 (2008).
https://doi.org/10.1007/s10915-007-9172-6

19. Ketcheson, D.I.: Highly efficient strong stability-preserving Runge-Kutta methods with low-
storage implementations. SIAM J. Sci. Comput. 30(4), 2113–2136 (2008). https://doi.org/10.
1137/07070485X

20. Kopriva, D.A., Gassner, G.J.: An energy stable discontinuous Galerkin spectral element
discretization for variable coefficient advection problems. SIAM J. Sci. Comput. 36(4),
A2076–A2099 (2014). https://doi.org/10.1137/130928650

21. Kreiss, H.O., Oliger, J.: Comparison of accurate methods for the integration of hyperbolic
equations. Tellus 24(3), 199–215 (1972). https://doi.org/10.1111/j.2153-3490.1972.tb01547.x

https://doi.org/10.1016/j.jcp.2017.05.025
https://doi.org/10.1007/978-3-642-04048-1
https://doi.org/10.1016/j.compfluid.2014.02.016
https://doi.org/10.1016/j.jcp.2013.06.014
https://doi.org/10.1016/j.jcp.2013.06.014
https://doi.org/10.1016/j.jcp.2012.09.026
https://doi.org/10.1016/j.jcp.2012.09.026
https://doi.org/10.1137/110836961
https://doi.org/10.1137/120890144
https://doi.org/10.1002/fld.3923
https://doi.org/10.1016/j.jcp.2016.09.013
https://doi.org/10.1016/j.amc.2015.07.014
https://doi.org/10.2514/6.2007-4079
https://doi.org/10.1016/j.compfluid.2013.12.007
https://doi.org/10.1016/j.jcp.2009.04.021
https://doi.org/10.1016/j.jcp.2009.04.021
https://doi.org/10.1007/s10915-007-9172-6
https://doi.org/10.1137/07070485X
https://doi.org/10.1137/07070485X
https://doi.org/10.1137/130928650
https://doi.org/10.1111/j.2153-3490.1972.tb01547.x


534 H. Ranocha

22. Kreiss, H.O., Scherer, G.: Finite element and finite difference methods for hyperbolic partial
differential equations. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial
Differential Equations, pp. 195–212. Academic, New York (1974)

23. LeFloch, P.G., Mercier, J.M., Rohde, C.: Fully discrete, entropy conservative schemes of
arbitrary order. SIAM J. Numer. Anal. 40(5), 1968–1992 (2002). https://doi.org/10.1137/
S003614290240069X

24. Lions, P.L.: Mathematical topics in fluid mechanics. Incompressible Models, vol. 1. Oxford
University, Oxford (1996)

25. Nordström, J., Björck, M.: Finite volume approximations and strict stability for hyper-
bolic problems. Appl. Numer. Math. 38(3), 237–255 (2001). https://doi.org/10.1016/S0168-
9274(01)00027-7

26. Nordström, J., Forsberg, K., Adamsson, C., Eliasson, P.: Finite volume methods, unstructured
meshes and strict stability for hyperbolic problems. Appl. Numer. Math. 45(4), 453–473
(2003). https://doi.org/10.1016/S0168-9274(02)00239-8

27. Ortleb, S.: A kinetic energy preserving DG scheme based on Gauss-Legendre points. J. Sci.
Comput. 71(3), 1135–1168 (2017). https://doi.org/10.1007/s10915-016-0334-2

28. Ranocha, H.: Comparison of some entropy conservative numerical fluxes for the Euler
equations. J. Sci. Comput. (2017). https://doi.org/10.1007/s10915-017-0618-1

29. Ranocha, H.: Generalised summation-by-parts operators and entropy stability of numerical
methods for hyperbolic balance laws. Ph.D. Thesis, TU Braunschweig (2018)

30. Ranocha, H.: Generalised summation-by-parts operators and variable coefficients. J. Comput.
Phys. 362, 20–48 (2018). https://doi.org/10.1016/j.jcp.2018.02.021

31. Ranocha, H., Öffner, P., Sonar, T.: Summation-by-parts operators for correction procedure via
reconstruction. J. Comput. Phys. 311, 299–328 (2016). https://doi.org/10.1016/j.jcp.2016.02.
009

32. Ranocha, H., Öffner, P., Sonar, T.: Summation-by-parts and correction procedure via recon-
struction. In: Bittencourt, M.L., Dumont, N.A., Hesthaven, J.S. (eds.) Spectral and High Order
Methods for Partial Differential Equations ICOSAHOM 2016. Lecture Notes in Computational
Science and Engineering, vol. 119, pp. 627–637. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-65870-4_45

33. Roe, P.L.: Affordable, entropy-consistent Euler flux functions. In: Talk presented at
the Eleventh International Conference on Hyperbolic Problems: Theory, Numerics,
Applications (2006). http://www2.cscamm.umd.edu/people/faculty/tadmor/references/files/
Roe_Affordable_entropy_Hyp2006.pdf

34. Sjögreen, B., Yee, H.C.: On skew-symmetric splitting and entropy conservation schemes for
the Euler equations. In: Kreiss, G., Lötstedt, P., Målqvist, A., Neytcheva, M. (eds.) Numerical
Mathematics and Advanced Applications 2009: Proceedings of ENUMATH 2009, the 8th
European Conference on Numerical Mathematics and Advanced Applications, Uppsala, July
2009, pp. 817–827. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11795-4_
88

35. Sjögreen, B., Yee, H.: High order entropy conservative central schemes for wide ranges of
compressible gas dynamics and MHD flows. J. Comput. Phys. 364, 153–185 (2018). https://
doi.org/10.1016/j.jcp.2018.02.003

36. Sjögreen, B., Yee, H.C., Kotov, D.: Skew-symmetric splitting and stability of high order central
schemes. In: Journal of Physics: Conference Series, vol. 837, p. 012019. IOP Publishing,
Philadelphia (2017). https://doi.org/10.1088/1742-6596/837/1/012019

37. Strand, B.: Summation by parts for finite difference approximations for d/dx. J. Comput. Phys.
110(1), 47–67 (1994). https://doi.org/10.1006/jcph.1994.1005

38. Svärd, M., Mishra, S.: Shock capturing artificial dissipation for high-order finite difference
schemes. J. Sci. Comput. 39(3), 454–484 (2009). https://doi.org/10.1007/s10915-009-9285-1

39. Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value
problems. J. Comput. Phys. 268, 17–38 (2014). https://doi.org/10.1016/j.jcp.2014.02.031

https://doi.org/10.1137/S003614290240069X
https://doi.org/10.1137/S003614290240069X
https://doi.org/10.1016/S0168-9274(01)00027-7
https://doi.org/10.1016/S0168-9274(01)00027-7
https://doi.org/10.1016/S0168-9274(02)00239-8
https://doi.org/10.1007/s10915-016-0334-2
https://doi.org/10.1007/s10915-017-0618-1
https://doi.org/10.1016/j.jcp.2018.02.021
https://doi.org/10.1016/j.jcp.2016.02.009
https://doi.org/10.1016/j.jcp.2016.02.009
https://doi.org/10.1007/978-3-319-65870-4_45
https://doi.org/10.1007/978-3-319-65870-4_45
http://www2.cscamm.umd.edu/people/faculty/tadmor/references/files/Roe_Affordable_entropy_Hyp2006.pdf
http://www2.cscamm.umd.edu/people/faculty/tadmor/references/files/Roe_Affordable_entropy_Hyp2006.pdf
https://doi.org/10.1007/978-3-642-11795-4_88
https://doi.org/10.1007/978-3-642-11795-4_88
https://doi.org/10.1016/j.jcp.2018.02.003
https://doi.org/10.1016/j.jcp.2018.02.003
https://doi.org/10.1088/1742-6596/837/1/012019
https://doi.org/10.1006/jcph.1994.1005
https://doi.org/10.1007/s10915-009-9285-1
https://doi.org/10.1016/j.jcp.2014.02.031


EC and KEP Numerical Methods for the Euler Equations Using SBP Operators 535

40. Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation
laws. I. Math. Comput. 49(179), 91–103 (1987). https://doi.org/10.1090/S0025-5718-1987-
0890255-3

41. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation
laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003). https://doi.org/
10.1017/S0962492902000156

42. Wang, Z.J., Gao, H.: A unifying lifting collocation penalty formulation including the discon-
tinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids. J.
Comput. Phys. 228(21), 8161–8186 (2009). https://doi.org/10.1016/j.jcp.2009.07.036

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1090/S0025-5718-1987-0890255-3
https://doi.org/10.1090/S0025-5718-1987-0890255-3
https://doi.org/10.1017/S0962492902000156
https://doi.org/10.1017/S0962492902000156
https://doi.org/10.1016/j.jcp.2009.07.036
http://creativecommons.org/licenses/by/4.0/

	Entropy Conserving and Kinetic Energy Preserving Numerical Methods for the Euler Equations Using Summation-by-PartsOperators
	1 Introduction
	2 Discretisations Using Summation-by-Parts Operators
	3 Euler Equations and Kinetic Energy
	3.1 New Approach to Kinetic Energy Preservation
	3.2 Entropy Conservative and KEP Numerical Fluxes

	4 Numerical Results
	5 Summary and Discussion
	References


